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A rigorous theory of the inverse scattering transform for the defocusing
nonlinear Schrodinger equation with nonvanishing boundary values g = goe'%*
as x — *oo is presented. The direct problem is shown to be well posed for
potentials ¢ such that ¢ — g+ € L"*(R*), for which analyticity properties
of eigenfunctions and scattering data are established. The inverse scattering
problem is formulated and solved both via Marchenko integral equations, and
as a Riemann-Hilbert problem in terms of a suitable uniform variable. The
asymptotic behavior of the scattering data is determined and shown to ensure
the linear system solving the inverse problem is well defined. Finally, the
triplet method is developed as a tool to obtain explicit multisoliton solutions
by solving the Marchenko integral equation via separation of variables.

1. Introduction

Nonlinear Schrédinger (NLS) systems have attracted the attention of the
physical and mathematical communities since the 1950s, with the early
work of Ginzburg, Landau, and Pitaevskii on the macroscopic theories
of superconductivity and superfluidity [1-3]. Nonetheless, it was not until
the works of Chiao et al. [4] and Talanov [5, 6] that the wider physical
importance of NLS equations became evident, especially in connection with the
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phenomena of self-focusing/self-defocusing and the conditions under which
an electromagnetic beam can propagate in nonlinear media without spreading.
Equations of NLS-type have since then been derived in such diverse fields
as deep water waves (cf. [7, 8]), plasma physics [9], nonlinear fiber optics
[10, 11], magnetic spin waves [12, 13], Bose-Einstein condensates [14], etc.
As a matter of fact, most dispersive energy preserving systems give rise, in
appropriate limits, to the scalar NLS, which explains the keen interest in NLS
as a prototypical integrable system and motivates the effort put into advancing
our mathematical understanding of this equation.

The inverse scattering transform (IST) as a method to solve the initial-value
problem for the scalar NLS equation

i, = qve — 20 lq°q (1)
(subscripts x and ¢ denote partial differentiation throughout) has been extensively
studied in the literature, both in the focusing (¢ = —1) and in the defocusing

(o = 1) dispersion regimes (see, for instance, [7, 15—18] for detailed accounts
of the IST in the case of potentials ¢(x, t) rapidly decaying as |x| — 00).
The situation is quite different when one is interested in potentials that do
not decay as |x| — oo. This class of potentials is particularly important for
the defocusing NLS, since it admits soliton solutions with nonzero boundary
conditions (NZBCs), the so-called dark/gray solitons, which have the form:

g(x, 1) = goe?'[ cos o + i(sina) tanh [go(sine) (x — 2¢o t cosa — x0)]] (2)

with qg, «, and x, arbitrary real parameters. Dark soliton solutions are such
that |g(x, )] = qo as x — oo, and appear as localized dips of intensity
g4 sin” o on the background field go. The IST for the defocusing NLS equation
with NZBCs was first studied in 1973 [19]; the problem was subsequently
clarified and generalized in various works [20-27], and a detailed study can be
found in the monograph [28].

Even though the IST for the defocusing NLS with NZBCs was first presented
almost 40 years ago, many important issues still remain to be clarified, i.e.,: (i)
No attempt has been made so far to identify the most suitable functional class
of nondecaying potentials where the direct and inverse scattering problems can
be solved, or to rigorously establish the analyticity properties of eigenfunctions
and scattering data. In that respect, (the analog of) Schwartz class is usually
assumed for the potential (cf., for instance, [23, 28, 29]), which is clearly
unnecessarily restrictive. In [24, 25] the issue of establishing the analyticity of
the eigenfunctions was addressed by reformulating the scattering problem in
terms of a so-called energy dependent potential, but the drawback of that
approach is a very complicated dependence of eigenfunctions and data on the
scattering parameter. (ii) For the focusing NLS in the vanishing case, it has
been shown in [30, 31] that there are no discrete eigenvalues and no spectral
singularities if ||g|l1 < /2, where the /2 bound is optimal. Whether the
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existence of discrete eigenvalues for the defocusing NLS in the nonvanishing
case can be related to the equivalent of an area theorem for the initial profile of
the solution as a dip of intensity on the background field is still an open issue.
(iii) As far as the inverse problem is concerned, it was first formulated (but not
solved) as a Riemann-Hilbert problem in [28], without any investigation on its
well-posedness.

In this work we will address many of the above mentioned open issues, and
also some related important topics. The problem of the existence of an area
theorem will be a subject for future investigation. The plan of the paper is
outlined below. We study the IST for the scalar defocusing NLS [Equation (1)
with o = 1]:

iqr = qx: — 2lq°q 3)
with NZBCs

q(x,t) —> q+(t) = qoez’“’%””pi as x — oo, 4)

where g9 > 0 and 0 < 0. < 27 are arbitrary constants. Sections 2 and 3
are devoted to the study of the direct scattering problem. We will prove
that it is well defined for potentials ¢ such that ¢ — g+ € L'?(R¥), L1¥(R)
being the complex Banach space of all measurable functions f(x) for which
(1 + |x])* f(x) is integrable. We will obtain integral representations for the
scattering data, and establish analyticity of eigenfunctions and scattering data for
potentials in this class. Moreover, we will prove that, under the assumption that
g — g+ € LV4R™Y), the discrete eigenvalues are finite in number and belong to
the spectral gap k € (—qo, qo) (see Appendix B for details). In Section 4 we will
formulate and solve the inverse problem as a Riemann-Hilbert problem (RHP)
in terms of a suitable uniform variable, and we will show that the asymptotic
behavior of the scattering data ensures the algebraic-integral system of equations
providing the solution of the inverse problem is well defined. Finally, in Section 5
we will formulate the inverse problem in terms of Marchenko integral equations,
and we will develop the triplet method as a tool to obtain explicit multisoliton
solutions by solving the Marchenko equations via separation of variables
[32-35]. The crux of the method is to represent the Marchenko kernel as
Ce U+94B where (4, B, C) is a suitable matrix triplet. The NLS solutions
obtained in this way will not contain anything more complicated than matrix
exponentials and solutions of Lyapunov equations, and, if necessary, can hence
be “unzipped” into (lengthy) expressions containing elementary functions, or
used as input to numerical calculations. More technical proofs will be deferred
to the Appendices, while for results that are already well established in the
literature, such as, for instance, the time evolution of eigenfunctions and
scattering data, we will simply refer the reader to the appropriate references.
Some of the results presented in this paper will be relevant in the context of
recent theoretical studies and experimental observations of defocusing NLS in
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the framework of dispersive shock waves in optical fibers [see, for instance,
[36] regarding the appearance and evolution of dispersive shock waves when an
input (reflectionless) pulse containing a large number of dark or gray solitons
is injected in the fiber]. Importantly, the present work will pave the way for
generalizing similar results to the defocusing vector NLS equation, for which
the IST with NZBCs was recently developed (cf. [37] for the two-component
vector NLS and [38] for vector NLS with an arbitrary number of components).

2. Direct problem: k, A variables

It is well known that Equation (3) can be associated to the so-called ZS-AKNS
scattering problem [8], [15]:

%( (x, k) = (—ikos + O(x)) X(x, k), x eR, (5)

where

03:((1) _01), Q(X)=(q*(zx) qu>), ©)

q(x) is the potential, and & is a complex spectral parameter. We start off by
assuming that g(x) — g+ belongs to L'(R¥), although in the course of this
article we will somewhat strengthen the integrability requirements.

The direct problem for the system (5) with boundary conditions (4) is more
complicated than the counterpart with vanishing boundary conditions [i.e.,
q(x,t) > 0 as x — Fo0]. In fact, when looking for asymptotic eigenvalues
and eigenvectors of the scattering problem, one has to deal with the new spectral
variable A =./k»—¢? (see, for instance, [19, 28, 37]). The variable & is then
thought of as belonging to a Riemann surface K consisting of a sheet K* and a
sheet K~ which both coincide with the complex plane cut along the semilines

% = (=00, =qo] U [g0, o0) (7

with its edges glued in such a way that A(k) is continuous through the cut.
The variable X is thought of as belonging to the complex plane consisting
of the upper half complex plane A™ and the lower half complex plane A~
glued together along the full real line. The transformation k > A maps K*
onto A*, the cut ¥ onto the real line, and the points %¢g, to zero. Moreover,
{(A+k, A —k} C A* for any k € K*.

