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Abstract. The inverse scattering transform (IST) as a tool to solve the
initial-value problem for the focusing nonlinear Schrödinger (NLS) equation

with one-sided non-zero boundary value qr(t) ≡ Are−2iA2
rt+iθr , Ar ≥ 0,

0 ≤ θr < 2π, as x → +∞ is presented. The direct problem is shown to be
well-defined for NLS solutions q(x, t) such that [q(x, t)− qr(t)ϑ(x)] ∈ L1,1(R)

[here and in the following ϑ(x) denotes the Heaviside function] with respect to
x ∈ R for all t ≥ 0, for which analyticity properties of eigenfunctions and scat-
tering data are established. The inverse scattering problem is formulated both
via (left and right) Marchenko integral equations and as a Riemann-Hilbert

problem on a single sheet of the scattering variables λr =
√

k2 +A2
r, where k

is the usual complex scattering parameter in the IST. The direct and inverse
problems are also formulated in terms of a suitable uniformization variable
that maps the two-sheeted Riemann surface for k into a single copy of the
complex plane. The time evolution of the scattering coefficients is then de-
rived, showing that, unlike the case of solutions with the same amplitude as

x → ±∞, here both reflection and transmission coefficients have a nontrivial
(although explicit) time dependence. The results presented in this paper will
be instrumental for the investigation of the long-time asymptotic behavior of
physically relevant NLS solutions with nontrivial boundary conditions, either
via the nonlinear steepest descent method on the Riemann-Hilbert problem,
or via matched asymptotic expansions on the Marchenko integral equations.

1. Introduction

Nonlinear Schrödinger (NLS) systems have been extensively investigated both
mathematically and physically for almost sixty years, and remarkably continue to
offer interesting research problems and new venues for applications. Equations of
NLS-type have proven over the years to be fundamental for modelling nonlinear
wave phenomena in such diverse fields as deep water waves [4,38], plasma physics
[34], nonlinear fiber optics [22], magnetic spin waves [16, 40], low temperature
physics and Bose-Einstein condensates [29], just to mention a few. Mathemati-
cally, the scalar NLS equation is particularly relevant in view of its universal na-
ture, since most dispersive energy preserving systems reduce to it in appropriate
limits. All this clearly explains the keen interest in NLS equations as prototypical
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integrable systems, and motivates the effort put into advancing our mathematical
understanding of this equation.

The inverse scattering transform (IST) as a method to solve the initial-value
problem for the scalar NLS equation:

(1.1) iqt = qxx − 2σ |q|2q

(subscripts x and t denote partial differentiation throughout) has been amply stud-
ied in the literature, both in the focusing (σ = −1) and in the defocusing (σ = 1)
dispersion regimes; see, for instance, [2–4,15,27,38] for detailed accounts of the
IST in the case of solutions q(x, t) rapidly decaying as x → ±∞. The situation
is quite different when one is interested in solutions that do not decay at space
infinity. As a matter of fact, even though the IST for the focusing NLS equation
with rapidly decaying potentials was first proposed more than 40 years ago, and
has been subsequently the subject of a vast amount of studies and applications,
not nearly as much is available in the literature in the case of nontrivial boundary
conditions. The reason for this deficiency is twofold: on one hand, the technical
difficulties resulting from the non-zero boundary conditions (NZBCs) significantly
complicate the formulation of the IST; on the other hand, the onset of modulational
instability, also known as the Benjamin-Feir instability [10, 11] in the context of
water waves, was believed to be an obstacle to the development of the IST, or at
least to its validity. Nonetheless, direct methods have been extensively used over
the years to derive a large number of exact solutions to the focusing NLS equa-
tion with NZBCs, known as Peregrine and multi-Peregrine solutions, Akhmediev
breathers, and more general solitonic solutions [6–9, 23–26, 30, 33, 35]. Lately
these solutions have been the subject of a renewed interest, due to the fact that the
development of modulation instability in the governing equation has been recently
suggested as a mechanism for the formation of “extreme” (rogue, freak) waves, for
which energy density exceeds the mean level by an order of magnitude (see, for
instance, [28,36,37] in relation to water waves, and [32] regarding the observation
of “rogue” waves in optical systems).

In view of these recent developments, it is natural to wonder about the role that
soliton solutions play in the nonlinear development of the modulation instability,
which makes the study of the long-time asymptotics of NLS solutions of great
practical importance, crucial for developing a consistent theory for rogue waves in
the ocean, and for extreme events in optical fibers. Likewise, also the investigation
of the IST for the focusing case with NZBCs [Eq. (1.1) with σ = −1], i.e.

(1.2) iqt = qxx + 2|q|2q ,

as a means to provide the time evolution of a fairly general initial one-dimensional
pulse/wave profile over a nontrivial background, has been receiving a greater deal
of attention, since it allows the study of the long-time asymptotic behavior via the
nonlinear steepest descent method [14,17], matched asymptotic expansions [1,5],
or other germane techniques.

The IST for the defocusing NLS equation with NZBCs was first studied in
1973 [39]; the problem was subsequently clarified and generalized in various works
(see [18,20] and references therein). On the other hand, to the best of our knowl-
edge until recently the only results on the IST for the focusing NLS with NZBCs
available in the literature could be found in [21,25], which only partially address
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the problem since the study was limited to the case of completely symmetric bound-
ary conditions with limx→+∞ q(x, t) = limx→−∞ q(x, t), i.e., only the case in which
the potential exhibits no asymptotic phase difference and no amplitude difference is
treated. In [12], Biondini & Kovačić have contributed filling this gap by developing
the IST for potentials with an arbitrary asymptotic phase difference, although as-
suming the same amplitude at both space infinities. They also discuss the general
behavior of the soliton solutions, as well as the reductions to all special solutions
previously known in the literature and mentioned above. The IST for focusing
NLS with fully asymmetric NZBCs has been developed in [19], where different

asymptotic amplitudes and phases are considered: q(x, t) → Al/re
−2iA2

l/rt+iθl/r as
x → ±∞, with Ar ≥ Al > 0. This is a nontrivial generalization of [12], and it
involves dealing with additional technical difficulties, the most important of which
being the fact that when the amplitudes of the NLS solutions as x → ±∞ are
different, in the spectral domain one cannot introduce a uniformization variable
[20] that allows mapping the multiply sheeted Riemann surface for the scattering
parameter to a single complex plane, which provides a remarkable simplification in
the study of both direct and inverse problems.

In this work we will develop the IST for the scalar focusing NLS (1.2) with the
following one-sided NZBCs:

q(x, t) → 0 as x → −∞,(1.3a)

q(x, t) → qr(t) = Ar e
−2iA2

rt+iθr as x → +∞,(1.3b)

where Ar > 0 and 0 ≤ θr < 2π are arbitrary constants. Obviously, the case of a
nontrivial boundary condition only as x → −∞ can be treated in a similar fashion.

Such kind of boundary conditions are obviously outside the class considered
in [12], where the amplitudes of the background field are taken to be the same at
both space infinities. The problem with one-sided non-zero boundary conditions
clearly has a physical relevance on its own, and, unlike what happens, for instance,
for the Korteweg-de Vries (KdV) equation, for NLS one cannot set one of boundary
conditions to zero without loss of generality, by performing suitable rescalings of
the field. At the same time, the mathematical motivation for the present work is
twofold. On one hand, in [19] we assumed Al > 0, and the limit Al → 0 is a singular
limit, which makes recovering the corresponding results from the fully asymmetric
case far from straightforward. On the other hand, the case of one-sided NZBCs
presents some specific features that make it deserving a separate investigation. In
fact, unlike the case of fully asymmetric boundary conditions and similarly to the
same-amplitude case dealt with in [12], with boundary conditions such as the ones
in (1.3) it is still possible to introduce a uniformization variable [20] that allows
mapping the multiply sheeted Riemann surface for the scattering parameter into a
single complex plane. Yet, important differences with respect to the same-amplitude
case arise both in the direct and in the inverse problems, and they will be properly
highlighted in this work. From the point of view of physical applications, such
a work would be particularly significant for the theoretical investigation of rogue
waves and perturbed soliton solutions in microstructured fiber optical systems with
different background amplitudes enforced at either end of the fiber. This work would
also be relevant in clarifying the role that soliton solutions play in the nonlinear
development of modulation instability in such systems.
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The plan of the paper is outlined below. Sec. 2 is devoted to the study of
the direct scattering problem on a single sheet of the scattering variables k, λr =√
k2 +A2

r, where k is the usual complex scattering parameter in the IST. We
will show that the direct problem is well defined for potentials q(x, t) such that
[q(x, t) − ϑ(x)qr(t)] ∈ L1,1(R) with respect to x ∈ R and for all t ≥ 0, where
L1,s(R) is the complex Banach space of all measurable functions f(x) for which
(1 + |x|)sf(x) is integrable and ϑ(x) is the Heaviside function [i.e., ϑ(x) = 1 for
x ≥ 0, and zero otherwise]. We will then establish analyticity of eigenfunctions
and scattering data in k, and obtain integral representations for the latter for
potentials in this class. In Sec. 3 we will formulate the inverse problem both in
terms of Marchenko integral equations, and as a Riemann-Hilbert (RH) problem
on a single sheet of the scattering variables (k, λr(k)). Important differences with
respect to the symmetric case also arise in the inverse problem, where, in addition to
solitons (corresponding to the discrete eigenvalues of the scattering problem), and
to radiation (corresponding to the continuous spectrum of the scattering operator,
and represented in the inverse problem by the reflection coefficients for k ∈ R), one
also has a nontrivial contribution from additional spectral data for k ∈ (−iAr, iAr),
which appears in both formulations of the inverse problem. In particular, this
implies that no pure soliton solutions exist, and solitons are always accompanied
by a radiative contribution of some sort. As a consequence, unlike the equal-
amplitude case dealt with in [12], here no explicit solution can be obtained by
simply reducing the inverse problem to a set of algebraic equations. In view of this,
the present study provides a very powerful tool for the asymptotic investigation
of NLS solutions that cannot be obtained by direct methods. Specifically, the RH
formulation of the inverse problem makes it amenable to the study of the long-
time asymptotic behavior via the nonlinear steepest descent method, as shown,
for instance, in [17] for the modified KdV equation, or in [14] for the focusing
NLS with initial condition q(x, 0) = Aeiμ|x|, A and μ being positive constants.
The Marchenko integral equations provide an alternative setup for the study of
the long-time behavior of the solutions by means of matched asymptotics, as was
recently done for KdV in [1]. Sec. 4 deals with the time evolution of eigenfunctions
and scattering coefficients. In Sec. 5 we develop the direct scattering problem in
terms of the uniform variable z = k + λr, and formulate the inverse problem as a
Riemann-Hilbert problem in z ∈ C. Finally, Sec. 6 is devoted to some concluding
remarks.

2. Direct problem

It is well-known that the focusing NLS equation (1.2) can be associated to the
following Lax pair:

∂v

∂x
=(−ikσ3 +Q) v ,(2.1a)

∂v

∂t
=
[
i(2k2 − |q|2 +Qx)σ3 − 2kQ

]
v ,(2.1b)

where v(x, k, t) is a two component vector, k ∈ C the scattering parameter, and

(2.2) σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, Q(x, t) =

(
0 q(x, t)

−q∗(x, t) 0

)
.
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[Here and in the following the asterisk indicate complex conjugates; σ2 is given for
future reference.] We will consider potentials q(x, t) with one-sided NZBC as in
(1.3), where we assume that the limits exist in the standard sense, with asymp-
totic amplitude Ar positive and time-independent, and asymptotic phase given by
θr(t) = −2A2

rt+ θr, to ensure compatibility with the NLS evolution. Furthermore,
we assume the following integrability condition

(2.3) (Hs) :

∫ ∞

−∞
dx (1 + |x|)s |q(x, t)− qr(t)ϑ(x)| < ∞ ,

for all t ≥ 0, where s = 0, 1 depending on the situation.
For later convenience, we denote by Qr(t) the limit of Q(x, t) as x → +∞

[obviously, Q(x, t) → 02×2 as x → −∞, according to (1.3)]. We also introduce the
“free” potential matrix Qf (x, t) as follows:

(2.4) Qf (x, t) = Qr(t)ϑ(x).

In the formulation of the direct problem we will omit to explicitly specify the time-
dependence for brevity. It will be clear from the context whether one is considering
t = 0 or an arbitrary t > 0.

It is convenient to introduce the asymptotic scattering operator corresponding
to the NZBC as x → +∞, namely:

(2.5a) Λr(k) = −ikσ3 +Qr ,

as well as

(2.5b) Λ(x, k) = −ikσ3 +Qf (x) = −ikσ3 + ϑ(x)Λr(k) ,

and attempt to define the fundamental eigensolution Ψ̃(x, k) and the eigenfunc-
tion Φ(x, k) as those 2× 2 matrix solutions to (2.1a) which satisfy the asymptotic
conditions

Ψ̃(x, k) = exΛr(k)[I2 + o(1)] x → +∞ ,(2.6a)

Φ(x, k) = e−ikxσ3 [I2 + o(1)] x → −∞ ,(2.6b)

[here and in the following I2 denotes the 2× 2 identity matrix]. Note that because
of the choice of boundary conditions (1.3), Φ(x, k) coincides with the usual pair
of Jost solutions from the left for the scattering problem (cf. Sec. 2.1). On the
other hand, as far as the eigensolution from the right is concerned, exΛr(k) is a
bounded group for all x ∈ R iff Λr(k) has only zero or purely imaginary eigenvalues
and is diagonalizable, i.e., iff k ∈ R ∪ (−iAr, iAr). For k = ±iAr the norm of the
group exΛr(k) grows linearly in x as x → +∞. Then the following result can be
established.

