Rings between $\mathbb Z$ and $\mathbb Q$

Luke Harmon

March 2018

Subgroups of \mathbb{Q} .

Some of examples of additive subgroups of \mathbb{Q} are: \mathbb{Z} , $\left\{\frac{m}{3^n} | m, n \in \mathbb{Z}\right\}$, and $2\mathbb{Z}$.

It turns out that there are $card(\mathbb{R}) = 2^{\aleph_0}$ additive subgroups of \mathbb{Q} . These subgroups were classified by Baer in 1937.

Interesting Note: The additive subgroups of $\mathbb{Q} \times \mathbb{Q}$ remain unclassified.

Our goal is to classify all of the subrings of ${\mathbb Q}$ that contain ${\mathbb Z}$ as a subring.

Preliminaries

R will always denote a commutative, unital ring.

Definitions.

A proper ideal *P* of *R* is *prime* if $ab \in P \implies a \in P$ or $b \in P$. **Example 1.** The principal ideal (3) is a prime ideal of \mathbb{Z} .

A subset S of a ring R is *multiplicative* provided: (i) $0_R \notin S$, (ii) $1_R \in S$, (iii) $x, y \in S \implies xy \in S$.

Example 2. $S = \{2^n | n \ge 0\}$ is a multiplicative subset of \mathbb{Z} .

A multiplicative set S is saturated if $xy \in S \implies x, y \in S$.

The saturated closure \widehat{S} of a multiplicative set S is the set of all $r \in R$ for which there exists $t \in R$ such that $rt \in S$. Intuitively, \widehat{S} consists of all "divisors" of elements of S.

Example 3. The saturated closure (in \mathbb{Z}) of $S = \{2^n | n \ge 0\}$ is $\widehat{S} = \{\pm 2^n | n \ge 0\}$, since each divisor of 2^n is of the form $\pm 2^k$ for $0 \le k \le n$.

Preliminaries

Lemma. For any multiplicative set $S \subseteq R$, the saturated closure \widehat{S} is a saturated set.

Proof. $1_R^2 = 1_R \in S$, so $1_R \in \widehat{S}$. If $0_R \in \widehat{S}$, then $t0_R = 0_R \in S$ for some $t \in R$, a contradiction. So $0_R \notin \widehat{S}$. If $a, b \in \widehat{S}$, then there exist $t, t' \in R$ such that $at, bt' \in S$. But S is multiplicative and Ris commutative, so $(at)(bt') = (ab)(tt') \in S$. By definition, $ab \in \widehat{S}$. So \widehat{S} is multiplicative. Finally, $ab \in \widehat{S}$ means there exists $t \in R$ such that $(ab)t = a(bt) = b(at) \in S$. Hence $a, b \in \widehat{S}$, which shows that \widehat{S} is saturated. Note that $S \subseteq \widehat{S}$, since R is unital.

Proposition 1. If $S \subseteq R$ is multiplicative and I is an ideal of R with $I \cap S = \emptyset$, then I is contained in a prime ideal P with $P \cap S = \emptyset$.

Sketch of proof. Use Zorn's Lemma to prove that the collection $\Im := \{J | J \text{ an ideal of } R \text{ that contains } I, \text{ and is disjoint from } S\}$, partially ordered by \subseteq , has a maximal element M. Then show that M is prime.

Example 4. Let $R = \mathbb{Z}$ and $S = \{2^n | n \ge 0\}$. The ideal I = (6) is disjoint from S and $I \subseteq (3)$, which is prime.

Proposition 2. If S is saturated, then S is the complement of a union of prime ideals.

Proof. Suppose *S* is a saturated subset of *R*. By definition of multiplicative, $0_R \notin S$, so $S^c \neq \emptyset$. Choose $x \in S^c$ and consider the principal ideal (*x*). Claim that $(x) \cap S = \emptyset$. Otherwise, $rx \in S$ for some $r \in R$. Since *S* is saturated, $x \in S$, a contradiction. So $(x) \cap S = \emptyset$. By *Proposition 1*, (*x*) is contained in a prime ideal $P_x \subseteq S^c$. Invoke the Axiom of Choice to pick a prime ideal P_x , which contains *x*, for each $x \in S^c$. So $S^c = \bigcup_{x \in S^c} P_x$. Thus $S = (\bigcup_{x \in S^c} P_x)^c$.

The Classification

Recall that our goal is to classify all rings R for which $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$.