For later convenience, we write (5) in the form

oX
oy &0 = A0 X(x, k) + (Q(x) — Q) X(x. k), ®)
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where
Ay(k) = —ikos + Q4 = <_ik Qi) O+ = ( O* Qi>’ (9a)
qr ik g9t O
such that
As(k) = —o3 AL (K)o, (9b)
A*i(k*) = O'lAi(k)O’l. (90)

Here the dagger and asterisk denote, respectively, the complex conjugate
transpose and the complex conjugate, and o, is the first Pauli matrix

_ (0 1
o] = 1 0)
We remark that (8) is equivalent to the following scattering problem:

0X
M (x, k) = A(x, ) X(x, k) + (O(x) — Q r(x)X(x, k), (10)
where we have defined

A(x, k) = 0(x)A1.(k) + 0(=x)A_(k),  Qs(x) =0(x)Q+ +60(=x)Q0-. (11)

O r(x) is the analog of the free potential, and 6(x) denotes the Heaviside
function [0(x) = 1 for x > 0 and zero otherwise]. We also point out that the
scattering problem (10) is continuous at x =0 if X(x, k) and Q(x) are,
and it coincides with (5). Since we only study solutions to (10) satisfying
certain asymptotic conditions, these solutions are defined in the weak sense as
solutions of “equivalent” integral equations.

Clearly, the ZS-AKNS Hamiltonian operator H = io3(d/dx — Q) is
selfadjoint on the orthogonal direct sum of two copies of L2(R). It is convenient
to introduce the free Hamiltonian

d
Hy =ios (dx Qf)’
and to formulate the scattering theory as a result of the potential difference
O — O occurring in the full Hamiltonian H.

When studying Equation (5) with vanishing boundary conditions, it is
customary to define Jost solutions as particular, asymptotically free column
vector solutions and to group them together as columns of fundamental
eigensolutions. The generalization of these definitions to Equation (5) with
NZBCs (4) is more involved. In the next two subsections, we will define
fundamental solutions and Jost solutions, point out how they are related, and
determine their analyticity properties. Alongside, we will define the transition
coefficient matrices coupling the fundamental eigensolutions as x — o0, as
well as the scattering coefficients.
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2.1. Fundamental eigenfunctions

Taking k € ¥ as in (7), we define the fundamental eigenfunctions U(x, k)
from the right and ®(x, k) from the left as those square matrix solutions to (5)
[or (10)] satisfying

U(x, k) =4O +0(1)], x — +o0, (12a)

O(x, k) = - O[L +0o(1)], x - —o0. (12b)

Here I, denotes the identity matrix of order p.

For later use, we determine the fundamental matrix G(x, y;k) for the
scattering problem with generator A(x, k) defined in (11). In other words, we
look for the weak solution G(x, y; k) of the system (5) [or (10)] with potential

O(x) = Qs(x) such that
0
ag(x, yik)=A(x, k)G(x, y; k),
G(x,x; k)= 1.
As shown in Appendix A (see also [39]), one has

e(xfy)/u(k)’ X,y > O’
e(X—J’)A—(k)’ x’ y S O’
G(x,y;k) = AR gy A (k) —y >0, (13)
et A-Werash |y ) <,
In particular, from (13) it follows
G(x, 0;k) = 6(x)e" B 4 (—x)e*4-®), (14a)
G0, y; k) = 0(y)e 0 4 6(—y)e 0. (14b)

As a result, G(x, y; k) is a square matrix which depends continuously on
(x,y,k) e R x £ and satisfies (5) with the free potential Q. Recalling
(9), for k € ¥ we have the symmetry relations

G'(x, y; k)= —03G(y, x; k)o3, (15a)

G*(x, y; k) =01G(x, y; k)oy. (15b)

Moreover, Ai(k) have the two distinct imaginary eigenvalues =+iA if
k € ¥\ {£qo}, and are nondiagonalizable with a double zero eigenvalue
if k = +qo. Further, the matrix groups e***®) are bounded in x € R if
k € X\ {£qo}, and grow linearly in x € R in any matrix norm if k = £¢,. In
particular, one has

e A+(@0) — I —igox q+x o Ax(=q0) — 1 +igox q+x (16)
gix  l+iqox )’ gix  l—iqox)’
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and thus there exists a constant C > 1 (independent of (x, y) € R?) such that

‘ C, k < —qo or k > qo,
IIQ(x,y, k)” = {C(l + |x|)(1 4+ |y|), k= +q. (17)

PROPOSITION 1. Suppose the entries of Q(x)— Q s(x) belong to L'(R)
(equivalently, q(x)— g+ € L'(R¥)). Then for k e T\ {£qo} the Volterra
integral equations

‘f’(x,k)=9(x,0;k)—/ dy G(x, y; IO — Q¥ (v, k), (18a)

CT>(?C,f’€)=9(x,0;k)+f dy G(x, y; IO(W) — O (MIP(y., k), (18b)

have the fundamental eigenfunctions defined by (12) as their unique solutions.
The same conclusion holds for k = %q if the entries of Q(x) — QO s(x) are in
LY2(R), i.e, if (1+ |x])*[q(x) — q+] belong to L' (R¥).

Proof. According to (17), if k € ¥ \ {*qo}, the iterates of (18a) are
bounded above in the matrix norm by the iterates of the integral inequality

1@ k) < C+C / dy 100) — ;I I,

X

which, by Gronwall’s inequality, implies

¥ (x, bl < Cexp (C /Oo dy | 0() — Qf(y)”) < CeC12-2/ < oo,

X

For k = +£qy, by using the second inequality in (17) we have instead

1P (x, o) > 2 B ¥, )l
C(1+|x|)§1+c/x a1+ BIP10) ~ 00 G s

Then, by Gronwall’s inequality,

I (x, k)l < C(1 + |x])exp (C/ dy (1 + Iy’ I10() — Qf(y)ll) -

We recall that the unique solution of (18a) can be obtained by considering the
iterative (uniformly convergent) scheme:

i, k)= W(x, k)
n=0
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with
‘i’()(x, k) = g(x, 0; k)’

By (k) = / dy Gx, y DIOM) — 0 ;T (y. ).

X

where

- 1 e "
19,00l < €+ - (C/ dy (1+ ¥ 00) — Qf(y)”) .
The statement for (18b) is proved analogously. |

Proposition 1 implies that for k € ¥
U(x, k) = G(x, 0; k)[A;(k) + o(1)], x — —o0, (19a)

d(x, k) = Glx, 0: H[A (k) + o(1)], x — 400, (19b)

where the transition coefficient matrices A;(k) and A, (k) are given by

Ai(k)=1 —/_ dy G(0, y; DIOW) — O, MIT (. k), (20a)

A (k)=1 +/ dy G0, y; )O() — @, (MI(, k), (20b)

obtained using the multiplication property (A.5). The transition coefficient
matrices are continuous for k € X \ {£qo} if the entries of Q(x) — Qr(x)
belong to L'(R), and for k € = if the entries of (1 + |x[)*[Q(x) — O /(x)]
belong to L'(R).

Using that O*(x) = 01 Q0(x)o; and o030 = —0oj03, we easily derive that
o1 X*(x, k") is a solution to Equation (5) if X(x, k) is. From (9¢) and the
boundary conditions (12) we thus get the symmetry relations

o1 U (x, ko, = U(x, k), o0,D%(x, k"o = D(x, k). (21)

We can also easily prove the following.

PRrROPOSITION 2. For k€ X

Ak = A7 (K) = 03A (o5, A () = A\ (k) = 03A) (0o, (22a)

A(k) = o1 Aj(K)or,  Ar(k) = o1 Al (K)o (22b)

The above relations also hold for k € K, with the arguments of AIT . and A},
replaced by k*, whenever the involved transition coefficients can be continued

off X.
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Proof. Let Z(x, k) and Z(x, k) be two square matrix solutions of (5). For
k € R we obviously have

VAR N
— —7'0=ikZ'os.
ax

As a result,

5
— loy(Cikos £ O)Z + Z\(ikos + Q)03 Z (23)
=Z7'(030 + Q03)Z = 0,

which implies that Zf(x, k)o3Z(x, k) is independent of x € R. Using the

asymptotic properties of the two fundamental eigenfunctions as x — oo,

(22a) follow. Equations (22b) follow directly from (19), (21), and (15b). The

result for k ¢ X follows from Schwarz reflection principle. |
Let us denote the transition matrices as follows:

A,(k)_< Ag(k) AZ(k))’ A,.(k)—<A,.;(k) Arj(k))- (24)

Then Equations (22a) imply that for £ € ¥ we have
[An(Ol = 1, [A4q(k)| =1,  An(k) = 45,(k), (25a)

|4 = 1, 440 = 1, Au(k) = 474(k). (25b)

To prove (25) we proceed as follows. First of all, we observe that from
(22a) we can write

o3 = A(k)as A (k).

As a consequence, we get

t _ Ank)y  Ap(k) A3, (k) A (k) _ 1 0
Ark)osh; (k) = (Aﬁi(k) Aﬁi(k)) (—/T;z(m —%(k)) = (0 —1)

and the last equation implies that
AP =1+ 4pP = 1, dul’ =1+ 145 = 1.