Proposition 2.1. Let the potential satisfy (H0). Then for k ∈ R the eigen-
function Φ(x, k) is given by the unique solution to the integral equation

(2.7a) Φ(x, k) = e−ikxσ3 +

∫ x

−∞
dy e−ik(x−y)σ3Q(y)Φ(y, k) ,

continuous for x ∈ R, and for all k ∈ R. For k ∈ R ∪ (−iAr, iAr) the fundamental

eigensolution Ψ̃(x, k) with asymptotic behavior (2.6a) can be obtained as the unique
solution to the integral equation

(2.7b) Ψ̃(x, k) = exΛr(k) −
∫ ∞

x

dy e(x−y)Λr(k)[Q(y)−Qr]Ψ̃(y, k) .
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Moreover, Ψ̃(x, k) is continuous for x0 ≤ x for any finite x0
1, and, as a function

of k, for all k ∈ R ∪ (−iAr, iAr). In addition, if the potential satisfies (H1), then
(2.7b) has a unique, continuous solution for k ∈ [−iAr, iAr] (i.e., the continuity
result can be extended to include the branch points k = ±iAr).

The result for Φ(x, k) follows from standard iteration arguments for decaying

potentials in L1, and for Ψ̃(x, k) it can be proved as in [18] and [19].
Assuming (H1), one can replace the integral equations (2.7) by different ones.

To this aim, let us introduce the fundamental matrix G(x, y; k) as follows:
G(x, y; k) =ϑ(x)ϑ(y) e(x−y)Λr(k) + ϑ(−x)ϑ(−y) e−ikσ3(x−y)(2.8)

+ ϑ(x)ϑ(−y) exΛr(k) eikσ3y + ϑ(−x)ϑ(y) e−ikσ3x e−yΛr(k) .

G(x, y; k) is a continuous matrix function of (x, y, k) ∈ R2 × C which satisfies the
initial value problems:

∂G(x, y; k)
∂x

=Λ(x, k)G(x, y, k) , G(y, y; k) = I2 ,(2.9a)

∂G(x, y; k)
∂y

=− G(x, y, k)Λ(y, k) , G(x, x; k) = I2 ,(2.9b)

where Λ(x, k) is given by (2.5b). For further details on the fundamental matrix we
refer to [18, App A], where the analogous problem is considered for the defocusing
NLS equation. Then using (2.9) one can easily check that the eigenfunction Φ(x, k)

and the fundamental eigensolution Ψ̃(x, k) also satisfy the integral equations

Φ(x, k) = G(x, 0; k) +
∫ x

−∞
dy G(x, y; k)[Q(y)−Qf (y)]Φ(y, k) ,(2.10a)

Ψ̃(x, k) = G(x, 0; k)−
∫ ∞

x

dy G(x, y; k)[Q(y)−Qf (y)]Ψ̃(y, k) ,(2.10b)

where G(x, 0; k) = ϑ(x)exΛr(k) + ϑ(−x)e−ikσ3x, according to (2.8), and Qf (x) is
given by (2.4). Note that (2.10a) coincides with (2.7a) for x ≤ 0, and (2.10b)
coincides with (2.7b) for x ≥ 0. On the other hand, using (2.8) we get

Φ(x, k) = exΛr(k)

[
I2 +

∫ x

−∞
dy G(0, y; k)[Q(y)−Qf (y)]Φ(y, k)

]
, x ≥ 0 ,

(2.11a)

Ψ̃(x, k) = e−ikσ3x

[
I2 −

∫ ∞

x

dy G(0, y; k)[Q(y)−Qf (y)]Ψ̃(y, k)

]
, x ≤ 0 .

(2.11b)

Note that in (2.11b) the integral in the right-hand side converges absolutely as
x → −∞, unlike (2.7b).

2.1. Jost solutions. Since the asymptotic scattering operator Λr(k) is trace-
less, and such that Λ2

r(k) = −(k2 + A2
r)I2, we consider the two-sheeted Riemann

surface associated with λ2
r = k2 + A2

r by introducing appropriate local polar coor-
dinates, with rj ≥ 0 and −π/2 ≤ θj < 3π/2 for j = 1, 2, and define:
(2.12)

λr =
√
r1r2 e

i(θ1+θ2)/2 on Sheet I , λr = −√
r1r2 e

i(θ1+θ2)/2 on Sheet II .

1Note that the integral in (2.7b) does not converge absolutely for x → −∞.



INVERSE SCATTEERING TRANSFORM FOR THE FOCUSING NLS EQUATION 7

2

1

r1

r2

r

k=r ei

iAr

-iAr

=i r

= r=- r

=-i r √ r  r
___

1 2

= r √ r  r
___

1 2

= r=- r √ r  r
___

1 2

=- r √ r  r
___

1 2

√ r  r
___

1 2 √ r  r
___

1 2

√ r  r
___

1 2

√ r  r
___

1 2

Im k 

Re k

Sheet I

r =[(k-iA  )(k+iA )]r r
1/2

2

1

r1

r2

r

k=r ei
iAr

-iAr

=-i r

= r =- r

=-i r √ r  r
___

1 2

= r √ r  r
___

1 2

=- r= r √ r  r
___

1 2

=- r √ r  r
___

1 2

√ r  r
___

1 2√ r  r
___

1 2

√ r  r
___

1 2

√ r  r
___

1 2

21=- r √ r  r
___

1 2

Im k 

r

Re k

Sheet II

-iA

r √ r  r
___

1 2

r =-[(k-iA  )(k+iA )]r r
1/2

=- √ r  r
___

r 1 2= 

2

√ r  rr 1 2

___

=i

Figure 1. The branch cut on the two-sheeted Riemann surface
associated with λ2

r = k2 + A2
r: we define λr =

√
r1r2 e

i(θ1+θ2)/2

on Sheet I, and λr = −√
r1r2 e

i(θ1+θ2)/2 on Sheet II, with r1 =
|k − iAr|, r2 = |k + iAr| and angles −π/2 ≤ θ1, θ2 < 3π/2 for
j = 1, 2.

The branch cut is along the imaginary segment Σr = [−iAr, iAr]. The Riemann
surface is then obtained by gluing together the two copies of the complex plane
along the cut Σr [see Fig. 1].

For the purpose of Secs. 2-4, we will consider a single sheet (Sheet I) of the
complex plane for k, and denote by Kr the plane cut along the segment Σr on the
imaginary axis. C± will denote the open upper/lower complex half planes, and K±

r

the open upper/lower complex half-planes, respectively, cut along Σr.
It is easy to show that λr provides one-to-one correspondences between the following
sets:

• k ∈ K
+
r ≡ C

+ \ (0, iAr] and λr ∈ C
+

• k ∈ ∂K+
r ≡ R ∪ {is − 0+ : 0 < s < Ar} ∪ {iAr} ∪ {is+ 0+ : 0 < s < Ar}

and λr ∈ R

• k ∈ K−
r ≡ C− \ [−iAr, 0) and λr ∈ C−

• k ∈ ∂K−
r ≡ R∪{is−0+ : −Ar < s < 0}∪{−iAr}∪{is+0+ : −Ar < s < 0}

and λr ∈ R.

Note that with this choice for the branch cut one has λr ∼ k as k → ∞ in the
entire Sheet I, while λr ∼ −k as k → ∞ on Sheet II. In the following, λ±

r (k) will
denote the boundary values taken by λr(k) for k ∈ Σr from the right/left edge of
the cut on Sheet I, with

(2.13) λ±
r (k) = ±

√
A2

r − |k|2 , k = is± 0+, |s| ≤ Ar

on the right/left edge (cf. Fig. 1).
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The eigenvalues of Λr(k) are ±iλr, and the eigenvector matrix Wr(k), such
that

(2.14) Λr(k)Wr(k) = −iλrWr(k)σ3 ,

can be conveniently chosen as follows:

(2.15) Wr(k) = I2 −
i

λr + k
σ3Qr .

Note that detWr(k) = 2λr

λr+k , and Wr(k) is a nonsingular matrix on either sheet

because Ar > 0 holds strictly (λr + k can only vanish on Sheet II, and only in the
limit k → ∞).

We can then define the “right” Jost solutions Ψ(x, k) =
(
ψ̄(x, k) ψ(x, k)

)
in

terms of the fundamental eigensolution Ψ̃(x, k) as:

Ψ(x, k) =
(
ψ̄(x, k) ψ(x, k)

)
:= Ψ̃(x, k)Wr(k) ,(2.16)

which then satisfies the following boundary condition:

Ψ(x, k) ∼ Wr(k) e
−iλrxσ3 , x → +∞ .(2.17)

The Jost solutions from the right ψ̄(x, k), ψ(x, k) are then defined via a customary
asymptotic plane wave behavior (cf. (2.17)) when λr ∈ R, i.e., for k ∈ ∂K+

r ∪ ∂K−
r ,

and when k = is ∈ [−iAr, iAr] we will denote with a superscript ± the values on
the right/left edge of the cut in both half-planes, i.e.:

(2.18) Ψ±(x, is) ≡
(
ψ̄±(x, is) ψ±(x, is)

)
:= Ψ̃(x, is)Wr(is± 0+) |s| ≤ Ar ,

since Ψ̃(x, k) is single-valued across the cut, and Wr(k) has right/left limits defined
by (2.13).

On the other hand, the “left” Jost solutions Φ(x, k) =
(
φ(x, k) φ̄(x, k)

)
are

defined as asymptotic “plane waves” (cf. (2.6b)) for k ∈ R.
Taking into account (2.7) and (2.16), the Jost solutions can be represented in

terms of the following integral equations:

eiλrxψ̄(x, k) = Wr,1(k)−
∫ ∞

x

dy Ξ−
r (y − x, k)[Q(y)−Qr]e

iλryψ̄(y, k),(2.19a)

e−iλrxψ(x, k) = Wr,2(k)−
∫ ∞

x

dy Ξ+
r (y − x, k)[Q(y)−Qr]e

−iλryψ(y, k),(2.19b)

eikxφ(x, k) =

(
1
0

)
+

∫ x

−∞
dy Ξ+

l (x− y, k)Q(y) eikyφ(y, k),(2.19c)

e−ikxφ̄(x, k) =

(
0
1

)
+

∫ x

−∞
dy Ξ−

l (x− y, k)Q(y) e−ikyφ̄(y, k),(2.19d)
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where the subscripts j = 1, 2 in the matrix Wr(k) denote its j-th column, and

Ξ−
r (x, k) =

(
1 + λr−k

2λr

[
e−2iλrx − 1

]
− iqr

2λr

[
e−2iλrx − 1

]
iq∗r
2λr

[
e−2iλrx − 1

]
e−2iλrx − λr−k

2λr

[
e−2iλrx − 1

]
)
,(2.20a)

Ξ+
r (x, k) =

(
e2iλrx − λr−k

2λr

[
e2iλrx − 1

]
iqr
2λr

[
e2iλrx − 1

]
− iq∗r

2λr

[
e2iλrx − 1

]
1 + λr−k

2λr

[
e2iλrx − 1

]
)
,(2.20b)

Ξ+
l (x, k) =

(
1 0
0 e2ikx

)
,(2.20c)

Ξ−
l (x, k) =

(
e−2ikx 0

0 1

)
.(2.20d)

Note that the integral equations (2.19a) and (2.19b) for the “right” Jost solutions
are the same as in the fully asymmetric case [19], while the integral equations
(2.19c) and (2.19d) for the “left” Jost solutions are the same as in the vanishing
case [3].

The following result then establishes the analyticity properties of the Jost so-
lutions as functions of the scattering parameter k.

Proposition 2.2. Suppose (H1) holds.2 Then, for every x ∈ R, the Jost
solution ψ(x, k) [resp. ψ̄(x, k)] extends to a function that is analytic for k ∈ K+

r

[resp. k ∈ K−
r ], and continuous for k ∈ K+

r ∪ ∂K+
r ∪ ∂K−

r [resp. k ∈ K−
r ∪ ∂K−

r ∪
∂K+

r ]. On the other hand, the Jost solution φ(x, k) [resp. φ̄(x, k)] extends to a
function that is continuous for k ∈ C

+ ∪ R [resp. k ∈ C
− ∪ R] and analytic for

k ∈ C+ [resp. k ∈ C−].

Note that K±
r are intended as analytic manifolds, and continuity of the Jost

solutions across the cuts is intended as the existence of right/left continuous limits
only in the domains that have the branch cut as part of their boundary as an
analytic manifold, i.e. K+

r for ψ(x, k) and K−
r for ψ̄(x, k). In the half-planes where

locally there is no analytic continuation off the branch cut, the functions ψ±(x, k),
ψ̄±(x, k) are as given in (2.18) with the two choices of λ±

r , and can be obtained as
the unique solutions of the corresponding Volterra integral equations (2.19).
The proof of Prop. 2.2 for ψ(x, k) and ψ̄(x, k) can be carried out as in [18, 19],
while the result for φ(x, k) and φ̄(x, k) can be established following the standard
approach for sufficiently rapidly decaying potentials.

In conclusion, for potentials satisfying (H1) all four Jost solutions are in general
simultaneously defined only for k ∈ R. Note that φ+(x, k) = φ−(x, k) for k ∈
[0, iAr], and φ̄+(x, k) = φ̄−(x, k) for k ∈ [−iAr, 0], where the superscript

± denotes
again the values on the right/left edge of the cut in both half-planes. On the
contrary, φ̄(x, k) is in general not defined for k ∈ (0, iAr], and φ(x, k) is not defined
for k ∈ [−iAr, 0).