Example 5. The set $R = \left\{ \frac{m}{2^n} | m \in \mathbb{Z}, n \ge 0 \right\}$ is a ring under the usual addition and multiplication of fractions that contains \mathbb{Z} as a proper subring and is itself a proper subring of \mathbb{Q} .

Definition. Let *D* be an integral domain. The *field of fractions* of *D* is $Frac(D) = \left\{ \frac{r}{s} \middle| r, s \in D, s \neq 0_D \right\}$, where $\frac{r}{s} = \frac{r'}{s'} \iff rs' - r's = 0$, with operations $\frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$ and $\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$.

Definition. Let S be a multiplicative subset of an integral domain D. The *ring of fractions* of D with respect to S is the subring of Frac(D) given by $D_S = \{\frac{r}{s} | r \in D, s \in S\}$

Notice that the ring R in *Example 5* is the ring of fractions \mathbb{Z}_S , where $S = \{2^n | n \ge 0\}$.

Proposition 3. Every ring *R* that is a subring of \mathbb{Q} and contains \mathbb{Z} as a subring is of the form \mathbb{Z}_S for some multiplicative set $S \subseteq \mathbb{Z}$.

Sketch of proof. Define $S := \left\{ q | \frac{p}{q} \in R, \ gcd(p,q) = 1 \right\}$. Choose $\frac{p}{q}, \frac{p'}{q'} \in R$ with gcd(p,q) = gcd(p',q') = 1. By Bézout's identity, there are $\alpha, \beta \in \mathbb{Z}$ such that $\alpha p + \beta q = 1$. Dividing both sides by q yields $\frac{1}{q} = \alpha \left(\frac{p}{q}\right) + \beta \in R$. Similarly, $\frac{1}{q'} \in R$. Hence $\frac{1}{qq'} \in R$, and $qq' \in S$. Observe that $0 \notin S$ and $1 \in S$, so S is multiplicative. We claim that $R = \mathbb{Z}_S$. $R \subseteq \mathbb{Z}_S$, since each element of R can be written as $\frac{p}{q}$ with gcd(p,q) = 1. For the opposite containment, pick $\frac{a}{b} \in \mathbb{Z}_S$. Another argument using Bézout's identity shows that $\frac{1}{b} \in R$. Whence $a\left(\frac{1}{b}\right) = \frac{a}{b} \in R$. So our claim is true.

Proposition 4. If $S \subseteq \mathbb{Z}$ is multiplicative, then $\mathbb{Z}_S = \mathbb{Z}_{\widehat{S}}$. Sketch of proof. Choose $x \in \mathbb{Z}_{\widehat{S}}$, so $x = \frac{r}{s}$ for some $r \in \mathbb{Z}$ and $s \in \widehat{S}$. Then there exists $s' \in \mathbb{Z}$ such that $ss' \in S$. Since $0 \notin S$, $s' \neq 0$, and so $\frac{r}{s} = \frac{rs'}{ss'} \in \mathbb{Z}_S$. Hence $\mathbb{Z}_{\widehat{S}} \subseteq \mathbb{Z}_S$. The opposite containment is an immediate consequence of \widehat{S} containing S. We are now ready to classify all of the rings between $\mathbb Z$ and $\mathbb Q.$

Theorem. Every subring of \mathbb{Q} that contains \mathbb{Z} as a subring is of the form \mathbb{Z}_S for some saturated set $S \subseteq \mathbb{Z}$.

Proof. Immediate from Proposition 3 and Proposition 4.

Consider \mathbb{Z}_S , where $S \subseteq \mathbb{Z}$ is saturated. By *Proposition 2* (saturated sets are the complements of unions of prime ideals) and the fact that all of the nonzero prime ideals of \mathbb{Z} are the principal ideals generated by prime numbers, $S = \left(\bigcup_{p \in \mathfrak{p}} (p)\right)^c$, where \mathfrak{p} is a set of primes. It follows that each element of S is not a multiple of any element of \mathfrak{p} . Whence $p \nmid s$ for each $p \in \mathfrak{p}$ and $s \in S$. In particular, each ring between \mathbb{Z} and \mathbb{Q} is a set of fractions whose denominators are not divisible by the elements of some set of prime numbers.

As with the additive subgroups of $\mathbb Q,$ there are 2^{\aleph_0} rings between $\mathbb Z$ and $\mathbb Q.$

T. W. Hungerford. Algebra. Graduate Texts in Mathematics, **142-147**. Springer-Verlag, New York, 1974.

Many thanks to Dr. Oman for suggesting this topic.

Questions?