The proof for the entries of A, (k) can be carried out in a similar way.
Using (23), we easily prove that for each x € R

Bi(x, byosW(x, k) = di(x, o d(x, k) = —o3.

As a result, the diagonal entries of the transition matrices cannot vanish for
keZ.

It is worth mentioning that instead of deriving the fundamental eigenfunctions
of (5) from those pertaining to the free Hamiltonian, we can also derive them
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as perturbations of e*4+(®) as x — Fo0. In that case, we obtain the integral
equations

W(x, k)= e 0 — /Oody I O[O(y) — 0419 (v, k), (26a)

b k=0 [y B00) - 0 10 b (26b)
—00

Equations (18a) and (26a) coincide if x > 0, whereas (18b) and (26b)
coincide if x < 0. In all other cases, the corresponding integral Equations (18)
and (26) are quite different, though their solutions coincide (in fact, ¥(x, k)
and ®(x, k) both satisfy (10) with the asymptotic conditions (12a) and (12b),
respectively). Equations (26), however, are not suitable for investigating the
behavior of the eigenfunctions as x — Foo. In fact, the iterates of (26a) (resp.,
(26b)) are continuous functions of x € R which converge uniformly to ¥(x, k)
(resp., ®(x, k)) for x > xo > —oo0 (resp., x < xy9 < +00), but nothing can be
said about the limit as x — —oo (resp. x — +00).

2.2. Jost solutions

The fundamental eigenfunctions introduced in Section 2.1 are not scattering
eigenfunctions, in the sense that their asymptotic behavior as x — £oo
couples both asymptotic eigenvalues +i) of the scattering problem. In this
subsection we introduce the Jost solutions as column vector solutions to (10)
and establish their analyticity properties. To this aim, we multiply from the
right the fundamental eigensolutions W(x, k) and ®(x, k) by the eigenvectors
of A, (k) corresponding to the eigenvalues iA and —iA, i.e., by the columns of

Atk M-k
with det W..(k) = —2igi )\ and
A (F)Wi(k) = Wi(k)diag(—iX,ilr). (28)
Moreover, it is easily verified that for £ € ¥ \ {£q¢} we have
[W(k)D™ ()] = o3[ We(k)D™ (k)] a3, (29)
where D(k) = diag QA(A + k), 2A(k — 1)). We now call the columns of
Ve, WL (k)= ((x, k) p(x, k), (30a)

S, YW_(k)=(d(x, k)  ¢(x, k), (30b)
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the Jost solutions from the right and the left, respectively. In fact, for the Jost
solutions we get

T(x, k)~ e (A +k), W, k) ~ e (’\ - k), X — +00, (31a)

. % .k
iq} —ig¥

P k)~ (ﬁ;"), Bx. k) ~ e (f i‘qf), x — —o0. (31b)
Using that o1 X*(x, £*) is a solution to Equation (5) if X(x, k) is, we easily
derive the symmetry relations

*
SO @) Yk = e e k). (32)
Moreover, replacing k € K* by the “same” k € K¥ and hence replacing
L e AT by —1 e AT, we convert Y(x, k) into —(x, k) and ¢(x, k) into
—d(x, k) (symmetries will be discussed in more detail in Section 3.1).

It is worth mentioning that the normalization in (31) for the Jost solutions
differs from the one considered, for instance, in Refs. [19, 28], where, instead
of W.(k), the asymptotic eigenvectors are taken to be

_ Atk —l'qi
Ui(k)‘(iq; A+k>'

The latter choice, however, turned out not to be convenient for the generalization
to the vector NLS (cf. [37, 38]), and therefore in the following we will adopt
(31) as our normalization for the Jost solutions.

Plx, k) =

PROPOSITION 3.  Suppose the entries of Q(x) — Q s(x) belong to L'(R).
Then for each x € R the Jost solutions e "**(x, k) and e ¢(x, k) are
continuous for k € K+ \ {=£q0} and analytic for k € KT, while the Jost solutions
e Y(x, k) and e " @(x, k) are continuous for k € K-\ {#qo} and analytic
Jor k € K™. In addition, if Q(x) — Q y(x) belongs to LV2(R), then ey (x, k)
and e ¢(x, k) are continuous for k € K+ and analytic for k € Kt ,while the
Jost solutions €™ (x, k) and e " @(x, k) are continuous for k € K- and
analytic for k € K.

Proof. Let us consider, for k € ¥\ {£qo}, the matrices P, and P
defined as follows:

_ 1 (A+k g
+ — . _ 1 _ +
PE ) =Resi— (¢ — Ax(k) ™ = 5 ( e a k), (33a)

4 U (r—k —ig
+ _ ) _ | +
P =Resc—, (¢ 1 = Ax(k) ' = 5 (_,.qi o k). (33b)
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Pitik and Pj are complementary projections in the sense that
(135)2 = Pzi (ij)z = wa Pifpfi)\ = mepz‘jxt = 02,2,
P ijxt +P ix = 1.
Moreover, they commute with A (k) and satisfy
As(k)PE, (k) = —iaPE, (k), Ax(k)PL(k) = iAPL(k).
We can also write for any x € R
=0 = =M pE (k) + & P (k). (34)

For k € ¥\ {£qo}, multiplying (26a) from the right by either column of
W, (k), and (26b) by either column of W_(k), we obtain the integral equations

e’“l}(x, k)
= (A;f) _/ dy [PL; + & PI]I00) = 040V (. b, (35a)
+ X
e—ikxw(x’ k)

A—k * iM(y—x —i
B (—mi) _/x dy [0 PT, + PITIOG) — O41e™™ ¥ (v, K), (35b)

e P(x, k)

= ()” Zf) + f oo dy [P5; + "V PI][00) = Q-1 9. k). (35¢)
e p(x, k)

= (k_i_qf) + f Oo dy [P+ PITIOG) — 0-1e M (v, ). (35d)

The projections Pfi , (k) and Pl.i;(k) admit a natural continuation to
k € K\ {£qo} [i-e., to L € C\ {0}]. Taking into account that these projections
are singular matrices, we can prove that for k € X their spectral norms are
given by
[A+ K|+ A — K _m
2[A Al
where we have used |\ + k| + |A — k| = 2max{|A|, |k|} for A, k € R. For
k ¢ X, we use

I P~ (k)| = 1P (k) = (36)

1250 = s (0 + k2 i+ 2+|A—k|2)—\/m'z“"‘*z”qg
+ixll — 4|2 90 T4 — 3
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Thus the expression me(k) + eZi’\("_y)Pif(k) appearing in (35a) is bounded
above in the norm by twice the amount in (36) if y > x and A € A~ UR\ {0}.
Iterating (35a) we get

le™ ¥r(x, K)II<\/IA + k1> + q2

21k o0 N
il f dy 100) — 01§ Dl

+_
|A]

Assuming that O — Q is in L' on any right half-line, which follows from
0 — 0+ € L'(R*), we see that the series resulting by iteration is absolutely
convergent, uniformly in (x, A) on each set of the type

{(x,A):x >x90>—00,|A| >e>0, e A" UX}.

Since each term is continuous in k € K~ U X \ {£¢g} and analytic in k¥ € K~
for each x € R, we arrive at the same continuity and analyticity properties for
e (x, k).

To extend the continuity properties to k = £¢o, we write the left factor
under the integral sign of (35a) as follows:

[2 + [eZl')L(x—y) _ 1] Riv

where we have used the complementarity of the projections P,,. This
expression we then estimate in the norm for £ € K~ U ¥ by
|kl

1+ |ezm(x—y) _ 1|m§ 14+ 2|x —yllkl

< max(1, 2]&)(1 + [x (T + [y]).