2.2. Scattering coefficients. From the integral equations (2.11) for Φ(x, k)

and Ψ̃(x, k), one can easily find

Ψ̃(x, k) = e−ikσ3x[Br(k) + o(1)], x → −∞,(2.21a)

Φ(x, k) = exΛr(k)[Bl(k) + o(1)], x → +∞,(2.21b)

2In fact, since the potential decays as x → −∞, it would be enough to assume [q(x, t) −
ϑ(x)qr(t)] ∈ L1(R−) ∩ L1,1(R+) with respect to x for all t ≥ 0.
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where the coupling matrices

Br(k) = I2 −
∫ ∞

−∞
dy G(0, y; k)[Q(y)−Qf (y)]Ψ̃(y, k),(2.22a)

Bl(k) = I2 +

∫ ∞

−∞
dy G(0, y; k)[Q(y)−Qf (y)]Φ(y, k),(2.22b)

are each other’s inverse. Under the assumptions of Prop. 2.1, in Eqs. (2.21) and
(2.22) one needs to take k ∈ R, where all eigenfunctions (2.10) and (2.11) are
simultaneously defined.

Using (2.16) and (2.21) to obtain the asymptotic behavior of the Jost solutions
as x → ±∞, for k ∈ R we can then express each set of Jost solutions as a linear
combination of the other set, i.e.,(

φ(x, k) φ̄(x, k)
)
=

(
ψ̄(x, k) ψ(x, k)

)
S(k) ,(2.23a) (

ψ̄(x, k) ψ(x, k)
)
=

(
φ(x, k) φ̄(x, k)

)
S̄(k) ,(2.23b)

where the scattering matrices S(k) and S̄(k) are obviously each other inverses, and
they are given by

(2.24) S(k) = W−1
r (k)Bl(k) , S̄(k) = Br(k)Wr(k).

For later convenience we write

(2.25) S(k) =

(
a(k) b̄(k)
b(k) ā(k)

)
, S̄(k) =

(
c̄(k) d(k)
d̄(k) c(k)

)
,

where the entries of the scattering matrices are usually referred to as scattering
coefficients, and at this stage they are all in general defined only for k ∈ R. More-
over, since detΦ(x, k) and detΨ(x, k) are independent of x, from (2.6b) and (2.17)
it follows that

(2.26) detΦ(x, k) = 1 , detΨ(x, k) =
2λr

λr + k
,

and consequently we obtain for k ∈ R:

detS(k) =
1

detWr(k)
=

λr + k

2λr
, det S̄(k) = detWr(k) =

2λr

λr + k
.(2.27)

If we now denote by Wr(v1, v2)
def
= det

(
v1 v2

)
the Wronskian of any two vector

solutions v1, v2 of the scattering problem (2.1a), then Eqs. (2.23) yield the following
“Wronskian” representations for the scattering coefficients in (2.25) for k ∈ R:

a(k) =
Wr(φ, ψ)

Wr(ψ̄, ψ)
=

λr + k

2λr
Wr(φ, ψ), ā(k) =

Wr(ψ̄, φ̄)

Wr(ψ̄, ψ)
=

λr + k

2λr
Wr(ψ̄, φ̄),

(2.28a)

b(k) =
Wr(ψ̄, φ)

Wr(ψ̄, ψ)
=

λr + k

2λr
Wr(ψ̄, φ), b̄(k) =

Wr(φ̄, ψ)

Wr(ψ̄, ψ)
=

λr + k

2λr
Wr(φ̄, ψ),

(2.28b)

and

c(k) =
Wr(φ, ψ)

Wr(φ, φ̄)
=

2λr

λr + k
a(k), c̄(k) =

Wr(ψ̄, φ̄)

Wr(φ, φ̄)
=

2λr

λr + k
ā(k) ,(2.28c)

d(k) =
Wr(ψ, φ̄)

Wr(φ, φ̄)
= − 2λr

λr + k
b̄(k), d̄(k) =

Wr(φ, ψ̄)

Wr(φ, φ̄)
= − 2λr

λr + k
b(k) ,(2.28d)



INVERSE SCATTEERING TRANSFORM FOR THE FOCUSING NLS EQUATION 11

where the arguments (x, k) of the Jost solutions have been omitted for brevity, and
the second set of identities in (2.28c) and (2.28d) are obtained from S̄(k) = S−1(k).

These Wronskian representations can then be used to define the values of the
scattering coefficients from the right/left edge of the cut Σr, consistently with

(2.18). Explicitly, taking into account that λ±
r (k) = ±

√
A2

r − |k|2 on the right/left
edge of the cut for k ∈ Σr (cf. Fig. 1), one has

a±(k) =
λ±
r (k) + k

2λ±
r (k)

Wr(φ(x, k), ψ±(x, k)) k ∈ [0, iAr] ,(2.29a)

ā±(k) =
λ±
r (k) + k

2λ±
r (k)

Wr(ψ̄±(x, k), φ̄(x, k)) k ∈ [−iAr, 0] ,(2.29b)

b±(k) =
λ±
r (k) + k

2λ±
r (k)

Wr(ψ̄±(x, k), φ(x, k)) k ∈ [0, iAr] ,(2.29c)

b̄±(k) =
λ±
r (k) + k

2λ±
r (k)

Wr(φ̄(x, k), ψ±(x, k)) k ∈ [−iAr, 0] ,(2.29d)

and similarly for the scattering coefficients from the left defined by (2.28c)-(2.28d).
Eqs. (2.28) allow one to analytically continue some of the scattering coefficients

off the real k-axis under the assumption (H1). In fact, (2.28) and Prop. 2.2 imply:

• a(k) is analytic in k ∈ K+
r , and continuous for k ∈ K

+
r \{iAr} [with values

across the cut a±(k) as in (2.29a)]; also

(2.30a) a(k) ∼ iAr

2λr
Wr(φ(x, iAr), ψ(x, iAr)), k → iAr.

• ā(k) is analytic in k ∈ K−
r , and continuous in k ∈ K

−
r \ {−iAr} [with

values across the cut ā±(k) as in (2.29b)]; also

(2.30b) ā(k) ∼ −iAr

2λr
Wr(ψ̄(x,−iAr), φ̄(x,−iAr)), k → −iAr.

• b(k) is continuous for ∂K+
r \ {iAr} [with values across the cut b±(k) as

in (2.29c)], and b̄(k) is continuous for k ∈ ∂K−
r + \ {−iAr} [with values

across the cut b̄±(k) as in (2.29d)]; at the branch points

b±(k) ∼ iAr

2λr
Wr(ψ̄(x, iAr), φ(x, iAr)), k → iAr ,(2.30c)

b̄±(k) ∼ −iAr

2λr
Wr(φ̄(x,−iAr), ψ(x,−iAr)), k → −iAr .(2.30d)

Similar results can be derived for the four scattering coefficients from the left,
although the corresponding properties can also be obtained from those above using
(2.28c) and (2.28d). Note, in particular, that a(k) [resp., ā(k)] has a branch point
singularity at k = iAr [resp., k = −iAr], where λr = 0, while c(k) [resp., c̄(k)] is
well-defined there, consistently with (2.28c).

For future convenience we also define the reflection coefficients from the right
as follows:

ρ(k) =
b(k)

a(k)
for k ∈ R, ρ±(k) =

b±(k)

a±(k)
for k ∈ [0, iAr),(2.31a)

ρ̄(k) =
b̄(k)

ā(k)
for k ∈ R, ρ̄±(k) =

b̄±(k)

ā±(k)
for k ∈ (−iAr, 0],(2.31b)
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and the reflection coefficients from the left as:

r(k) =
d(k)

c(k)
= − b̄(k)

a(k)
, r(k) =

d(k)

c̄(k)
= − b(k)

ā(k)
, k ∈ R,(2.31c)

where in the last two expressions we have used that S(k) = S̄−1(k). The recipro-
cals 1/a(k), 1/ā(k), 1/c(k), and 1/c̄(k) are usually referred to as (right and left)
transmission coefficients.

Furthermore, as shown in [19] for the case of fully asymmetric NZBCs, from
(2.24) and (2.22), using (2.14) and (2.16) we also obtain the following integral
representation for the scattering matrix:

S(k) =

∫ ∞

0

dy eiλryσ3W−1
r (k)[Q(y)−Qr]Φ(y, k)

+W−1
r (k)

[
I2 +

∫ 0

−∞
dy eikyσ3 [Q(y)−Ql]Φ(y, k)

]
,(2.32)

which could serve as an alternative to the Wronskian representations to establish
the analytic continuation in the appropriate half planes of the scattering coefficients
a(k) and ā(k).

2.3. Symmetries of eigenfunctions and scattering data. The scattering
problem (2.1a) admits two involutions: (k, λr) → (k∗, λ∗

r) and (k, λr) → (k,−λr).
Correspondingly, eigenfunctions and scattering data satisfy two sets of symmetry
relations.
First symmetry. Using the asymptotic behaviors (2.6b) and (2.17), the symme-
tries for the Jost solutions are given by:

ψ̄∗(x, k∗) = iσ2ψ(x, k) for k ∈ K
+
r ∪ R , ψ∗(x, k∗) = −iσ2ψ̄(x, k) for k ∈ K

−
r ∪ R ,

(2.33a)

(
ψ̄±(x, k∗)

)∗
= iσ2ψ

±(x, k) ,
(
ψ±(x, k∗)

)∗
= −iσ2ψ̄

±(x, k) for k ∈ [−iAr, iAr] ,

(2.33b)

φ∗(x, k∗) = iσ2φ̄(x, k) for k ∈ C
− ∪ R , φ̄∗(x, k∗) = −iσ2φ(x, k) for k ∈ C

+ ∪ R ,

(2.33c)

where σ2 is the second Pauli matrix introduced in (2.2). From (2.23) we then obtain
S∗(k∗) = σ2S(k)σ2 on the continuous spectrum k ∈ R, and wherever all entries in
the scattering matrix are simultaneously defined. Under the assumption (H0) for
the potential, the symmetry relations for the scattering coefficients can be written
as

ā∗(k∗) =a(k) for k ∈ K
+
r ∪ R ,

(
ā±(k∗)

)∗
= a±(k) for k ∈ [0, iAr] ,(2.34a)

b̄∗(k) =− b(k) for k ∈ R ,
(
b̄±(k∗)

)∗
= −b±(k) for k ∈ [0, iAr] .(2.34b)

We note that the above symmetries relate the values of the scattering coefficients
in the upper/lower half plane of k, and from the same side of the cut. Taking
into account (2.31), one can easily establish the symmetry relations satisfied by the
reflection coefficients:

ρ̄∗(k) =− ρ(k) for k ∈ R ,
(
ρ̄±(k∗)

)∗
= −ρ±(k) for k ∈ [0, iAr] ,(2.35a)

r̄∗(k) =− r(k) for k ∈ R .(2.35b)
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Second symmetry. When using a single sheet for the Riemann surface of the
function λ2

r = k2 + A2
r, the involution (k, λr) → (k,−λr) can only be considered

across the cut. So this second involution relates values of eigenfunctions and scat-
tering coefficients for the same value of k from either side of the cut. On the cut
one has

(2.36) ψ̄∓(x, k) =
λ±
r (k) + k

−iqr
ψ±(x, k) , for k ∈ [−iAr, iAr] ,

while φ+(x, k) = φ−(x, k) for k ∈ [0, iAr], and φ̄+(x, k) = φ̄−(x, k) for k ∈ [−iAr, 0].
Using these symmetries in the Wronskian representations for the scattering coeffi-
cients (2.28), one obtains:

a±(k) =
λ∓
r (k)− k

iq∗r
b∓(k) for k ∈ [0, iAr] ,(2.37a)

ā∓(k) =
λ∓
r (k) + k

−iqr
b̄±(k) for k ∈ [−iAr, 0] .(2.37b)

From (2.31a), we then have the following symmetries for the reflection coefficients
from the right:

ρ±(k) =
iq∗r

λ±
r (k)− k

a∓(k)

a±(k)
for k ∈ [0, iAr] ,(2.38a)

ρ̄±(k) =
−iqr

λ∓
r (k) + k

ā∓(k)

ā±(k)
for k ∈ [−iAr, 0] .(2.38b)

Note that the above relationships imply that

ρ+(k)ρ−(k) = q∗r/qr for k ∈ [0, iAr] , ρ̄+(k)ρ̄−(k) = qr/q
∗
r for k ∈ [−iAr, 0] .

(2.39)

Using (2.36) in (2.28c) and (2.28d), for k ∈ Σr the symmetry relations for the
scattering coefficients from the left are given by:

c±(k) =
−iqr

λ±
r (k) + k

d̄∓(k) for k ∈ [0, iAr] ,(2.40a)

c̄±(k) =
λ∓
r (k) + k

−iqr
d∓(k) for k ∈ [−iAr, 0] .(2.40b)

2.4. Discrete eigenvalues. A discrete eigenvalue is a value of k ∈ K+
r ∪K−

r

(corresponding to λr ∈ C \ R) for which there exists a nontrivial solution v to
(1.2) with entries in L2(R). These eigenvalues occur for k ∈ K+

r iff the functions
φ(x, k) and ψ(x, k) are linearly dependent (i.e., iff a(k) = 0), and for k ∈ K

−
r iff the

functions ψ̄(x, k) and φ̄(x, k) are linearly dependent (i.e., iff ā(k) = 0). Equations
(2.6b) and (2.17) imply that the corresponding eigenfunctions are exponentially
decaying as x → ±∞. The conjugation symmetry (2.34a) then ensures that the
discrete eigenvalues occur in complex conjugate pairs. The algebraic multiplicity
of each discrete eigenvalue coincides with the multiplicity of the corresponding zero
of a(k) [for k ∈ K+

r ], or ā(k) [for k ∈ K−
r ].

In this work we assume that discrete eigenvalues are simple, and finite in num-
ber. Also, we assume that there are no spectral singularities, i.e., zeros of the
scattering coefficients a(k) and ā(k) for k ∈ R∪Σr. Establishing conditions on the
asymptotic amplitudes and phases that guarantee absence of spectral singularities
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is an interesting problem, but is beyond the scope of this paper and will be the sub-
ject of future investigation. In any event, we mention that spectral singularities can
be incorporated in the inverse problem with slight modifications of the approach
presented in Sec. 3.

2.5. Large k behavior of eigenfunctions and scattering data. In order
to properly pose the inverse scattering problem, one has to determine the asymp-
totic behavior of eigenfunctions and scattering data as k → ∞. Assuming ∂xq ∈ L1,
integration by parts on the integral equations (2.19) yields for the asymptotic be-
haviors of the eigenfunctions as |k| → ∞ in the appropriate half planes on Sheet I:

Ψd(x, k)e
iλrσ3x = I2 + o(1) , Ψo(x, k)e

iλrσ3x =
iQ(x)σ3

2k
+ o(1/k) ,(2.41a)

Φd(x, k)e
ikσ3x = I2 + o(1) , Φo(x, k)e

ikσ3x =
iQ(x)σ3

2k
+ o(1/k) ,(2.41b)

where subscripts d and o denote the diagonal and off-diagonal parts, respectively, of
the corresponding matrix Jost solutions Ψ(x, k) and Φ(x, k). From the Wronskian
representations (2.28) for the scattering coefficients, and taking into account that
λr ∼ k as k → ∞, we then obtain the asymptotic behavior of the scattering
coefficients:

a(k) =
λr + k

2λr
Wr

(
φ(x, k) ψ(x, k)

)
∼ 1 as |k| → ∞, k ∈ K

+
r ∪ R(2.42a)

ā(k) = −λr + k

2λr
Wr

(
φ̄(x, k) ψ̄(x, k)

)
∼ 1 as |k| → ∞, k ∈ K

−
r ∪ R(2.42b)

while

b(k) = O(1/k2) , b̄(k) = O(1/k2) as |k| → ∞, k ∈ R .

Taking into account (2.31), the above also imply that

ρ(k) = O(1/k2) , ρ̄(k) = O(1/k2) as |k| → ∞, k ∈ R ,(2.42c)

r(k) = O(1/k2) , r̄(k) = O(1/k2) as |k| → ∞, k ∈ R .(2.42d)

3. Inverse scattering problem

3.1. Triangular representations for the eigenfunctions. We introduce
the following two triangular representations for the fundamental eigenfunctions:

Ψ̃(x, k)e−xΛr(k) = I2 +

∫ ∞

x

dsK(x, s)e(s−x)Λr(k) ,(3.1a)

Φ(x, k)eikσ3x = I2 +

∫ x

−∞
ds J(x, s)e−ikσ3(s−x) ,(3.1b)

where the kernels K(x, s) = [Kij(x, s)]i,j=1,2 and J(x, s) = [Jij(x, s)]i,j=1,2 are

“triangular” kernels, i.e., such that K(x, y) ≡ 0 for x > y and J(x, y) ≡ 0 for
x < y. The above ansatz for the triangular representations is standard for the
Jost solutions in the rapidly decaying case (see, for instance [4,38]). In the NZBC
case, the issue of existence of triangular representations such as the above has been
addressed in [19]. Here we omit the details for brevity.
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Figure 2. The oriented contours Γ±
r .

We note that (3.1) yield the corresponding triangular representations for the
Jost solutions (2.6b) and (2.17):

Ψ(x, k) = Wr(k)e
−iλrσ3x +

∫ ∞

x

dsK(x, s)Wr(k) e
−iλrσ3s ,(3.2a)

Φ(x, k) = e−ikσ3x +

∫ x

−∞
ds J(x, s) e−ikσ3s .(3.2b)

Eq. (3.2b) is the standard triangular representation for the Jost solutions in the
decaying case, while (3.2a) provides the appropriate generalization to the NZBC
case. Inserting the representations (3.2) into the scattering problem (2.1a), and
matching terms with the same k-dependence, one obtains the reconstruction of the
potential q(x) in terms of the entries of the kernels K(x, y) and J(x, y):

(3.3) q(x) = qr − 2K12(x, x) = 2J12(x, x) .

In [19] it is shown that in the fully asymmetric case a sufficient condition for the
triangular representations and reconstruction formulas to hold is that the potential
q(x) satisfies (H2) and ∂xq ∈ L1(R). The analog obviously holds here, although
less strict integrability requirements are necessary for x ∈ R−.

Note that here we have omitted the time dependence for brevity. If all the
above assumptions on the potential hold for all t ≥ 0, then inserting the time
dependence on the Jost and fundamental eigenfunctions (see Sec. 4 for details)
yields a parametric t-dependence for the Marchenko kernels, and the reconstruction
formulas for the potential read

(3.4) q(x, t) = qr(t)− 2K12(x, x; t) = 2J12(x, x; t) .

3.2. Marchenko equations. In this subsection we formulate the inverse scat-
tering problem in terms of right and left Marchenko integral equations.
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3.2.1. Right Marchenko equations. Let us write (2.23a) explicitly as:

φ(x, k)

a(k)
= ψ̄(x, k) + ρ(k)ψ(x, k) k ∈ R ,(3.5a)

φ±(x, k)

a±(k)
= ψ̄±(x, k) + ρ±(k)ψ±(x, k) k ∈ [0, iAr) ,(3.5b)

φ̄(x, k)

ā(k)
= ψ(x, k) + ρ̄(k)ψ̄(x, k) k ∈ R ,(3.5c)

φ̄±(x, k)

ā±(k)
= ψ±(x, k) + ρ̄±(k)ψ̄±(x, k) k ∈ (−iAr, 0] ,(3.5d)

where ρ(k), ρ±(k) and ρ̄(k), ρ̄(k)± are given by (2.31a) and (2.31b), respectively.
Multiplying (3.5a) by eiλry for y > x, and substituting the triangular representation
(3.2a) we obtain[

eiλrxφ(x, k)

a(k)
−Wr,1(k)

]
eiλr(y−x) =

∫ ∞

x

dsK(x, s)Wr,1(k) e
iλr(y−s)

+ ρ(k)

[
eiλr(x+y)Wr,2(k) +

∫ ∞

x

dsK(x, s)Wr,2(k) e
iλr(s+y)

]
,(3.6)

where Wr,j(k) denotes the j-th column of the eigenvector matrix Wr(k) in (2.15).
We remark that λr ∼ k as |k| → ∞, so that the term in the left-hand side decays
as |k| → ∞ in K+

r ∪ R. For the purpose of this section, it will be convenient to
consider the eigenfunctions as functions of λr, i.e., to use:

k = k(λr) ≡
√
λ2
r −A2

r .

Note that λr ∈ R is in one-to-one correspondence with either k ∈ Γ+
r or k ∈ Γ−

r

(cf. Fig. 2). In the following we will assume k ∈ Γ+
r for the eigenfunction ψ(x, k)

[analytic for k ∈ K
+
r ], and k ∈ Γ−

r for ψ̄(x, k) [analytic for k ∈ K
−
r ]. We then

formally integrate (3.6) with respect to λr ∈ R, multiply by 1/2π, exchange the
order of integration, and evaluate

1

2π

∫ ∞

−∞
dλr

(
1

−iq∗r/(λr + k)

)
eiλr(y−s) =

(
δ(y − s)

0

)

to obtain

I = K(x, y)

(
1
0

)
+ F (x+ y) +

∫ ∞

x

dsK(x, s)F (s+ y),

where

I ≡ 1

2π

∫ ∞

−∞
dλr

[
eiλrxφ(x, k)

a(k)
−Wr,1(k)

]
eiλr(y−x) ,

F (x) =
1

2π

∫ ∞

−∞
dλr ρ(k)Wr,2(k) e

iλrx .

As explained above, in the above integrals k = k(λr) with k ∈ Γ+
r . The proce-

dure and the results are the same shown in [19]. We assume discrete eigenvalues
k1, . . . , kN in K

+
r (which we assume here to be finite in number) are simple. Since

the eigenfunctions φ(x, kn) and ψ(x, kn) are proportional, i.e., there exists a com-
plex constant bn such that φn(x, kn) = bnψ(x, kn), then denoting by τn the residue
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of 1/a(k) at λr = λr(kn), we can write

(3.7) lim
k→kn

(λr(k)− λr(kn))
φ(x, k)

a(k)
= Cn ψ(x, kn) , Cn = bnτn ,

and Cn is referred to as the norming constant associated with the discrete eigenvalue
kn. The expression of I can be easily obtained using Residue Theorem and Jordan’s
Lemma, thus yielding the right Marchenko integral equation as:

(3.8) K(x, y)

(
1
0

)
+Ωr(x+ y) +

∫ ∞

x

dsK(x, s)Ωr(s+ y) =

(
0
0

)
,

where

(3.9) Ωr(x) := F (x)− Fd(x) , Fd(x) = i

N∑
n=1

eiλr(kn)xCnWr,2(kn) .

Next, let us multiply (3.5c) by e−iλry for y > x, substitute (3.2a), and then
formally integrate (3.6) with respect to λr ∈ R and multiply by 1/2π. At the
(simple) discrete eigenvalues k∗1 , . . . , k

∗
N in K

−
r [necessarily finite in number, and

the complex conjugates of the zeros of a(k) in K+
r ] the eigenfunctions φ̄(x, k∗n)

and ψ̄(x, k∗n) are proportional to each other, i.e., there exist complex constants b̄n
such that φ̄(x, k∗n) = b̄nψ̄(x, k

∗
n). Then, denoting by τ̄n the residue of 1/ā(k) at

λr = λr(k
∗
n) , we can write

(3.10) lim
k→k∗

n

(λr − λr(k
∗
n))

φ̄(x, k)

ā(k)
= C̄nψ̄(x, k

∗
n) , C̄n = b̄nτ̄n ,

and C̄n is referred to as the norming constant associated with the discrete eigenvalue
k∗n. Proceeding as before, we obtain

(3.11) K(x, y)

(
0
1

)
+ Ω̄r(x+ y) +

∫ ∞

x

dsK(x, s)Ω̄r(s+ y) =

(
0
0

)
,

where

(3.12) Ω̄r(x) := F̄ (x)− F̄d(x) ,

with
(3.13)

F̄ (x) =
1

2π

∫ ∞

−∞
dλr e

−iλrxρ̄(k)Wr,1(k) , F̄d(x) = −i

N∑
n=1

e−iλr(k
∗
n)xC̄nWr,1(k

∗
n) .

Note that in the integral in (3.13) λr ∈ R, and k = k(λr) ∈ Γ−
r (see Fig. 2). Using

the symmetry relations (2.33) and (2.34), and the definitions (3.7) and (3.10), we
get τ̄n = τ∗n, b̄n = −b∗n and C̄n = −C∗

n. As a result,

(3.14) F ∗(x) = iσ2F̄ (x), F ∗
d (x) = iσ2F̄d(x), Ω∗

r(x) = iσ2Ω̄r(x).

In conclusion, we can write the Marchenko equations (3.8) and (3.11) and their
kernels (3.9) and (3.12) as a single 2× 2 Marchenko equation:

(3.15) K(x, y) +Ωr(x+ y) +

∫ ∞

x

dsK(x, s)Ωr(s+ y) = 02×2 ,

where

(3.16) Ωr(x) =
(
Ωr(x) Ω̄r(x)

)
.
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Ωr , Ω̄r are given by (3.9) and (3.12), and satisfy Ω̄r(x) = iσ2Ω
∗
r(x). Note that

the 2 × 2 kernel Ωr(x) anticommutes with the Pauli matrix σ3, and satisfies the
conjugation symmetry relation

(3.17) Ω∗
r(x) = σ2Ωr(x)σ2.

3.2.2. Left Marchenko equations. In order to derive the left Marchenko equa-
tions, let us write (2.23b) explicitly as:

1

c̄(k)
ψ̄(x, k) = φ(x, k) + r̄(k)φ̄(x, k) k ∈ R ,(3.18a)

1

c(k)
ψ(x, k) = φ̄(x, k) + r(k)φ(x, k) k ∈ R ,(3.18b)

where r(k) and r̄(k) are given by (2.31c). Under the same assumptions as in
Sec. 3.2.1 regarding the potential and the discrete spectrum, and considering in this
case the eigenfunctions as functions of k, we multiply (3.18a) by e−iky for y < x and
substitute the triangular representations (3.2b). Integrating (3.18a) with respect
to k ∈ R, multiplying by 1/2π, and exchanging the order of integration, we have

(3.19) Ĩ = J(x, y)

(
0
1

)
+G(x+ y) +

∫ x

−∞
ds J(x, s)G(s+ y) ,

where

Ĩ ≡ 1

2π

∫ ∞

−∞
dk

[
e−ikxψ(x, k)

c(k)
−
(
0
1

)]
eik(x−y) ,

G(x) =
1

2π

∫ ∞

−∞
dk r(k) e−ikx

(
1
0

)
.

In order to compute Ĩ so as to express it in terms of the Marchenko kernel J(x, y),
one needs to be able to close the contour at infinity in the upper half-plane of
k. Unlike what happens for the Marchenko equations from the right, in this case
closing the contour at infinity requires including the contribution of the branch
cut that corresponds to k ∈ [0, iAr], i.e. Σr in the upper half-plane. To this
end, let us consider, for 0 < ε < R < +∞, the closed contour Γ(R, ε) consist-
ing of the following pieces, with the orientation specified in Fig. 3: (i) [−R,−ε];
(ii) [−ε+ i0,−ε+ iAr]; (iii) the semicircle

{
iAr + εei(π−θ) : 0 ≤ θ ≤ π

}
clockwise;

(iv) [ε+ i0, ε+ iAr]; (v) [ε,R]; (vi) {Reiθ : 0 ≤ θ ≤ π} counterclockwise. R is
assumed large enough and ε small enough so that all of the finitely many discrete
eigenvalues kn (n = 1, 2, . . . , N) in K+

r belong to the interior region of the con-
tour. Since ψ(x, k) and 1/c(k) have finite limits as k → iAr, the integral defining

Ĩ with the integration confined to the semicircle around the branch point does not
contribute as ε → 0+. Because of Jordan’s Lemma, the integral defining Ĩ when
confined to the large semicircle (vi) does not contribute either as R → +∞. Then

one has Ĩ = Ĩ1 + Ĩ2, the contribution Ĩ1 pertaining to the residues of the function
under the integral sign at the poles kn ∈ K+

r ; and the contribution Ĩ2 pertaining
to the integral around k ∈ [0, iAr] in the upper-half k-plane. We shall evaluate the
two contributions separately.