The proof then proceeds as before, but under the strengthened integrability
condition that Q(x) — Q s(x) belongs to L 2(R). This completes the proof for
the Jost solution ¥(x, k). The proof for the other three Jost solutions can be
carried out in a similar way. |

Note that the analyticity domains of the Jost solutions are subsets of only
one sheet. Further, the proportionality of the inhomogeneous terms in (35a)
and (35b) and in (35¢) and (35d) for £ = £¢q( implies the proportionality of
their solutions, so it is

Y(x, £q0) = =¥ (x, £q0),  ¢x, £q0) = —P(x, £qo). (37

2.3. Transition and scattering coefficients

We define below two types of scattering coefficients: the transition coefficients
which express the proportionality of the fundamental eigensolutions, and the
scattering coefficients which realize the proportionality of the Jost solutions.
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Since W(x, k) and ®(x, k) are square matrix solutions of the homogeneous
first order system (10), we necessarily have, in view of (12) and (19),

U(x, k) = O(x, bA(k), O(x, k)= U(x, kb)A.(k), (38)

where A;(k) and A, (k) are the transition coefficient matrices. In order to
decompose A;(k) and A, (k) into elements that are analytic in A € A" and
A € A™, we need to apply the similarity transformation used for the same
purpose with the fundamental eigensolutions. As a result of (30) and (38), for
k e ¥ we get

@G k) . )= (x. k) Y(x, b)SK), (39a)

W, k) Y, k)= (@, k) dlx, k)S(h), (39b)
where [19, 28]

(40)

k) bk
S(k) = W' (k)A, (k)W_(k) = (a( )M )),

b(k) a(k)
and S(k) = W= (k)A; (k)W (k) = S~' (k). Comparing the asymptotic behavior
of the Jost solutions as x — oo and taking into account (23), yields

the following quasi-unitarity relation for the scattering coefficients for
ke %\ {£qo}:

a(k)a(k) — b(k)b(k) = €'®, 41)
where ® = 0, — 6_. As a consequence, one also has
, [ atk)y —b(k)
S(k) =e™"® : 42
W= (—b(k) a(k) ) “
As a result of (29), we easily find
[D'2(k)S(k)D~2(k)]" = o3[ D'*(k)S(k) D"/ (k)] ' 0. (43)

Observe that (40) becomes singular for £ = ¢, due to the noninvertibility of
W+(q0) and W.(—qo).

Note that using (20) in (40) and taking into account (30) and (28), we get
the following integral representations for the scattering coefficients:

a®) BB\ o _
= | dye?TWIIRI00) - K Bk
(b(k) &(k)) | averm i wioe - 00@w b #.b)

0
+ W (yW_(k) [12+ f dy e W= (k)

—0o0

. (44)
x [Q() = O-1(o(y, k) ¢(y,k))]-
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We can now establish the analyticity properties of the scattering coefficients.

PROPOSITION 4. Suppose the entries of Q(x) — Q s(x) belong to L'(R).
Then a(k) is continuous in k € K+ \ {£qo} and analytic ink € K+, while a(k) is
continuous in k € K=\ {#qo} and analytic in k € K. The functions b(k), b(k)
are continuous in k € X \ {£qo}, but in general cannot be continued off X.

Proof. By using (39) we can represent the scattering coefficients as
Wronskians of the Jost solutions:

_ Wr@@. k), y(x. k)
Wr (¥ (x, k), ¥(x, k)’

by = — V@G ), ¥ (x, k)) _ Wr(@(x, k), ¥(x, k)
O OWr((x, k), Y(x, k) ~ Wr(U(x, k), ¥r(x, k)

Here the Wronskian Wr (u, v) of the two column vectors u and v is defined as
Wr (1, v) = u ozo1v = uMv@® — 4@y, Given two column solutions u(x, k)
and v(x, k) of Equation (5), it easy to show that Wr (¢, v) does not depend on
x. As a consequence, from (31a) one has

W@ 0. ¥ e, k)

a(k) Wr (J(x, k), ¥ (x, k)’

a(k) =

b(k)

Wr (Y (x, k), ¥ (x, k) = —2irq} (45)
and therefore
alk)= _Wr (¢>(x2,i1;)q,*10(x, k))’ ak) = Wr(¢(xz,i/;)q,*¢(x, k))’ (46a)
+ +
PO G 1C ) S PN L (G R AL

2iAg} 2iAgY

From the analyticity properties of the Jost solutions established in Proposition
3, and since A # 0 if k # £qo, the proof follows. We note that the analyticity
of the scattering data could also be established by means of the integral
representations (44). |

With the help of Proposition 3 and Equations (46), we easily prove the
following.

COROLLARY 1. Suppose the entries of Q(x) — Qs(x) belong to L'*(R).
Then Mk)a(k) is analytic in k € K* and continuous in k € K+, M(k)a(k) is
analytic in k € K~ and continuous in k € K=, and Mk)b(k) and r(k)b(k) are
continuous for k € R.
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Taking into account the analyticity properties of the Jost solutions, we are
interested in determining the 2 x 2 matrices

n(k)  r(k)
k =
0= 1)
and
(R k)
0= Fo 700)
which allow us to formulate the Riemann-Hilbert problems
@, k) YO k)=, k), k)osT(k)os, (47a)
W, k) @lx, k)= (p(x, k) ¥ (x, k)osT(k)os, (47b)

where the scattering coefficients #(k), ¢.(k), f;(k), t.(k) are called the (left and
right) “transmission coefficients,” while p(k), p(k), r(k),7(k) are the (left
and right) “reflection coefficients.” Note that the matrix (¢(x, k) V(x,k))

is analytic for k € K* and continuous for k € K+, whereas the matrix
(Y(x,k) @(x,k)) is analytic for k € K~ and continuous for k € K—. A
comparison between (39) and (47) gives us the following expressions for the
scattering coefficients:

tk)y=1/a(k), t.(k)=e®/a(k),

- (48a)
p(k)=b(k)/a(k), r(k) = —b(k)/a(k),

L(ky=e/ak), Tk)=1/alk),
p(k)y=b(k)/ak), F(k) = —b(k)/a(k).

Using (43), we easily obtain that D'?(k)T(k)D~'/?(k) is unitary for
ke X\ {£qoh.

(48b)

3. Direct problem: z variable

Before we proceed further discussing the properties of the scattering coefficients
and posing and solving the inverse problem, it is convenient to introduce a
uniformization variable z (cf. [28]) defined by the conformal mapping:

z =k + rk),

and inverse mapping given by
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We observe that

e the two sheets K, K~ of the Riemann surface K are, respectively,
mapped onto the upper and lower half-planes C* of the complex z-plane;

e the cut X on the Riemann surface is mapped onto the real z axis;

e the segments —gy < k < go on K™ and K~ are mapped onto the upper
and lower semicircles of radius g, and center at the origin of the z-plane.

From Proposition 3 it then follows that the Jost solutions ¢(x,z)e'*",

V(x,z)e ™ are analytic in the upper half-plane of z, while @(x,z)e """,
V(x, z)e’** are analytic in the lower half-plane. Moreover, by Proposition 4
and Corollary 1, za(z) and a(z)/z are analytic in z € C* and continuous in
z € C+, za(z) and a(z)/z are analytic in z € C~ and continuous in z € C—,
and zb(z), zb(z) are continuous in z € R. We will determine the asymptotic
behavior of a(z), a(z), b(z) and b(z) in Section 3.2.

3.1. Symmetries and discrete eigenvalues

It is well known that the scattering problem admits two involutions:
(k, L) = (k*, 1) and (k, X)) — (k, —X), or, in terms of the uniformization
variable z: z — z* and z — qg /z. Writing the considerations around (32) in
terms of z, we obtain the corresponding symmetry relations between the
eigenfunctions

d(x,z)= _icf 019" (x,z%), Y(x,z)= _’Zi o ¥(x,z%),  (49a)
P(x,2)=—¢(x.q5/z), V(x.2)=—V¥(x,q;/2). (49b)

Correspondingly, from (46) (rewritten in terms of the uniform variable) and
(49), one can obtain the symmetries of the scattering coefficients:

a(z) = ¢'%a*(z%), a(z)=a(qy/z), Imz >0, (50a)
and
Z2 - -
b(z) = el@; b*(z), b(z)=b(q5/z), z€R, (50b)
0

where we recall ® =60, —6_. It is also well known [19] that there is a
one-to-one correspondence between the poles of the transmission coefficients
t)(z) = 1/a(z) and 7.(z) = €'®/a(z) and discrete eigenvalues of the scattering
problem (5). Taking into account the symmetries (50), the quasi-unitarity
relation (41) becomes:

2
la()|? — Z—S bR =1, zeR\ (g} (51)
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Note that the above equation also makes sense for z — 0, as in Section 3.2 we
will show b(z)/z = o(1/z). Using (51), we see that a(z) # 0 for z € R, which
means that there are no spectral singularities (sometimes called embedded
eigenvalues). Equation (51) also implies

1 q2

< @R 62 = 1= Z eI (52)
Note that (51) can also be obtained directly from (23), taking Z = Z = (¢ )
and comparing the limits of Zfo3Z at both space infinities. Equation (51),
together with the self-adjointness of the scattering problem, ensure that
the transmission coefficients can only have poles at z = ¢, = k, +iv, and
z=¢f =k, —iv,, with —qy < k, < go and v, = /52— > 0. In Ref. [28] it
is shown that all poles are simple. In addition, in Appendix B we will prove
that if ¢ — g, € L"*(R) there is a finite number of poles, all of which belong
to the spectral gap £ € (—qo, o).