Since we assumed that the discrete eigenvalues kn in K+
r are simple poles of

1/c(k), and the transmission coefficient is continuous for k ∈ ∂K+
r , taking into
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Figure 3. The contour Γ(R, ε).

account that ψ(x, kn) = φ(x, kn)/bn, we obtain

Ĩ1 = i
N∑

n=1

e−iknyC̃nφ(x, kn) , C̃n =
τ̃n
bn

,

where τ̃n is the residue of 1/c(k) at k = kn, and C̃n is the associated norming
constant. Therefore, we have

(3.20) Ĩ1 = G1(x+ y) +

∫ x

−∞
ds J(x, s)G1(s+ y) ,

where

G1(x) = i
N∑

n=1

e−iknxC̃n

(
1
0

)
.

Note that (2.28c) implies the residues τ̃n and τn, and hence the norming constants

C̃n and Cn, are related as follows:

(3.21) τ̃n =
λr(kn) + kn
2λr(kn)

τn, C̃n Cn = τ2n
λr(kn) + kn
2λr(kn)

.

Let us now look into the second contribution Ĩ2, which arises for k ∈ [0, iAr] on
either side of the cut and λr ∈ R. We have

Ĩ2 = lim
ε→0

1

2π

(∫ iAr−ε

i0−ε

−
∫ iAr+ε

i0+ε

)
dk

[
ψ(x, k)

c(k)
e−ikx −

(
0
1

)]
eik(x−y)

=
1

2π

∫ iAr

0

dk

[
ψ−(x, k)

c−(k)
− ψ+(x, k)

c+(k)

]
e−iky ,(3.22)

where, as usual, superscripts ± denote the limiting values from the left/right edge

of the cut, respectively. Using (2.28c) we can write Ĩ2 as

Ĩ2 =
1

2π

∫ iAr

0

dk

[
λ+
r (k)− k

2λ+
r (k)

ψ−(x, k)

a−(k)
− λ+

r (k) + k

2λ+
r (k)

ψ+(x, k)

a+(k)

]
e−iky ,
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and the symmetry relations (2.36) and (2.37a) allow to express (λ+
r (k)−k)ψ−/a− =

−(λ+
r (k) + k)ψ̄+/b+, so that:

Ĩ2 = − 1

4π

∫ iAr

0

dk
λ+
r (k) + k

λ+
r (k)

[
ψ̄+(x, k)

b+(k)
+

ψ+(x, k)

a+(k)

]
e−iky .(3.23)

Using first the scattering equation (3.5a) and then again the symmetry relation
(2.37a), we finally have
(3.24)

Ĩ2 = − 1

4π

∫ iAr

0

dk
λ+
r (k) + k

λ+
r (k)

φ+(x, k)

a+(k) b+(k)
e−iky =

iqr
4π

∫ iAr

0

dk

λ+
r (k)

φ+(x, k)

a−(k)a+(k)
e−iky .

We can now insert into the last expression the triangular representation (3.2b), and
obtain

(3.25) Ĩ2 = G2(x+ y) +

∫ x

−∞
ds J(x, s)G2(s+ y) ,

with

G2(x) =
iqr
4π

∫ iAr

0

dk

λ+
r (k)

e−ikx

a+(k)a−(k)

(
1
0

)
.

If we now define

Ωl(x) =G(x)−G1(x)−G2(x)

≡
[

1

2π

∫ ∞

−∞
dk r(k) e−ikx − i

N∑
n=1

e−iknxC̃n − iqr
4π

∫ iAr

0

dk

λ+
r (k)

e−ikx

a+(k)a−(k)

](
1
0

)
,

(3.26)

use (3.20) and (3.25) to compute Ĩ = Ĩ1 + Ĩ2 and introduce it into (3.19), we
finally arrive at the left Marchenko integral equation

(3.27) J(x, y)

(
0
1

)
+Ωl(x+ y) +

∫ x

−∞
ds J(x, s)Ωl(s+ y) =

(
0
0

)
.

In a similar way, starting from (3.18b), one can derive the “adjoint” left Marchenko
equation

(3.28) J(x, y)

(
1
0

)
+ Ω̄l(x+ y) +

∫ x

−∞
ds J(x, s)Ω̄l(s+ y) =

(
0
0

)
,

where
Ω̄l(x) = iσ2Ω

∗
l (x) .

The two Marchenko equations can be written in a compact matrix form as follows:

(3.29) J(x, y) +Ωl(x+ y) +

∫ x

−∞
ds J(x, s)Ωl(s+ y) = 02×2 ,

where

(3.30) Ωl(x) =
(
Ω̄l(x) Ωl(x)

)
, Ω∗

l (x) = σ2Ωl(x)σ2 .

The asymmetry between left/right Marchenko integral equations is due to the
choice of the one-sided NZBC (1.3) with Ar > 0. Indeed, if one considered boundary

conditions such that q(x, t) → ql(t) = Al e
−2iA2

l t+iθl as x → −∞, and q(x, t) → 0
as x → +∞, with Al > 0, 0 ≤ θl < 2π arbitrary constants, the roles of the
two integral equations would be reversed. As in the fully asymmetric case, in the
Marchenko integral equations from the left, Ωl(x) (cf. Eq. (3.26)) has three separate
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contributions: one from the discrete spectrum, one from the reflection coefficients
from the left, r(k) and r̄(k), integrated over values of k in the continuous spectrum,
i.e., k ∈ R, and a third contribution (sometimes referred to as the dispersive-shock
wave, or DSW, contribution) which contains an integral over imaginary values
of k where the product of transmission coefficients 1/[a+(k)a−(k)] appears. On
the other hand, Ωr(x) in the integral equations from the right (cf. Eq. (3.9))
has only two contributions: one from the discrete spectrum, and one from the
reflection coefficients from the right, ρ(k) and ρ̄(k). In (3.9), however, the reflection
coefficients are integrated over all λr ∈ R, which means that the integral includes,
in addition to the continuous spectrum k ∈ R, also a contribution from k ∈ Σr.
Moreover, the integrand over Σr can never be set to be identically zero (due to the
symmetries (2.38a) and (2.38b)), which implies that when Σr �= ∅ (i.e., whenever
one deals with one-sided boundary conditions (1.3) with Ar �= 0), no pure soliton
solutions exist, and solitons are always accompanied by a radiative contribution of
some sort.

The Marchenko integral equations obtained here provide the necessary setup
for the study of the long-time behavior of the solutions by means of matched asymp-
totics, as was recently done for KdV in [1].

3.3. Riemann-Hilbert problem formulation. The purpose of this section
is to formulate the inverse problem as matrix Riemann-Hilbert problems from the
left and from the right for a suitable set of sectionally analytic/meromorphic func-
tions in the cut plane Kr, with assigned jumps across R ∪ Σr.

3.3.1. Riemann-Hilbert problem from the right. For the formulation of the
Riemann-Hilbert problem in terms of scattering data from the right, we consider
the following matrix of eigenfunctions:

(3.31) M(x, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
φ(x, k)

a(k)
eikx ψ(x, k) e−iλrx

]
k ∈ K

+
r

[
ψ̄(x, k) eiλrx

φ̄(x, k)

ā(k)
e−ikx

]
k ∈ K−

r

,

such thatM(x, k) → I2 as k → ∞, and formulate the inverse problem as a Riemann-
Hilbert problem for the sectionally meromorphic matrix M(x, k) across ∂K+

r ∪∂K−
r .

Explicitly, we determine three jump matrices as illustrated in Fig. 4: V0 is the jump
matrix across the real axis of the complex k-plane; V1 across Σ+

r = [0, iAr], and
V2 across Σ−

r = [−iAr, 0]. All jump matrices depend on k along the appropriate
contour in the complex plane, as well as, parametrically, on (x, t) ∈ R × R+ [the
x-dependence is explicit, while the time dependence is “hidden” in that of the
corresponding reflection coefficients, see below, and will be omitted for brevity].
The RH problem across the real axis can be written in matrix form as: M+(x, k) =
M−(x, k)V0(x, k), k ∈ R, i.e.,
(3.32)[

φ+(x, k)

a+(k)
eikx ψ+(x, k) e−iλrx

]
=

[
ψ̄−(x, k) eiλrx

φ̄−(x, k)

ā−(k)
e−ikx

]
V0(x, k) ,

where in this case the superscripts ± denote limiting values from the upper/lower
complex plane, respectively. The jump matrix across the real axis can be easily
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Figure 4. The jump matrices Vj , j = 0, 1, 2 of the RH problem
across R ∪ Σ+

r ∪ Σ−
r .

computed from (2.23a), and it is given by:

(3.33) V0(x, k) =

(
[1− ρ(k)ρ̄(k)] ei(k−λr)x −ρ̄(k) e−2iλrx

ρ(k) e2ikx ei(k−λr)x

)
.

We then write the RH problem across Σ+
r as: M+(x, k) = M−(x, k)V1(x, k), k ∈

C+, where now the superscripts ± denote limiting values from the right/left edge
of the cut across Σ+

r (Σr in the upper half plane). Taking into account that for

k ∈ Σ+
r λ±

r (k) = ±
√
A2

r − |k|2 from the right/left edge of the cut, while k and φ
are continuous, we have:
(3.34)[

φ+(x, k)

a+(k)
eikx ψ+(x, k) e−iλ+

r x

]
=

[
φ−(x, k)

a−(k)
eikx ψ−(x, k) e−iλ−

r x

]
V1(x, k) .

In order to compute V1(x, k) for k ∈ C+, we note that using (2.29) we can write:

(3.35) φ±(x, k) = a±(k)ψ̄±(x, k) + b±(k)ψ±(x, k) , k ∈ Σ+
r ,

and relate ψ̄±(x, k) to ψ∓(x, k) using the symmetry relations (2.36). One then finds

φ+(x, k)

a+(k)
=− iq∗r

λ+
r (k) + k

ψ−(x, k) + ρ+(k)ψ+(x, k) ,(3.36)

ψ+(x, k) =− iqr

λ+
r (k) + k

[
φ−(x, k)

a−(k)
− ρ−(k)ψ−(x, k)

]
,(3.37)

and inserting (3.37) into (3.36), we obtain:
(3.38)

φ+(x, k)

a+(k)
= − iqr

λ+
r (k) + k

[
φ−(x, k)

a−(k)
ρ−(k) +

(
q∗r
qr

− ρ+(k)ρ−(k)

)
ψ−(x, k)

]
.
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Using (2.39) and comparing (3.38) and (3.37) to (3.34), the jump matrix V1(x, k)
is then found to be:

(3.39) V1(x, k) = − iqr

λ+
r (k) + k

(
ρ+(k) e−i(λ+

r (k)+k)x

0 −ρ−(k) e−2iλ+
r (k)x

)
.

The RH problem across Σ−
r will be written as M+(x, k) = M−(x, k)V2(x, k),

k ∈ C−, with superscripts ± denoting non-tangential limits from the right/left of
the cut across Σ−

r , i.e., Σr in the lower half plane. Explicitly, using (2.13) one has:
(3.40)[

ψ̄+(x, k) eiλ
+
r x φ̄+(x, k)

ā+(k)
e−ikx

]
=

[
ψ̄−(x, k) eiλ

−
r x φ̄−(x, k)

ā−(k)
e−ikx

]
V2(x, k).

In order to compute V2(x, k) for k ∈ C
−, we again use (2.29) to write:

(3.41) φ̄±(x, k) = ψ±(x, k) + ρ̄±(k)ψ̄±(x, k) , k ∈ Σ−
r ,

and relate the eigenfunctions ψ±(x, k) to ψ̄∓(x, k) using the symmetry relations
(2.36). We the obtain the following expressions:

φ̄+(x, k)

ā+(k)
=− iqr

λ+
r (k) + k

ψ̄−(x, k) + ρ̄+(k)ψ̄+(x, k) ,(3.42)

ψ̄+(x, k) =− iq∗r
λ+
r (k) + k

[
φ̄−(x, k)

ā−(k)
− ρ̄−(k)ψ̄−(x, k)

]
.(3.43)

Inserting (3.43) into (3.42), one has:
(3.44)

φ̄+(x, k)

ā+(k)
= − iq∗r

λ+
r (k) + k

[
φ̄−(x, k)

ā−(k)
ρ̄+(k) +

(
qr
q∗r

− ρ̄+(k)ρ̄−(k)

)
ψ̄−(x, k)

]
.

Using (2.39) and comparing (3.44) and (3.43) to (3.40), the jump matrix V2(x, k)
is found to be:

(3.45) V2(x, k) = − iq∗r
λ+
r (k) + k

(
−ρ̄−(k) e2iλ

+
r (k)x 0

ei(λ
+
r (k)+k)x ρ̄+(k)

)
.

Note that the jump matrices satisfy the following upper/lower half plane symmetry:

V2(x, k) = σ2V
∗
1 (x, k

∗)σ2 .

Solving the inverse problem as a RH problem (with poles, corresponding to the
zeros of a(k) and ā(k) in the upper/lower half planes) then amounts to computing
the sectionally meromorphic matrix M(x, k) with the given jumps, and normalized
to the identity as k → ∞. Specifically, we can write the problem as M+ = M− +
(V − I2)M

−, where V (x, k) = Vj(x, k) for j = 0, 1, 2 depending on which piece of
the contour is being considered, and superscripts ± denote non-tangential limits
from either side of the contour. Then, subtracting the behavior as k → ∞, and the
residues of M± at the poles in K±

r from both sides we obtain

M+ − I2 −
N∑

n=1

1

k − kn
Reskn

M+ −
N∑

n=1

1

k − k∗n
Resk∗

n
M− =(3.46)

M− − I2 −
N∑

n=1

1

k − kn
Reskn

M+ −
N∑

n=1

1

k − k∗n
Resk∗

n
M− + (V − I2)M

− .
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The left-hand side of the above equation is now analytic in K+
r , and it is O(1/k) as

k → ∞ there, while the sum of all terms but the last one in the right-hand side is
analytic in K

−
r , and is O(1/k) as k → ∞ there. We then introduce projectors P±

over Γ±
r ≡ R ∪ Σ±

r :

P±[f ](z) =
1

2πi

∫
Γ±
r

f(ξ)

ξ − k
dξ ,

where
∫
Γ+
r

[resp.
∫
Γ−
r
] denotes the integral along the oriented contours in Fig. 2,

and when k ∈ Γ±
r ∩ R the limit is taken from the above/below. One can easily

prove that if f± are analytic in K
±
r and are O(1/k) as k → ∞, the following holds:

P±f
± = ±f± and P+f

− = P−f
+ = 0. Then, applying P± to both sides of (3.46),

we find for k ∈ C± \ Σr

(3.47) M(k) = I2+
N∑

n=1

Reskn
M+

k − kn
+

N∑
n=1

Resk∗
n
M−

k − k∗n
+

1

2πi

∫
Γ±
r

M−(ξ)

ξ − k
[V (ξ)−I2] dξ ,

where the x-dependence in eigenfunctions and jump matrices has been omitted for
brevity. Taking into account that the second column of Reskn

M+ is zero for all
n, while the first column is proportional to the second column of M+(x, kn), and
vice-versa the first column of Resk∗

n
M− is zero for all n, while the second column

is proportional to the second column of M−(x, k∗n) according to (3.7), the above
integral/algebraic system can be closed by evaluating it at each k = kn and k = k∗n.
The potential is then reconstructed by the large k expansion of the latter, since

Mo(x, k) =
i

2k
Q(x)σ3 + o(1/k) ,

where subscript o denotes the off-diagonal part of the matrix M(x, k). Note that
unlike what happens in the same-amplitude case, the above system cannot be re-
duced to a purely algebraic one: although the reflection coefficients can be chosen
to be identically zero on the continuous spectrum, i.e., for k ∈ R, the integrals
appearing in the right-hand side of (3.47) always exhibit a non-zero contribution
from the contours Σ±

r . In particular, this implies that no pure soliton solutions
exist, and solitons are always accompanied by a radiative contribution of some
sort. One could nonetheless solve the system iteratively, assuming the reflection
coefficients are small for k ∈ Σ±

r , and thus obtaining NLS solutions comprising soli-
tons superimposed to small radiation. Moreover, the RH problem formulated here
provides the key setup for the investigation of the long-time asymptotic behavior
by the Deift-Zhou steepest descent method [13,14,17]. The time dependence in
the system is simply accounted for by the time dependence of the scattering coeffi-
cients, as described in Sec. 4. When one is interested only in capturing the leading
order behavior of the solution for large t, the jumps across the contours illustrated
in Fig. 4 and determined above can be simplified by suitable factorizations and
contour deformations, and reduced to certain model problems for which “explicit”
solutions (often expressed in terms of Riemann theta functions) can be sought for.
This study obviously goes beyond the scope of the present paper, and will be the
subject of future investigation.

3.3.2. Riemann-Hilbert problem from the left. The inverse problem can also be
formulated as a RH problem from the left, i.e., written in terms of left scattering
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data, by introducing the sectionally meromorphic matrix of eigenfunctions

M̃(x, k) =

⎧⎪⎪⎨
⎪⎪⎩

[
φ(x, k) eikx ψ(x,k)

c(k) e−iλrx
]
, k ∈ K+

r

[
ψ̄(x,k)
c̄(k) eiλrx φ̄(x, k) e−ikx

]
, k ∈ K−

r

.

The RH problem across the real k-axis can be written in matrix form as: M̃+(x, k) =

M̃−(x, k)Ṽ0(x, k), k ∈ R i.e.,
(3.48)[

φ+(x, k) eikx
ψ+(x, k)

c+(k)
e−iλrx

]
=

[
ψ̄−(x, k)

c̄−(k)
eiλrx φ̄−(x, k) e−ikx

]
Ṽ0(x, k) ,

where in this case the superscripts ± denote limiting values from the upper/lower
complex plane, respectively. The jump matrix across the real axis can be easily
computed from (2.23b), and it is given by:

(3.49) Ṽ0(x, k) =

(
ei(k−λr)x r(k) e−2iλrx

−r̄(k) e2ikx [1− r(k)r̄(k)] ei(k−λr)x

)
.

In the RH problem across Σ+
r , one has

M̃+(x, k) =

[
φ+(x, k) eikx

ψ+(x, k)

c+(k)
e−iλ+

r x

]
,

M̃−(x, k) =

[
φ−(x, k) eikx

ψ−(x, k)

c−(k)
e−iλ−

r x

]
.

Note, however, that unlike what happens in the RH problem from the right, here
one cannot use (2.23b) to determine the jump. The same holds for the RH problem
on Σ−

r . In fact, in both equations (2.23b), i.e., ψ̄(x, k) = c̄(k)φ(x, k) + d̄(k)φ̄(x, k)
and ψ(x, k) = d(k)φ(x, k)+c(k)φ̄(x, k), the right-hand sides are only simultaneously
defined for k ∈ R, and cannot be extended on either Σ+

r or Σ−
r . This is also evident

from (2.31c), where it is clear that, unlike ρ(k) and ρ̄(k), which can be respectively
continued on Σ+

r and Σ−
r , the reflection coefficients from the left r(k) and r̄(k) are

only generically defined on the continuous spectrum, i.e., for k ∈ R.
In order to formulate the RH problem from the left on Σr, one has to consider

both pieces of the cut Σ+
r and Σ−

r simultaneously, and take into account that: (i) λr

changes sign across Σr; (ii) φ
+(x, k) = φ−(x, k) for k ∈ Σ+

r , and φ̄+(x, k) = φ̄−(x, k)
for k ∈ Σ−

r ; (iii) ψ±(x, k)/c±(k) and ψ̄±(x, k)/c̄±(x, k) are related to each other
via the symmetry relations (2.36), (2.40a) and (2.40b), i.e.:

ψ±(x, k)

c±(x, k)
=

ψ̄∓(x, k)

d̄∓(x, k)
k ∈ Σ+

r ,(3.50a)

ψ̄±(x, k)

c̄±(x, k)
=

ψ∓(x, k)

d∓(x, k)
k ∈ Σ−

r .(3.50b)

Solving the RH problem from the left (with poles, corresponding to the zeros of c(k)
and c̄(k) in the upper/lower half planes, which, by (2.28c) are the same as the ones

from the right) amounts to computing the sectionally meromorphic matrix M̃(x, k)
with the given jumps, and normalized to the identity as k → ∞. The potential is
then reconstructed by the large k expansion of the latter, since

M̃o(x, k) =
i

2k
Q(x)σ3 + o(1/k) ,
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where, as before, subscript o is used to denote the off-diagonal part of the matrix.
Once the time dependence of the scattering coefficients is included (see Sec. 4), the
RH problems from the right and from the left formulated in this section provide
the necessary set-up for the investigation of the long-time asymptotic behavior of
fairly general NLS solutions with nontrivial boundary conditions via the nonlinear
steepest descent method, as done, for instance, in [14] for special piecewise constant
initial conditions.

4. Time evolution of the scattering data

The time evolution of the eigenfunctions is to be determined from (2.1b), which,
taking into account that q(x, t) → 0 as x → −∞, yields

(4.1) vt ∼ 2ik2σ3 v as x → −∞ .

The time-independent boundary condition (2.6b) for Φ = (φ φ̄), however, is not
compatible with the above time evolution. Therefore we define time-dependent
functions ϕ(x, k, t) = eA∞tφ(x, k, t) and ϕ̄(x, k, t) = e−A∞tφ̄(x, k, t), with A∞ =
2ik2, to be solutions of (2.1b). Then the time evolution equations for the Jost
solutions Φ = (φ φ̄) are found to be:

(4.2) ∂tΦ =
[
i(2k2 − |q|2 +Qx)σ3 − 2kQ

]
Φ− 2ik2 Φσ3 .

Similarly, taking into account that q(x, t) → Ar e
−2iA2

rt+iθr as x → +∞, one finds
the time evolution of the Jost solutions Ψ = (ψ̄ ψ) to be given by:

(4.3) ∂tΨ =
[
i(2k2 − |q|2 +Qx)σ3 − 2kQ

]
Ψ− i(2kλr −A2

r)Ψσ3 .

Differentiating (2.23a) with respect to t and taking into account the time evolution
of the Jost solutions (4.2)-(4.3), we obtain for the scattering matrix S(k, t) the
following ODE with respect to t:

(4.4) ∂tS = i(2kλr −A2
r)σ3 S − 2ik2S σ3 .

As a consequence, the scattering coefficients from the right are such that:

a(k, t) = a(k, 0) ei[2k(λr−k)−A2
r]t , ā(k, t) = ā(k, 0) ei[2k(k−λr)+A2

r]t ,(4.5a)

b(k, t) = b(k, 0) ei[−2k(λr+k)+A2
r]t , b̄(k, t) = b̄(k, 0) ei[2k(λr+k)−A2

r]t ,(4.5b)

ρ(k, t) = ρ(k, 0) e−2i(2kλr−A2
r)t , ρ̄(k, t) = ρ̄(k, 0) e2i(2kλr−A2

r)t .(4.5c)

In particular, Eq. (4.5a) shows that the discrete eigenvalues kn are time indepen-
dent, and given by the zeros of a(k, 0). Moreover, for the large k behavior of a(k, t),
taking into account that

λr − k =
A2

r

2k

[
1 + O(k−2)

]
,

one still finds from (4.5a) that, consistently with (2.42), a(k, t) ∼ 1 as |k| → ∞ for
k ∈ K+

r ∪ R and for all t ≥ 0.
Similarly, differentiating (2.23b) with respect to t and taking into account the time
evolution of the Jost solutions (4.2) and (4.3), we get for the scattering matrix
S̄(k, t) the following ODE:

(4.6) ∂tS̄ = −i(2kλr −A2
r)S̄ σ3 + 2ik2σ3 S̄ .
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Therefore, the time dependence of the scattering coefficients from the left is given
by

c(k, t) = c(k, 0) ei[2k(λr−k)−A2
r]t , c̄(k, t) = c̄(k, 0) ei[2k(k−λr)+A2

r]t ,(4.7a)

d(k, t) = d(k, 0) ei[2k(λr+k)−A2
r]t , d̄(k, t) = d̄(k, 0) ei[−2k(λr+k)+A2

r]t ,(4.7b)

r(k, t) = r(k, 0) e4ik
2t , r̄(k, t) = r̄(k, 0) e−4ik2t .(4.7c)

Finally, we determine the time dependence of the norming constants. Differen-
tiating φ(x, kn) = bnψ(x, kn) with respect to time and evaluating the first column
of (4.2) and the second column of (4.3) at k = kn, we get

bn(t) = bn(0)e
−i[2kn(kn+λr(kn))−A2

r]t, n = 1, . . . , N.

Then from the definition of the norming constants in (3.7), we obtain

(4.8) Cn(t) = Cn(0)e
−2i[2knλr(kn)−A2

r ]t , n = 1, . . . , N.

The time dependence of the norming constants C̃n appearing in (3.26) can be found
in a similar way, or simply taking into account the symmetry relation (3.21).

5. Direct and inverse scattering in the uniformization variable z

Unlike what happens when dealing with fully asymmetric boundary conditions
[19], here we can introduce a uniformization variable z (cf. [12,20]) defined by the
conformal mapping:

(5.1) z = k + λr(k) ,

with inverse mapping given:

k =
1

2

(
z − A2

r

z

)
, λr = z − k =

1

2

(
z +

A2
r

z

)
.

The conformal transformation (5.1) maps the two-sheeted Riemann surface defined
by λ2

r = k2 + A2
r onto a single complex z-plane, as shown in Fig. 5. Specifically,

one has:

• Sheet I [resp. Sheet II] of the Riemann surface is mapped onto the exterior
[resp. interior] of the circle Cr of radius Ar;

• The branch cut Σr on either sheet is mapped onto Cr;
• The real k-axis on Sheet I [resp. Sheet II] is mapped onto (−∞,−Ar) ∪
(Ar,+∞) [resp. (−Ar, Ar)];

• z(±iAr) = ±iAr from either sheet, z(0±I ) = ±Ar, and z(0±II) = ∓Ar;
• Im k > 0 [Im k < 0] on either sheet is mapped into Im z > 0 [Im z < 0];
• The cut half-plane K+

r [resp. K−
r ] of Sheet I is mapped into the upper half

z-plane [resp. lower half z-plane] outside the circle Cr;
• The cut half-plane K+

r [resp. K−
r ] of Sheet II is mapped into the upper

half z-plane [resp. lower half z-plane] inside the circle Cr.