For any pair of eigenvalues {¢,, {n*}fqv:l on the circle Cy :={z € C : |z| = g0}
[i.e., for any pair of zeros of a(z) and a(z) on the circle Cy], the Wronskian
representations (46a) yield:

Gx, &) = ca¥(x, ), B, ) = Cr(x, £, (53)

for some complex constants c¢,, ¢,, with ¢, = ¢, due to the symmetries (49)
between the Jost solutions. Finally, we mention that even though the Jost
solutions are continuous at the branch points +¢, for the class of potentials in
Proposition 3, the scattering coefficients generically have simple poles when
z = %qy. In fact, from (46a) it follows that if ¢ and  are linearly independent
at z = qg or z = —q (i.e., at A = 0), then a(z) has a singularity of the form

[ Wr (¢(x, £q0), ¥ (x, £40))
243 '

A@).msy = 5+ O, ax = (54)
However, it may also happen that ¢(x, z) and ¥ (x, z) become linearly dependent
at either z = gy or z = —gqy, or both. In this case, either @, or a_, or both,
vanish, so that a(z) is nonsingular near the corresponding branch point. When
this happens, in scattering theory z = —qy or z = g is called a virtual level
[28]. The behavior of b(z) in the neighborhood of z = +¢ is the same as that
of a(z). Indeed, from (37) and (46) it immediately follows that

b))y, = af + o). (55)

The behavior of a@(z) and b(z) at the branch points simply follows using the
symmetries (50). When a1 # 0, we have the asymptotic relations

P@D).—iy, =1+ 0(1),  p).—sy, =1+ 0(D).
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In Appendix B, higher order asymptotic expansions at the branch points will
be considered.

3.2. Asymptotic behavior of eigenfunctions and scattering data

In order to properly pose and solve the inverse problem, one has to determine
the asymptotic behavior of eigenfunctions and scattering data both as z — oo
and as z — 0. Standard Wentzel-Kramers-Brillouin (WKB) expansions in
terms of the uniformization variable z in the scattering problem (see Appendix
C) yield the following asymptotic behaviors for the eigenfunctions in the
upper-half plane (UHP) of z:

e as z — 00:
i, z —iAx . qiq(x)/z
P(x, z)e (l-q*(x)) . Yix,z)e ( it ) (56a)
e asz — O
2
2. ) ~ <zq(36)!q—) e~ — <.qgﬁ/z )  (s6b
B(x,2) - Y, 2) i) 6b)
Similarly, in the lower-half plane (LHP) of z we obtain:
® as z — 00:

(E(X, Z)e—ikx ~ <q*?;)i)/z) ’ &(x, Z)eikx ~ (lq*Z(x)> , (573)

e asz — 0:

z —iAx q&/z 7 ix zq(x)/q+
o(x, z)e (iq*(x)) ,  Y(x,z2)e ( iq ) . (57b)
Note that, unlike the expressions given in Ref. [28], the derivation in
Appendix C shows that even the leading order terms of the asymptotic
expansions for the eigenfunctions explicitly depend on the potential g(x), not
merely on its asymptotic values ¢g.. Using the Wronskian representations (46a)
for the scattering data for z in the UHP yields:

a(zy~1 asz—>o00, a(z)~qy/q- asz— 0, (58a)
as well as:
aiz)y~qi/q- asz—>o0, a(z)y~1 asz—0, (58b)

for z in the LHP. Similarly, the Wronskian representation of b(z) provides its
asymptotic behavior for z € R. Specifically, for (¢ — g+) € L'(R¥) one has:

b(z) _

lim zb(z) =0, lim — =0, (59)

zZ—00 z—0 22
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and consequently

p(z)
= =

limzp(z) =0, lim 0. (60)
zZ—>00

z—0 Z

The asymptotic behaviors for b(z) and p(z) can be obtained analogously, or by
simply using the symmetry (50b).
3.3. Trace formula and area theorem

Taking into account the analyticity properties of a(z) in the UHP, the location
of its zeros, as well as (51), one can obtain the following representation
(sometimes referred to as trace formula) for a(z) for z in UHP:

N o ) 252
a(z)=l_[(f:§’i>exp[—i/ log (1 ~4010®) /C)d;}. (61)
n=1 n

2w J_ o L—z
Recalling that, according to (58), a(z) ~ q+/q— as z — 0, we conclude that
the potential satisfies

I+ _
q- n=1 g;’k

Ay S { 1 /wlog(l—qélp(cnz/ﬁ)
— €exp

JEZTRas ¢

d(} . (62)

2mi

Note that the argument of the logarithm is positive, due to the unitarity of
D'2(z)T(z)D~'/?(z) for z € R\ {0} (see (52)). Following Ref. [28], we refer
to (62) as ®-condition, since ¢ /q_ gives the asymptotic phase difference
® = 0, — 6_ of the potential. In particular, in the reflectionless case one has
that the asymptotic phases and the soliton amplitudes and velocities are not
independent from each other. Specifically, they are related via the following
condition

N
kn J n
9+ _ I1 T (63)

k, —iv,

n=1

If one breaks the integral in (62) into (/7 + fi)qo-i- ot quOroo) and in the two

integrals foiqo performs the change of variable u = g2 /¢, taking into account
the two symmetries (50) yielding

22
p(z) = —=p*(q5/2),
’h)
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one obtains

f‘” log (1 — g3 1p(O)I* /2) it
—o0 ¢
_ quo log (1 —Q§€|P(§)|2/§2) e+ 2[00 log (1 —qéglp(é)lz/Cz)dg‘
-0 90

Since 1 > 1— (21—(2 |p(2))?) > 0, we see that the first term on the RHS is positive
and the second term is negative. Since the two integrals on the RHS are not
related to each other by any symmetry, this suggests that in general the radiative
part of the spectrum yields a nontrivial contribution to the asymptotic phase
difference of the potential.

4. Riemann-Hilbert problem

In order to formulate the inverse scattering problem as an RHP, one needs a
representation of eigenfunctions that are meromorphic in the UHP of z in
terms of a combination of eigenfunctions that are meromorphic in the LHP, via
suitably defined jump conditions on the real z-axis. Explicitly, we can write

—qbc(zt;)Z)emx — Y (x, 2)e™ = p(z)e” ™ Y (x, 2)e ™, (64)
d’Ex’ z) e Y(x, 2)e ™ = p(2)e F Y (x, 2)e™, (64b)
a(z)

where the reflection coefficients p(z) and p(z) are defined as in (48). This set
of equations will be considered as a matrix RHP on the real z-axis, with poles
at the zeros of a(z) in the UHP of z and of a(z) in the LHP. Below we solve
the RHP by reducing it to a linear system of algebraic-integral equations.

From the asymptotic behavior of eigenfunctions and scattering data, in the
UHP we have:

P(x, Z)eikx N ( z
a(z) iq*(x)
@eux -~ <Z Cl(x)/QJr) as z— 0.

a(z) iq;

) as z — 00,
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Similarly, in the LHP:
P2 i (qiqoc)/z

> as z — 00,

a(z) iqy
(EEX’ Z)e”“ ~— (.q‘i/z ) as z — 0.
a(z) iq*(x)

In order to take into account the behavior of the eigenfunction at z = 0, it is
convenient to rewrite (64) as

P(x, Z)eikx _ v(x, Z)eikx = p(z2)e? v(x, Z)efmx’ (65a)
za(z) z

‘f’ng Z)efi)hx —W(x, 2)e T = pl2)e P (x, ) (65b)
a(z)

so that the functions will be bounded at infinity, though having an additional
pole at z = 0. Taking into account the asymptotic behaviors summarized
above, as well the relationships (53) between the eigenfunctions at the discrete
eigenvalues, the above system can be written as:

¢(X, Z) irx 1 . l 0 _ al ¢(X, Cn) —VpX
[ 2a(z) ¢ (0) z (iqi) ; z— 26 @) }
N

_ ¥ (x,z) e (1 _l 0\ cn(x, &n) —upx
[ z (0> z(iqi) ,;(z—;n);na/(;n)e }

1p(x’ Z)efikx

— p(z)eZiAx ,
é(x’z) —iAx __ 0 _ l —613> _ o é(x’ C:) —V,X
[ i) ¢ (—iqi) ( 0 ,;@—ma/@;)e

. 0 L2\ = a¥@.5)
_ —iAx __ _ qo _ n ' Sn —VpX
[‘“X’Z)e (—iqi) ( 0 ) D e
= p(2)e M (x, 2)e™,

where a'(z), a’'(z) denote derivatives with respect to z, and we have also used
eMEY = o MEY — =¥ We now introduce the Cauchy projectors:

L= f©)
I1 =— ——d,
N@) =75 /oo r—cxi0)'t
which are well defined for any function f(¢) that is integrable on the real axis.
[TL(f)(z) is analytic in the upper/lower half plane and, if /. admit analytic
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continuation in the upper/lower half plane, one has:

Me(fo)(z) = £fe(z), Tx(fe)z) =0.