We introduce the following regions in the complex z-plane:

D+ = {z ∈ C : (|z|2 −A2
r) Im z > 0}, D− = {z ∈ C : (|z|2 −A2

r) Im z < 0},

corresponding to Imλr > 0 and Imλr < 0, respectively, on either sheet. The
complex z-plane is then partitioned into four regions: the upper/lower half z-plane



28 B. PRINARI AND F. VITALE

iAr

-iAr

Im k 

Re k

Sheet I

2

iAr

-iAr

 =-i r √ r  r
___

1 2

 = r √ r  r
___

1 2 =- r √ r  r
___

1 2

21 =- r √ r  r
___

1 2

Im k 

r

Re k

Sheet II

-iA

-Ar Ar

Im z 

Re z

Figure 5. Left & Center: the two-sheets of the Riemann surface
associated with λ2

r = k2 + A2
r. Right: the complex plane for the

uniformization variable z = k + λr. The grey regions (D+) cor-
respond to Imλr > 0, while the white regions (D−) correspond
to Imλr < 0; the circle Cr (red) corresponds to the cut Σr on
either sheet; (−∞,−Ar)∪ (Ar,+∞) (blue) and (−Ar, Ar) (green)
correspond to the real k-axis on sheets I and II, respectively. The
oriented contour in the complex z-plane for the Riemann-Hilbert
problem is also shown.

outside the circle Cr, denoted as Dout
± , respectively, and the upper/lower half z-

plane inside the circle Cr denoted as Din
± , respectively. In the following, we will

also denote with C±
r the upper and lower semicircles of radius Ar, respectively.

The asymptotic behaviors (2.6b) and (2.17), expressed in terms of z, read

Φ(x, z) ∼ I2 e
−ik(z)xσ3 , x → −∞ ,(5.2a)

Ψ(x, z) ∼
[
I2 −

i

z
σ3Qr

]
e−iλr(z)xσ3 , x → +∞ ,(5.2b)

which then allows one to introduce the Jost solutions Ψ(x, z) =
(
ψ̄(x, z) ψ(x, z)

)
where λr(z) ∈ R, i.e., for z ∈ R∪Cr, and Φ(x, z) =

(
φ(x, z) φ̄(x, z)

)
where k(z) ∈ R,

i.e., for z ∈ R. Consistently with Th. 2.2 and the analogous analyticity properties
of the Jost solutions on sheet II, it then follows that if the potential satisfies (H1)
ψ(x, z) can be analytically continued in D+, ψ̄(x, z) is analytic in D−, while φ(x, z)
and φ̄(x, z) are analytic in C

+ and C
−, respectively.

Unlike what happens with same-amplitude NZBCs [12], here the continuous
spectrum, where all four eigenfunctions are simultaneously defined, corresponds to
z ∈ R, while the circle Cr corresponds to the DSW region. In analogy to what
discussed in Sec. 2.2, one can express the two sets of Jost solutions Φ(x, z) and
Ψ(x, z) as

Φ(x, z) = Ψ(x, z)S(z) , S(z) =

(
a(z) b̄(z)
b(z) ā(z)

)
, z ∈ R ,(5.3a)

Ψ(x, z) = Φ(x, z) S̄(z) , S(z) =

(
c̄(z) d(z)
d̄(z) c(z)

)
, z ∈ R .(5.3b)
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Then, expressing the scattering coefficients as Wronskians of the Jost solutions:

a(z) =
z

2λr(z)
Wr(φ(x, z), ψ(x, z)), ā(z) =

z

2λr(z)
Wr(ψ̄(x, z), φ̄(x, z)),(5.4a)

b(k) =
z

2λr(z)
Wr(ψ̄(x, z), φ(x, z)), b̄(k) =

z

2λr(z)
Wr(φ̄(x, z), ψ(x, z)),(5.4b)

one can establish that:

• a(z) is continuous in R ∪ C+
r \ {iAr} and analytic in Dout

+

• ā(z) is continuous in R ∪ C−
r \ {−iAr} and analytic in Dout

−
• b(z) is continuous in R ∪ C+

r \ {iAr} and analytic in Din
−

• b̄(z) is continuous in R ∪ C−
r \ {−iAr} and analytic in Din

−

Obviously, the above scattering coefficients are the same as those in (2.28a) and
(2.28b), expressed in terms of the uniformization variable. The reflection coefficients
are then given by:

(5.5a) ρ(z) =
b(z)

a(z)
, ρ̄(z) =

b̄(z)

ā(z)
, z ∈ R .

Note that ρ(z) is also defined on C+
r , and the corresponding values obviously co-

incide with the limiting values ρ±(k) on either edge of the cut Σ+
r . Similarly, ρ̄(z)

is defined on C−
r , and the values coincides with the limiting values ρ̄±(k) on either

edge of the cut Σ−
r .

Similar results can be derived for the scattering coefficients from the left i.e.,
the entries of S̄(z), using the analog of (2.28c) and (2.28d). In particular, the
reflection coefficients from the left are given by:

(5.5b) r(z) =
d(z)

c(z)
≡ − b̄(z)

a(z)
, r̄(z) =

d̄(z)

c̄(z)
≡ − b(z)

ā(z)
, z ∈ R ,

corresponding to (2.31c) expressed in terms of the uniformization variable. Unlike
ρ(z) and ρ̄(z), the reflection coefficients from the left are generically not defined on
either C+

r or C−
r .

5.1. Symmetries of eigenfunctions and scattering data. In terms of the
uniformization variable z, since λr,II = −λr,I when both sheets are considered, the
two involutions (k, λr) → (k∗, λ∗

r) (i.e., upper/lower half k-plane), and (k, λr) →
(k,−λr) (i.e., opposite sheets) are: z → z∗ (i.e., upper/lower half z-plane) and
z → −A2

r/z (outside/inside the circle Cr).
First symmetry. The asymptotic behavior (5.2) yields the following symmetries
for the Jost solutions:

ψ̄∗(x, z∗) = iσ2ψ(x, z) for z ∈ D+ ∪ Cr ∪ R ,(5.6a)

ψ∗(x, z∗) =− iσ2ψ̄(x, z) for z ∈ D− ∪ Cr ∪ R ,(5.6b)

(5.6c)
φ∗(x, z∗) = iσ2φ̄(x, z) for C

+ ∪ R , φ̄∗(x, z∗) = −iσ2φ(x, z) for C
− ∪ R .

Consequently, the symmetry relations for the scattering coefficients can be written
as

ā∗(z∗) = a(z) for z ∈ Dout
+ ∪ C+

r ∪ R , b̄∗(z∗) = −b(z) for z ∈ Din
− ∪ C−

r ∪ R .

(5.7)
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Taking into account (5.5a), the reflection coefficients then satisfy the following
symmetry relation:

ρ̄∗(z∗) = −ρ(z) for z ∈ R ∪ C+
r .(5.8)

Second symmetry. Since λr(−A2
r/z) = −λr(z) and k(−A2

r/z) = k(z), taking
into account the boundary conditions (5.2), one can easily establish the following
additional symmetry relations for the Jost solutions:

ψ̄(x, z) =
−iq∗r
z

ψ(x,−A2
r/z) for z ∈ D− ∪ Cr ,(5.9a)

ψ(x, z) =
−iqr
z

ψ̄(x,−A2
r/z) for z ∈ D+ ∪ Cr ,(5.9b)

(5.9c)
φ(x, z) = φ(x,−A2

r/z) for z ∈ R∪C+
r , φ̄(x, z) = φ̄(x,−A2

r/z) for z ∈ R∪C−
r .

Using the above symmetries in the Wronskian representations for the scattering
coefficients (5.4) one obtains:

a(z) =
z

−iq∗r
b(−A2

r/z) for z ∈ Dout
+ ∪ R ∪ C+

r ,(5.10a)

ā(z) =
z

−iqr
b̄(−A2

r/z) for z ∈ Dout
− ∪ R ∪ C−

r .(5.10b)

Similarly, the symmetry relations for the scattering coefficients from the left are
given by:

c(z) =
−iqr
z

d̄(−A2
r/z) for z ∈ Dout

+ ∪ R ∪ C+
r ,(5.10c)

c̄(z) =
−iq∗r
z

d(−A2
r/z) for z ∈ Dout

− ∪ R ∪ C−
r .(5.10d)

5.2. Discrete eigenvalues. A discrete eigenvalue is a value of z ∈ D+ ∪D−
for which there exists a nontrivial solution v to (1.2) with entries in L2(R). These
eigenvalues occur for z ∈ Dout

+ iff the functions φ(x, z) and ψ(x, z) are linearly

dependent (i.e., iff a(z) = 0), for z ∈ Dout
− iff the functions ψ̄(x, z) and φ̄(x, z)

are linearly dependent (i.e., iff ā(z) = 0), for z ∈ Din
− iff the functions φ(x, z)

and ψ̄(x, z) are linearly dependent (i.e., iff b(z) = 0), and finally for z ∈ Din
+ iff

the functions ψ(x, z) and φ̄(x, z) are linearly dependent (i.e., iff b̄(z) = 0). The
conjugation symmetry (5.7) and the second symmetry (5.10) then imply that the

discrete eigenvalues occur in quartets:
{
zn , z

∗
n ,−A2

r/zn ,−A2
r/z

∗
n

}N

n=1
.

5.3. Asymptotic behavior as z → ∞ and z → 0. The asymptotic proper-
ties of the eigenfunctions and the scattering coefficients are needed to properly pose
the inverse problem. Note that the limit |k| → ∞ corresponds to z → ∞ in Sheet I,
and z → 0 in Sheet II. Standard Wentzel-Kramers-Brillouin (WKB) expansions in
the scattering problem (2.1a) rewritten in terms of z yield the following asymptotic
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behaviors for the eigenfunctions:

as z → ∞ :

(5.11a)

Ψd(x, z) e
iλr(z)σ3x = I2 + o(1) , Ψo(x, z) e

iλr(z)σ3x =
i

z
Q(x)σ3 + o(1/z) ,

as z → 0 :
(5.11b)

Ψo(x, z) e
iλr(z)σ3x =

i

z
Qrσ3 +O(1) , Ψd(x, z) e

iλr(z)σ3x = −Q(x)σ3Q
−1
r σ3 + o(1) ,

and

as z → ∞ :

(5.12a)

Φd(x, z) e
ik(z)σ3x = I2 + o(1) , Φo(x, z) e

ik(z)σ3x =
i

z
Q(x)σ3 + o(1/z) ,

as z → 0 :
(5.12b)

Φd(x, z) e
ik(z)σ3x = I2 +O(z) , Φo(x, z) e

ik(z)σ3x = − iz

A2
r

Q(x)σ3 + o(z) ,

where, as before, subscripts d and o denote diagonal and off-diagonal part of the
matrix. Under the assumption (H1) for the potential, from the Wronskian repre-
sentations (5.4) for the scattering coefficients and the above asymptotic behavior
of the eigenfunctions, we then obtain the following asymptotic behavior for the
scattering coefficients at large z:

(5.13a) lim
z→∞

a(z) = 1 for z ∈ Dout
+ ∪ R , lim

z→∞
ā(z) = 1 for z ∈ Dout

− ∪ R ,

and

(5.13b) lim
z→∞

z b(z) = 0 , lim
z→∞

z b̄(z) = 0 for z ∈ R .

Similarly, the asymptotic behavior for the scattering coefficients as z → 0 is as
follows:

b(z) =
i

qr
z +O(z2) for z ∈ Din

− ∪ (−Ar, Ar) ,(5.14a)

b̄(z) =
i

q∗r
z + O(z2) for z ∈ Din

+ ∪ (−Ar, Ar) ,(5.14b)

and

(5.14c) lim
z→0

a(z)

z2
= 0 , lim

z→0

ā(z)

z2
= 0 for z ∈ (−Ar, Ar) .

5.4. Riemann-Hilbert problem. In this section we formulate the inverse
scattering problem as matrix Riemann-Hilbert problems from the right and from
the left for a suitable set of sectionally analytic/meromorphic functions in D+∪D−,
with assigned jumps across R∪Cr, i.e., the oriented contour in the complex z-plane
indicated in Fig. 5.
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5.4.1. Riemann-Hilbert problem from the right. For the formulation of the
Riemann-Hilbert problem in terms of scattering data from the right, we introduce
the following matrix of eigenfunctions:

(5.15) M(x, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
φ(x, z)

a(z)
eik(z)x ψ(x, z) e−iλr(z)x

]
z ∈ Dout

+ ,[
φ(x, z)

b(z)
eik(z)x ψ̄(x, z) eiλr(z)x

]
z ∈ Din

− ,[
ψ(x, z) e−iλr(z)x

φ̄(x, z)

b̄(z)
e−ik(z)x

]
z ∈ Din

+ ,[
ψ̄(x, z) eiλr(z)x

φ̄(x, z)

ā(z)
e−ik(z)x

]
z ∈ Dout

− .

The asymptotic behavior of the eigenfunctions and scattering coefficients (cf. Sec.
5.3) establishes that for z ∈ Dout

±

(5.16) M(x, z) = I2 +O

(
1

z

)
, as z → ∞ ,

and for z ∈ Din
±

(5.17) M(x, z) = − i

z
σ3Qrσ1 +O(1) , as z → 0 ,

where σ1 is the first Pauli matrix given by σ1 =

(
0 1
1 0

)
.