Applying the projector I1_ to the first equation and IT; to the second equation,
we obtain

N

J(x, e =() Y e
19 n=1 (Z é‘n) (673.)
z /+oo p(&) Y(x,0) MO g,

271 J_ oo & ¢ —(z—1i0)

N -
W(x, Z)efi)»x — _ (qg/2> + Z L&(x, é_:) e—unx

1lq+ | 1 (z ; &) (67b)
0 i)
_— , de,
27 /_oo {100 ¢
where we have introduced the norming constants:
S = (68)
Tond@) T ae)

Recalling that ¢, = ¢,, the symmetries (50) yield the following constraints for
the norming constants:

C,=—0'C,, Cr=-C,. (69)

n

The system (67) is closed by evaluating the first equation at z = ¢, and the
second at z = ¢,.

From (57b), the limit as z — 0 of the first component of ¥ (x, z)e'** gives:
c
q(x) =g+ [1 - ?"W(l)(x, Eue
n=1 "
1 (7 p() (70)

_ PE) Dk £ Ex g

27[1 oo ;2 w ( ’ ;) §:|’

where (V(x, z) denotes the first component of the Jost solution v/ (x, z).
In the reflectionless case, i.e., when p(z) = 0 for all z € R, the linear system

(67) reduces to a linear algebraic system of equations, and the potential is then

reconstructed simply as

vo¢
q(x) = g4 1—Z§—”<A*‘(x)>n,,e*2”"x , (71)

jon=1 2"
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where 47!(x) is the inverse matrix of 4(x), with entries

Cy
e—Zv,,x
§i =&
Finally, we mention that the asymptotic behaviors determined in Section 3.2
ensures that the integrals in (67) and (70) are well defined.

Ajn(x) =38, + j,n=1,...,N. (72)

5. Marchenko equations and reconstruction of potentials

In this section we formulate the inverse problem in terms of the Marchenko
equations. We solve explicitly these equations in the reflectionless case (p(z) = 0
for all z € R) by using a suitable triplet of matrices and matrix exponentials.
As a result, we get an explicit compact formula for the representation of the
multisoliton solutions to (3).

5.1 Solving the Marchenko equations

It is well known (see Equations (7.37) and (7.44) in Chapter 2 of Ref. [28])
that the inverse scattering theory of (5) can be formulated in terms of the
Marchenko equations.

Let us introduce the triangular representations of the Jost solutions (cf. [28],
with a different normalization) as:

&@Jy:FfW”b+/mﬁsKuinM$}m$@y (73a)

X

wmn=PM%+/ megwwhaﬂy (73b)

where w; 4 (z) and w; 4+ (z) denote the column vectors of W, in Equation (27),
expressed in terms of the uniform variable z. Also here K(x,y) isa 2 x 2
matrix function which has to satisfy the following Marchenko equation:

K(x,y)+ G(x +y)+/oodsK(x,s)(G(s +»)=0, (74)

where K(x, y) and G(s + y) are defined as

Kie)=&eo) Koo = (0 (E0n) as)

_(Fi+y) Fis+y)
G@+w—<é@+” §@+”) (75b)
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with
Fitx) = Fio) 17,00 = 2 Fg(x), (762)
Fo(x) = —iq} [Foo(x) + 1Fia(x)], (76b)
where
o p(yPHas o) Fel =2 +ai. ¢
i) = — d{e’“< ° ) < ° ) (77a)
2 J_ o 2
Lo (Ve ra o) —a(— e +ade)
Fz,c(x)zgf d¢ e'* \/_ , (77b)
> 2/¢* + 45
N
Fra(x)=—i) Cpe ", (77¢)

n=1
¢y = ky + iv, are the discrete eigenvalues and C, are the norming constants
introduced in Equation (68).
Observe that the matrices K(x, y) and G(x + y) both have the following
symmetry properties:

o1Toy =T".

In analogy with the method developed in Refs. [32-35], we now solve
explicitly the Marchenko equation (74) in the reflectionless case, i.e., when
p(z) =0 for all z € R, and a finite number of discrete eigenvalues ¢, (see
Appendix B for more details). In order to do so, let us represent the 2 x 2
matrix Marchenko kernel as follows:

G(z) = Ce*1B, (78)

where A is a p X p matrix having only eigenvalues with positive real part, B
is a p x 2 matrix, and C is a 2 x p matrix. We recall that there are many
different triplets (4, B, C) which lead to the same representation (78) of the
2 x 2 matrix kernel G(z). Among these representations, we point out the
so-called minimal representations, where the triplet is such that 4 has minimal
matrix order among all triplets leading to a representation of the same
Marchenko kernel (see [40] for more details). Two triplets (A4, B, C) and
(A, B, C) leading to minimal representations of the same 2 x 2 Marchenko
kernel G(z) are similar, in the sense that there exists a unique invertible matrix
S such that

A=548"' B=SB, C=cCS"',
(cf. [40, Theorem 19.4]).
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To get explicit solutions of (74), let us consider Equation (78) in which the
minimality of the triplet (4, B, C) is assumed and A4 is a p X p matrix having
only eigenvalues with positive real part. Then the Marchenko equation (74)
can be written as

K(x,y)=—[Ce™ + L(x)]e "B,

where
L(x) :/ ds K(x,s)Ce™*1.

Let P denote the unique solution of the Sylvester equation
AP+ PA = BC, (79)
e, P = [[“dze**BCe 4. Then

L(x)=—Ce ¥4pe—1 [Ip + e_XAPe_XA]q ,

where 1, denotes the p x p identity matrix. Consequently,
K(x,y) = —Ce ™[I, + e A Pe4] ' e B, (80)

provided the inverse matrix appearing in this expression exists for each x € R.
It is well known that the potential (see [19]) can be reconstructed by means
of one of the entries of the Marchenko kernel (75a) as follows:

q(x) =qy — 2Ka(x, x),

which implies that g(x) — ¢, as x — 4o0. If we write

(1)
€= (gw)’ B = (BBY),

where C'" and C® are rows of length p and B and B® are columns of
length p, we get

q(x)=gq, +2CMe [1, + e_"‘APe_XATl e *1B?
(81)
=q, +2C(1)[P +eZXA]_IB(2).
We observe that the above equation yields
q- =q++2CcVp~'B®

in the limit x — —oo. Of course, this last conclusion requires knowing that P
is invertible.

Note that for fixed x € R, the existence of the inverse e*** + P (which
appears in (81)) is equivalent to the unique solvability of the Marchenko
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equation. Therefore, the invertibility of e** + P for every x € R is equivalent
to the existence of a unique reflectionless potential with given bound states
and norming constants.

It is also worth stressing that in the previous papers where the method of the
triplets (A, B, C) is used [32-35], the invertibility of the matrix P (solution of
the Sylvester equation) is guaranteed by assuming the minimality of the triplet
(A, B, C), and that all the eigenvalues of the matrix A4 have positive real parts.
In the present case, this is not true. In fact, it is not difficult to construct
examples where the matrix P is not invertible although the triplet (A4, B, C) is
minimal and all the eigenvalues of A4 have positive real parts. We provide one
such example in Appendix D. This example suggests that the formula (81)
still makes sense when P is not invertible, but the corresponding solution
blows up as |x| — oco. Then, in order to have solutions of (3) satisfying
the nonvanishing boundary conditions, we have to assume the minimality of
the triplet (4, B, C), the invertibility of the matrices ¢**4 + P and P, and the
positivity of the real parts of the eigenvalues of the matrix 4. On the other
hand, it is easy to prove the following [cf. Appendix E].

THEOREM 2. If' P is an invertible matrix, then (A, B, C) is a minimal triplet.

We mention that matrix triplets to obtain NLS solutions also appear in a
non-Marchenko context [41-43].