One has to determine four jump matrices: V0(x, z) across z ∈ (−∞,−Ar) ∪
(Ar,+∞); V1(x, z) across z ∈ (−Ar, Ar); V2(x, z) across the semicircle C+

r in the
upper half z-plane; and V3(x, z) across the semicircle C−

r in the lower half z-plane.
The RH problem across z ∈ (−∞,−Ar) ∪ (Ar,+∞) can be written in matrix

form as M+(x, z) = M−(x, z)V0(x, z), i.e.,
(5.18)[

φ+(x, z)

a+(z)
eikx ψ+(x, z) e−iλrx

]
=

[
ψ̄−(x, z) eiλrx

φ̄−(x, z)

ā−(z)
e−ikx

]
V0(x, z) ,

where superscripts ± denote limiting values from the upper/lower complex z-plane,
respectively. Using (5.3a), the jump matrix is found to be:

(5.19) V0(x, z) =

(
[1− ρ(z)ρ̄(z)] e−i(A2

r/z)x −ρ̄(z) e−2iλr(z)x

ρ(z) e2ik(z)x e−i(A2
r/z)x

)
.

We can write the RH problem across z ∈ (−Ar, Ar) asM
+(x, z) = M−(x, z)V1(x, z),

where the superscripts ± again denote limiting values from the upper/lower complex
z-plane, respectively. Explicitly, from (5.3a) we have
(5.20)[

φ+(x, z)

b+(z)
eik(z)x ψ̄+(x, z) eiλr(z)x

] [
ψ−(x, z) e−iλr(z)x φ̄−(x, z)

b̄−(z)
e−ik(z)x

]
V1(x, z) ,

and (5.3a) yields the following expression for the jump matrix V1(x, z):

(5.21) V1(x, z) =

⎛
⎜⎝

[
1− 1

ρ(z)ρ̄(z)

]
eizx − 1

ρ̄(z)
e2iλr(z)x

1

ρ(z)
e2ik(z)x eizx

⎞
⎟⎠ .
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The RH problem across the semicircle C+
r in the upper half z-plane is written

as M+(x, z) = M−(x, z)V2(x, z), i.e.,
(5.22)[

φ+(x, z)

a+(z)
eik(z)x ψ+(x, z) e−iλ+

r (z)x

]
=

[
φ−(x, z)

b−(z)
eik(z)x ψ̄−(x, z) eiλ

−
r (z)x

]
V2(x, z) ,

where the superscripts ± denote limiting values from the exterior/interior of
C+

r , respectively. Taking into account that φ(x, z) is continuous across C+
r , i.e.,

φ+(x, z) = φ−(x, z), and that from (5.4) it follows φ(x, z) = a(z)ψ̄(x, z)+b(z)ψ(x, z)
for z ∈ C+

r , the jump matrix V2(x, z) is then found to be:

(5.23) V2(x, z) =

⎛
⎝ ρ(z) e−izx

0 − 1

ρ(z)
e−2iλr(z)x

⎞
⎠ .

Finally, the RH problem across the semicircle C−
r in the lower half z-plane is

M+(x, z) = M−(x, z)V3(x, z), and explicitly as
(5.24)[
ψ̄+(x, z) eiλ

+
r (z)x φ̄+(x, z)

ā+(z)
e−ik(z)x

]
=

[
ψ−(x, z) e−iλ−

r (z)x φ̄−(x, z)

b̄−(z)
e−ik(z)x

]
V3(x, z) ,

where the superscripts ± denote limiting values from the exterior/interior of C−
r ,

respectively. Clearly φ̄(x, z) is continuous across C−
r , i.e., φ̄+(x, z) = φ̄−(x, z), and

since, according to (5.4), the relationship φ̄(x, z) = ā(z)ψ(x, z)+ b̄(z)+ ψ̄(x, z) still
holds on C−

r , the jump matrix V3(x, z, t) is found to be:

(5.25) V3(x, z) =

⎛
⎝ − 1

ρ̄(z)
e2iλr(z)x 0

eizx ρ̄(z)

⎞
⎠ .

It is worth noting that the RH problems across z ∈ (−∞,−Ar)∪ (Ar,+∞) and
z ∈ (−Ar, Ar) correspond to the RH problems across the real axis in Sheet I and
in Sheet II, respectively.

Solving the inverse problem as a RH problem [with poles, corresponding to
the zeros of a(z) and ā(z) in Dout

± , and to the zeros of b(z) and b̄(z) in Din
∓ ] then

amounts to computing the sectionally meromorphic matrix M(x, z) with the given
jumps, and asymptotic behaviors (5.16) as z → ∞, and (5.17) as z → 0. As in
defocusing NLS equation with NZBCs [18], in addition to the behavior at z = ∞
and the poles from the discrete spectrum one also needs to subtract the pole at
z = 0 in order to obtain a regular RH problem.

Once the parametric time dependence of the scattering coefficients is taken
into account in the jump matrices, which can be easily obtained from the results of
Sec. 4:

a(z, t) = a(z, 0) e−i(A4
r/z

2)t , ā(z, t) = ā(z, 0) ei(A
4
r/z

2)t ,(5.26a)

b(z, t) = b(z, 0) ei(2A
2
r−z2)t , b̄(z, t) = b̄(z, 0) ei(z

2−2A2
r)t ,(5.26b)

ρ(z, t) = ρ(z, 0) ei(2A
2
r−z2−A2

r/z
2)t , ρ̄(z, t) = ρ̄(z, 0) ei(z

2−2A2
r+A2

r/z
2)t ,(5.26c)

the potential is then reconstructed by the large-z expansion of the matrixM(x, z, t):

(5.27) Mo(x, z, t) =
i

z
Q(x, t)σ3 + o (1/z) ,
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and by the asymptotic behavior as z → 0 of M(x, z, t):

(5.28) Mo(x, z, t) = − i

z
σ3Qr(t)σ1 +Q(x, t)Q−1

r (t)σ1 + o(1) ,

with subscript o denoting the off-diagonal part.
5.4.2. Riemann-Hilbert from the left. The inverse problem can also be formu-

lated as a Riemann-Hilbert from the left, considering the following eigenfunctions
matrix

(5.29) M̃(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
φ(x, z) eik(z)x

ψ(x, z)

c(z)
e−iλr(z)x

]
z ∈ Dout

+ ,[
φ(x, z) eik(z)x

ψ̄(x, z)

d̄(z)
eiλr(z)x

]
z ∈ Din

− ,[
ψ(x, z)

d(z)
e−iλr(z)x φ̄(x, z) e−ik(z)x

]
z ∈ Din

+ ,[
ψ̄(x, z)

c̄(z)
eiλr(z)x φ̄(x, z) e−ik(z)x

]
z ∈ Dout

− ,

such that M̃(x, z) → I2 both as z → ∞ for z ∈ Dout
± , and as z → 0 for z ∈ Din

± .
The RH problem across z ∈ (−∞,−Ar) ∪ (Ar,+∞) is written in matrix form

as M̃+(x, z) = M̃−(x, z) Ṽ0(x, z), i.e.,
(5.30)[
φ+(x, z) eik(z)x

ψ+(x, z)

c+(z)
e−iλr(z)x

]
=

[
ψ̄−(x, z)

c̄−(z)
eiλr(z)x φ̄−(x, z) e−ik(z)x

]
Ṽ0(x, z) ,

where superscripts ± denote limiting values from the upper/lower complex z-plane,
respectively. Using (5.3b), the jump matrix is determined as follows

(5.31) Ṽ0(x, z) =

(
e−i(A2

r/z)x r(z) e−2iλr(z)x

−r̄(z) e2ik(z)x [1− r(z)r̄(z)] e−i(A2
r/z)x

)
.

We can write the RH problem across z ∈ (−Ar, Ar) as

M̃+(x, z) = M̃−(x, z) Ṽ1(x, z),

where the superscripts ± again denote limiting values from the upper/lower complex
z-plane, respectively. Explicitly, one has
(5.32)[
φ+(x, z) eik(z)x

ψ̄+(x, z)

d̄+(z)
eiλr(z)x

]
=

[
ψ−(x, z)

d−(z)
e−iλr(z)x φ̄−(x, z) e−ik(z)x

]
Ṽ1(x, z) ,

and again (5.3b) yields the following expression for the jump matrix Ṽ1(x, z):

(5.33) Ṽ1(x, z) =

⎛
⎜⎝ eizx

1

r̄(z)
e2iλr(z)x

− 1

r(z)
e2ik(z)x

[
1− 1

r(z)r̄(z)

]
eizx

⎞
⎟⎠ .

In formulating the RH problems from the left across the semicircles, we should

first of all notice that on C+
r one has M̃+(x, z) =

[
φ+(x, z) eik(z)x ψ+(x,z)

c+(z) e−iλ+
r (z)x

]
and M̃−(x, z) =

[
φ−(x, z) eik(z)x ψ̄−(x,z)

d̄−(z)
eiλ

−
r (z)x

]
, while on C−

r it is M̃+(x, z) =[
ψ̄+(x,z)
c̄+(z) eiλ

+
r x φ̄+(x, z) e−ikx

]
and M̃−(x, z) =

[
ψ−(x,z)
d−(z) e−iλ−

r x φ̄−(x, z) e−ikx
]
.

Clearly, φ(x, z) and φ̄(x, z) are continuous across C+
r and C−

r , respectively. More-
over, since k(z) = k(−A2

r/z), then one also has φ(x, z) = φ(x,−A2
r/z) and φ̄(x, z) =
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φ̄(x,−A2
r/z), consistently with the fact that the eigenfunctions φ(x, k), φ̄(x, k) are

continuous across Σ+
r and Σ−

r , respectively. The jump conditions are then provided
by the symmetry relationships (5.9b), (5.10c) and (5.10d), which yield:

ψ(x, z)

c(z)
=

ψ̄(x,−A2
r/z)

d̄(−A2
r/z)

, φ(x, z) = φ(x,−A2
r/z) , z ∈ C+

r ,(5.34)

ψ(x, z)

d(z)
=

ψ̄(x,−A2
r/z)

c̄(−A2
r/z)

, φ̄(x, z) = φ̄(x,−A2
r/z) , z ∈ C−

r .(5.35)

Note that the RH problem in this case is clearly posed as a nonlocal one, with the
jumps relating values of the meromorphic eigenfunctions at symmetric points z and
−A2

r/z on the semicircles C±
r .

Solving the inverse problem as a RH problem [with poles, corresponding to
the zeros of c(z) and c̄(z) in Dout

± , and to the zeros of d(z) and d̄(z) in Din
± ] then

amounts to computing the sectionally meromorphic matrix M̃(x, z) with the given
jumps, and normalized to identity as z → ∞ for z ∈ Dout

± and as z → 0 for z ∈ Din
± .

Once the parametric time dependence of the scattering coefficients is taken into
account in the jump matrices (cf. Sec. 4):

c(z, t) = c(z, 0) e−i(A4
r/z

2)t , c̄(z, t) = c̄(z, 0) ei(A
4
r/z

2)t ,(5.36a)

d(z, t) = d(z, 0) ei(z
2−2A2

r)t , d̄(z, t) = d̄(z, 0) ei(2A
2
r−z2)t ,(5.36b)

r(z, t) = r(z, 0) e4ik
2(z)t , r̄(z, t) = r̄(z, 0) e−4ik2(z)t ,(5.36c)

the potential is then reconstructed by the large k expansion of the matrix M̃(x, z, t):

(5.37) M̃o(x, z, t) =
i

z
Q(x, t)σ3 + o (1/z) ,

and by the asymptotic behavior as z → 0 of M̃(x, z):

(5.38) M̃o(x, z, t) = − iz

A2
r

Q(x, t)σ3 + o(z) .

The RH problems from the right and from the left formulated in terms of the
uniformization variable z provide an alternative, and possibly more advantageous
set-up for the investigation of the long-time asymptotic behavior of NLS solutions
with one-sided nontrivial boundary conditions via the nonlinear steepest descent
method (see for instance [14]).

6. Conclusions

We have developed the IST for the focusing NLS equation with a (one-sided)
nonzero boundary condition as x → +∞. Such kind of boundary conditions are
obviously outside the class considered in [12], where the amplitudes of the back-
ground field are taken to be the same at both space infinities. One should notice,
though, that unlike the case of fully asymmetric boundary conditions, i.e., when
the amplitudes of the NLS solutions as x → ±∞ are different, and similarly to what
happens in the same-amplitude case, here one can still introduce a uniformization
variable that allows mapping the multiply sheeted Riemann surface for the scat-
tering parameter into a single complex plane. Nonetheless, important differences
with respect to the same-amplitude case still arise both in the direct and in the
inverse problem. In particular, in addition to solitons (corresponding to the dis-
crete eigenvalues of the scattering problem), and to radiation (corresponding to
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the continuous spectrum of the scattering operator, and represented in the inverse
problem by the reflection coefficients for k ∈ R), one also has a nontrivial contri-
bution from the transmission coefficients for k ∈ Σr, as shown by the last term
in (3.26), contributing to the left Marchenko equations. Correspondingly, (2.38a)
and (2.38b) show that in the right Marchenko equations one always has a non-
trivial contribution from the integral terms in (3.9) and (3.12), since ρ(k) [resp.
ρ̄(k)] cannot vanish for k ∈ Σ+

r [resp. k ∈ Σ−
r ]. In particular, this implies that

no pure soliton solutions exist, and solitons are always accompanied by a radiative
contribution of some sort. As a consequence, unlike the symmetric case, here no
explicit solution can be obtained by simply reducing the inverse problem to a set
of algebraic equations.

The results presented in this paper will pave the way for the investigation of
the long-time asymptotic behavior of fairly general NLS solutions with nontrivial
boundary conditions via the nonlinear steepest descent method, in analogy to what
was done, for instance, in [17] for the modified KdV equation, or in [14] for the
focusing NLS with initial condition q(x, 0) = Aeiμ|x|, with A, μ positive constants.
Moreover, the Marchenko integral equations obtained here will provide an alter-
native setup for the study of the long-time behavior of the solutions by means of
matched asymptotics, as was recently done for KdV in [1].

The study of the long-time asymptotics, as well as the derivation of solutions
describing solitons superimposed to small radiation, will be the subject of future
investigation.
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