5.2. Time evolution

So far we have obtained solutions of (3) (in the reflectionless case) when
t = 0. In order to get time-dependent solutions, one simply has to insert the
time evolution of the scattering data, which is well-known in the literature
(see, for instance, Equations (25), (26), and (34) in Ref. [19]), in the equations
reconstructing the potential, such as (71) or (81). In particular, the discrete
eigenvalues —q( < k, < qo are time-independent, while the time dependence
of the reflection coefficients and the norming constants in terms of the original
variables (k, 1) is given by:

,O(t) = p(0)6*4ikkt’ Cn(t) — Cn(o)e4k,,unt'

Recalling that ¢, = k&, + iv,, with v, = \/¢2—#2 > 0, in the reflectionless case,
we can write (77) as

x« N

. N

! * ,—VpX 9 —VnX
Fiw.0)= 5 Ciogie™ . B0 === Cyne ™,
n=1 n=1
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and

N

1 . * _ *
G =5 2o e (i G O) - coe a0, @

n=1

where A = diag (v, ..., vy),

i7Ci(t)  —q+(HCT ()

B(t) = 3 : : , (83)

iEyCn(t)  —q(DCK()

1 ... 1
C@) = ( it ity ) : (84)
g+ "7 g+
As a consequence,
P(t)= / ” dx e B(t)C(t)e . (85)
0

Finally, to obtain solutions ¢ (x, ¢) of (3) at the generic time ¢ (in the reflectionless
case), it suffices to write down (81) using the triplet (A, B(¢), C(¢)) and the
matrix P(t), instead of (A4, B, C) and P.

We can derive the explicit expression of the Jost eigenfunctions in terms of
the triplet 4, B, C. Inserting the expression of (80) into (73), we get

¥(x,z)
= e ML 4+ iCe™ I, + e AP e (M), —iA) ' Blw; . (z
{5 [y ] M), )" Blwi 1.(2)
= e ML +iCle” M + P (M), — i A) ' BYw, ((2), (862)
V(x, 2)
= ML —iCe™ [, + e Pe ] e (M2) ], + i A) ' B}wy 1 (z)
= ML —iCle™ ™ + P ' (Mz)], + i A) ' BYw, ,(2). (86b)

If we are interested in the temporal evolution of the Jost solutions, it is sufficient
to make the following substitutions (A4, B, C, P) — (A, B(¢), C(t), P(¢)) in
(86) where B(t), C(t), P(t) are defined in (83), (84), and (85).

In the one soliton case, the expressions (for ¢ = 0) of the Jost solutions (86)
and the potential (81) are obtained choosing the triplet (A4, B, C) as:

A= (vy), B:E(zClgl —q+C1), C=|i).
q+
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As a result, P = (iCi¢ —iCi¢1)/(4vr). After straightforward calculations
and by using the symmetry relations of the norming constants (69), we get

~ —2v1x
Y(x, 2) = —esC-ai/om (qé/z)_ G e <€1*

iq5 z=6 14 clé—lc* e~ iqi) ’ (87a)
1

d —2vix
s (7)o ()]
M Emh gt e N | 87h)
1

These expressions are exactly the same one can find solving the linear,
algebraic system (67) following from the RHP in the reflectionless case.
Moreover, the one soliton solution of (3) is given by:

C](O) 872v1x+4k1 Vit

{1 1 _|_ Czllg?) 672U1X+4k1 Vit

qg(x,t)=q+()|1— (88)

Note that Equation (88) coincides with Equation (2), with {; = ge’® and xy =

ﬁ log( C;S?)), up to an overall factor e "%,
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Appendix A. Fundamental Matrices

Let us consider the matrices A (k) introduced in (9a), but allowing £ € K. For
A(x, k) defined as in (11) one then has

qo+1kl, keR
[qé + [k + \/(qé +1K2)” — |x|4]§, ke K\R.

Bk) == [ A(x, k)|l =
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Consider the initial-value problem

%Q(x, yik) = A(x, k)G (x, y; k), (A.1a)

G(v,y;k) = by, (A.1b)

where x, y € R. Then G(x, y; k) is defined as a weak solution in the sense that
it is the solution of the integral equation

Gx, k)= b + / ' dz A(z, DGz, y: ). (A2)
Yy
Clearly,
max(x,y)
16Ge, vl < 1 +ﬂ(k)/A( dzgee, v,
min(x,y

so that, by iteration or by Gronwall’s inequality,
I1G(x, y; k)| < eP®—1,

This argument also proves the existence of a unique weak solution; this solution
exists globally in (x, y, k) € R? x K.
Let us now consider the integral equation

Gx,y;k)=0L+ / dzG'(x,z;k)A(z, k). (A.3)
y
We obviously get
) max(x,y) )
19/l < 1460 [ dz G Gkl
min(x,y)

so that, by iteration or by Gronwall’s inequality,
IG'Cx, ys )| < P PR,

Writing down the n-th iterates of (A.2) and (A.3) it is immediate to see that
they coincide. As a result,

G(x,y:k) =G'(x, y; k).
Differentiability of G(x, y; k) for x # y yields the initial-value problem

%goc, Vik) = —G(x, y; KA. k), (A4a)

G(x,x;k) = I, (A.4Db)
where x, y € R and k € K.
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We have the following multiplication property:
G(x,z;K)G(z, y; k) = G(x, y; k), (A.5)

where (x, y,z) € R® and k € K. Indeed, for fixed z € R, the matrix function
G"(x, y;k) = G(x, z; k)G(z, y; k) is easily seen to be a solution of (A.1) and, in
the weak sense, this solution is unique. Next, the product rule (A.5) implies
the invertibility of G(x, y; k), with inverse

G Ux, yik) =Gy, x; k). (A.6)

The general form of G(x, y; k) is easy to find. For x,y € Rt we have
G(x, y; k) = e 4+ for x, y € R~ we have instead G(x, y; k) = e¥4-(),
We then easily get

oAb, x>0,y>0,

(x=)A-(k)
. e 7 5 X S Oa y S 0’
G,y 6) =\ peastbpa 0 150> ¥,

e A-WeyA-()  x <0< y.

(A.7)

For each k € K, G(x, y; k) is Lipschitz continuous in y for fixed x and in x
for fixed y. As a result, the first order partial derivatives of G(x, y; k) exist
almost everywhere in the following sense: (a) For fixed y € R, %g(x, v k)
exists for almost every y € R; (b) For fixed x € R, a%g(x, v; k) exists for
almost every x € R. We can in fact say a bit more. Since 4(x, k) is continuous
for all x € R and differentiable for all x € R\ {0}, the two partial derivatives
exist in all (x, y) € R? where x # y.

Appendix B: On the Number of Bound States

In this appendix we identify conditions on the potential that guarantee that
there are at most finitely many bound states, all of them belonging to the
spectral gap k € (—qo, go). In particular, this allows us to exclude that poles of
the transmission coefficient can accumulate at the branch points +¢.

Let us first prove that the left-hand sides of (35a) and (35d) are differenti-
able with respect to A = A(k) for every k € K-\ {0} if ¢ — qr € L' (R).
Similarly, the left-hand sides of (35b) and (35¢) are differentiable with respect
to A = A(k) for every k € K+ \ {0} ifg — ¢ r € L"*(R). Indeed, differentiating
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(35a) with respect to A and using dk/dA = A/ k, we obtain the integral equation
.o -
PRI

ki oo .
~(3) - [ avro-xnr0m - 00 i
! (B.1)

o0 . Jd ., -
= [ vl @ - 1PI]I00) - 05 e . ),
where

0 Ay
F(y—x,k):ﬁ[12+{ezlx(,r J)_l}piﬂ

_ XM=Y 1 — 2iA(x —y)( % iqt>

222 igp %

k—n 2iM(x—y) __ .
. == 0 e D=1 (r—k —iqs
+z(x—y){<k >+—( . :
0 & A —igi A+k

Estimating the two fractions containing exponentials in absolute value by
(x —»)? and 2|x — y|, respectively, we see that the inhomogeneous terms
in (B.1) are bounded above by C(1 + [x|)* if ¢ — g, € L'"*(R), where the
constant C does not depend on A for |k F qo| < %qo.l To get the iteration of
(B.1) to converge uniformly in A for |k F go| < %qo, we replace (B.1) by an
inequality by pulling the absolute values under the integral signs and dividing
either side by (1 + |x|)?>. Then the iteration converges uniformly in A for
lk F g0l < 1go and x in bounded real intervals if ¢ — g, € L'**(R). A similar
argument can be applied to (35b), (35¢), and (35d).

Assuming now g — g, € L"*(R), we can use an expansion about A = 0,
and obtain as k — +qq:

Wr(p(x, k), ¥ (x, kb)) = Wr (d(x, £90), ¥(x, £q0))

+ A [(%Wr (o(x, k), ¥(x, k)} +o(}).

k=%qo

As a result of (46) we get
a(k) = aTi +ar +o(l), k— *£qo. (B.2a)
In the same way we prove that as k — =£¢q

b(k)= bTi + B+ +o(1), (B.2b)

! This neighborhood of the branch points is chosen small enough to exclude & = 0, to avoid trouble with
the factors & in the denominators.
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a(k)= “Ti +a. +o(l), (B.2¢)

- b -
bky="—=+ =+ o(1). (B.2d)
From (54), (55), and (50) it is clear that a. = b, and a4 = b..

PROPOSITION 5. If q —qy € LY4R) the 2 x 2 transition matrices T(k)
and T(k) are continuous for k € X.

Proof. Let us consider the asymptotic expansions (B.2) and start off by
assuming a4 # 0 [then ay # 0, according to (50a)]. From the definitions (48)
it then follows

a b B a
A[1—ix+o(x)] ﬁ[lﬂ(ﬁ—ﬁ)ﬂ(,\)]

at
b ,B o )\el(“) a.
—ﬁ[l—i—k(ﬁ—i)—i—o(l)] E[l —ﬁx+o(,\)]

and similarly for T(k). On the other hand, if a+ = 0 and «s # 0, we have
by =ar =by =0 and @+ # 0 [cf. (50a), (54), and (55)]. It is then easily
verified that

T(k) =

’

T — Loy —E o)
T \E o) 4o )

and similarly for 7'(k).
To prove that the case a1 = a4 = 0 cannot occur, we now observe that for
aL = 0

a(k) =

W@t b, Y k) ) Sr W (@(x, k), ¥r(x, k) (B3)
2iAg} 2ig} o ’ '

as k — %qo from within X. Since #;(k) = (1/a(k)) is the (1, 1)-element of the
unitary 2 x 2 matrix D'/?(k)T(k)D~'/?(k), the limit in (B.3) must be > 1 in
absolute value and hence cannot vanish. As a result, ¢+ and a4 cannot vanish
simultaneously. u

Under the hypothesis of Proposition 5, the number of bound states is finite.
This is easily understood as follows: If their number were not finite, then
there would be a sequence {k,};”, of bound states converging to one of the
branch points, go say. In other words, there would exist a sequence {k,};° | in
(—q0, q0) converging to gy such that a(k,) =0 (n = 1,2, 3,...). In that case
the diagonal elements of T'(k) become infinite in absolute value as k& — qo,
which contradicts the conclusions of Proposition 5.
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Appendix C: The WKB Expansion of the Jost Solutions

In the following we will determine the asymptotic behavior of the eigenfunctions
as z — 0 and as z — oo in the proper half-plane. We will derive the WKB
expansions for the eigenfunction

N(x,z) = ¥(x, z)e

in the UHP of z. The expansions of the other Jost solutions can be obtained in
a similar way.

Based on the boundary condition (31a), we consider the following ansatz
for the expansion of the eigenfunction N(x,z) as z — 00:

n L)
N,z = Y0 SN+ 06, N = (N T (x)) )

2.
= Noo(j)(x)

Substituting these expressions into the scattering problem (5) written in the
uniformization variable z and matching the O(1) terms yields:

N =0, NZO@) = —ig}, ©2)

where the constant value of Ni;“”(x) is fixed by the asymptotic behavior (31a).
The other coefficients are then determined recursively by matching the terms
with the same order of z7/:

N;;)(j)(x) — iaxN;é(jfl)(x) _ iq(x)Nozé(-/fl)(x), (C.3a)

N () =ig" () NL V() +i (g — lg)P)NZ (). (C.3b)
For instance, from (C.3) with j = 1, we have:
NV@) = —qiq),  N2V(x) = =g} Lo(x), (C4)

where
+00
Io(x) = / (42 — lg@)P)dx’. (C.5)

and in the second of (C.4) the constant of integration has been put zero, again
based on the asymptotic behavior (31a).
The recurrence relations (C.3) with j = 2 give:

NLO(x) = ig? [g(0) Do) — g (x)]. (C.6a)

N2O() = it [4 Lox)® + L)), (C.6b)

where

+00
1(x) = / 4" () q () )
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and so on and so forth. Note that, at each step, solving (C.3b) involves an
integration from x to +oo, which then requires stronger integrability conditions
on the right half-line for ¢ — ¢, and its x-derivatives.

Similarly, we can obtain the asymptotic expansion of N(x,z) as z — 0
putting

n . . L.(j)
N(X, Z) — Z ZjN(()‘])(x) 4 O(Zn+1)’ N(g])(x) — (N%’(j)(x)> . (C8)
j=—1 No™x)

Proceeding as before, we get the following recurrence relations

4 i . i
Ny )= sl @Ny ) = NG ) (C.99)
0

39Ny (x) = qi;[(m(x)ﬁ —g)Ny V@) — g8 NV (@)], (C.9b)
0

and the recursion anchored at
1,(-1 2,(~1
Ny @) =—q2, NPy =o. (C.10)
For instance, from (C.9) with j = 0, 1, we have:

Ny Q) = —ig*(x). Ny Ox) = —il, (C.11a)

1
Ny V) = = [g" ) o(x) — 8:g™ ()]

q9

1,(1) 1
N() (x)= )
49

1
[E(lo(x))z + 11*<x>] : (C.110)

and so on and so forth.

Appendix D: On the Noninvertibility of P

In this Appendix we discuss one example in which the triplet (A4, B, C) is
minimal and the eigenvalues of A4 have positive real parts, but the matrix P
satisfying the corresponding Sylvester equation is not invertible.

Consider the matrix triplet (A4, B, C), where

(2 i (4 4A+2i _
A_<—i 2)’ B_(4—2i 4 ) C=15
where I, is the 2 x 2 identity matrix. Then A4, B, and C satisfy the symmetry

conditions

A*=O’1AO’|, B*=0’130'1, C*=O’|CO'1,
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where T* is the complex conjugate of the matrix 7. Then A has the eigenvalues
1 and 3 and the triplet (A4, B, C) is minimal. In fact,

G(x)=Ce B

< 4cosh(x) — (2 4+ 4i)sinh(x) (4 4+ 2i)cosh(x) — 4i sinh(x)
=€ \ (@ —2i)cosh(x) + 4i sinh(x) 4cosh(x) — (2 — 4i)sinh(x)

It is easily verified that the Sylvester equation AP + PA = BC has the
unique solution

P:O'IP*O'I :O'1+[2.

This matrix P is NOT invertible, in spite of the minimality of the triplet
(A4, B, C). Also,

oay p (14" cosh(2x) 14 ie™ sinh(2x)
“\1—ie*sinh(2x) 1+ e* cosh(2x)

e 8 14e* cosh(2x) —1—ie* sinh(2x)
~ 1+ 2e* cosh(2x) \ —1+ie* sinh(2x)  1+4e* cosh(2x)

det[e** 1 4 P] = e [1 +2e~* cosh(2x)].

Consequently, letting C'V be the first row of € = I, and B?® the second
column of B, we get

gx)=q; +2CV[e>1 + P17 B?
) G et
1+ e* + ebr

which tends to ¢, as x — 400 and blows up as x — —o0.
We conclude giving a simple condition of noninvertibility for the matrix
P when the matrix BC has rank one. In fact, if BC has rank one, writing

=q+ + 4ie_2

9’

BC = bc for suitable column vectors b and ¢ and letting 4 = diag(ay, . .., a,)
for distinct numbers ay, ..., a, in the right-hand plane, then [43] (see also
[45, Ex. 1Q.7.3])
bjC]
A= a; +a '

1 P
detP=b1...bpc1...cpdet< )
a,-—i—a[ =1

p
as — aj
=b1...pr1---Cp1_[ 2(1] H(av_l’_al)

j=1 s<l

Thus det P is nonzero iff none of the 2p entries of the column vectors b and ¢
vanishes (i.e., ifft BC does not have zero rows or zero columns). The results in
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[43], with the exact value of det P, extend to the situation where A4 is in
Jordan normal form, A4 and — A4 do not have eigenvalues in common, and BC
has rank one. There are no known results if BC has rank > 2.

Appendix E: Proof of Theorem 2

If (4, B, C) is not a minimal triplet, there exists a minimal triplet (4, B, C)
such that:

G(x) = Ce ™ B = Ce 1B, x € R,

A A A B, N
A=|0 4 A4n|, B=|B| Cc=(0 C ), (EI)
0 0 A 0

where 4;; and 433 (and hence A4) have only eigenvalues with posmve real
parts. Let us write the solution P of the Sylvester equation AP + P4 = BC
in the form

Py Py Pi3
P = 0 P Py
0 0 Ps3

Then, AP + PA = BC implies

A1 Py + P1iAn =0,
As3 P33 + P33 433 =0,
PiyA+ A1 Po=BC — A1, P,
Py3Ass + APy = BC; — P Ay,
Pi3Ass + A1 Pi3=B1C3 — Ppdy; — A1 Ps.

We now use that the Sylvester equation A; P + PA, = Z has a unique solution
P for each right-hand side Z iff the matrices A; and —A; do not have
eigenvalues in common [40, Theorem 18.5]. Thus, P;; = 0 and P33 = 0, while
there exist unique solutions Pj,, P»3, and Pj3. Hence,

0 P Py
p=|o P pPsl,
0O O 0

which is not invertible.
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