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Hooks to interest the listener

Subgroups of Q.
Some of examples of additive subgroups of Q are: Z,
{3—",7, m,n € Z}, and 2Z.

It turns out that there are card(R) = 2% additive subgroups of Q.
These subgroups were classified by Baer in 1937.

Interesting Note: The additive subgroups of Q x Q remain
unclassified.

Our goal is to classify all of the subrings of Q that contain Z as a
subring.



Preliminaries

R will always denote a commutative, unital ring.

Definitions.
A proper ideal P of R is primeifabe P — a€ Por be P.
Example 1. The principal ideal (3) is a prime ideal of Z.
A subset S of a ring R is multiplicative provided:
(i)0r ¢S, (ii)) 1g € S, (i) x,yeS = xy € S.
Example 2. S = {2"|n > 0} is a multiplicative subset of Z.
A multiplicative set S is saturated if xy € S — x,y € S.

The saturated closure S of a multiplicative set S is the set of all
r € R for which there exists t € R such that rt € S. Intuitively, S
consists of all “divisors” of elements of S.

__Example 3. The saturated closure (in Z) of S = {2"|n > 0} is
S = {42"|n > 0}, since each divisor of 2" is of the form £2* for
0< k<n.



Preliminaries

Lemma. For any multiplicative set S C R, the saturated closure S
is a saturated set.

Proof. 12 =1r € S, 50 1g € 5. If Og € S, then t0g = 0g € S for
some t € R, a contradiction. So Og ¢ § If a,b € § then there
exist t,t’ € R such that at, bt’ € S. But S is multiplicative and R
is commutative, so (at)(bt’) = (ab)(tt’) € S. By definition,
abeS. SoSis multiplicative. Finally, ab € S means there exists
t € R such that (ab)t = a(bt) = b(at) € S. Hence a, b € S, which
shows that S is saturated. Note that S - § since R is unital.

Proposition 1. If S C R is multiplicative and / is an ideal of R
with /NS = &, then [ is contained in a prime ideal P with
PNS=o.

Sketch of proof. Use Zorn's Lemma to prove that the collection

3 := {J|J an ideal of R that contains /, and is disjoint from S},
partially ordered by C, has a maximal element M. Then show that
M is prime.
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Example 4. Let R=7Z and S = {2"|n > 0}. The ideal | = (6)
is disjoint from S and / C (3), which is prime.

Proposition 2. If S is saturated, then S is the complement of a
union of prime ideals.

Proof. Suppose S is a saturated subset of R. By definition of
multiplicative, Og ¢ S, so S€ # &. Choose x € 5S¢ and consider
the principal ideal (x). Claim that (x) NS = @. Otherwise, rx € S
for some r € R. Since S is saturated, x € S, a contradiction. So
(x)N'S = @. By Proposition 1, (x) is contained in a prime ideal
P, C S¢. Invoke the Axiom of Choice to pick a prime ideal Py,
which contains x, for each x € 5¢. So §¢ = [J,csc Px. Thus

S = (Uxese Px)*



The Classification

Recall that our goal is to classify all rings R for which Z C R C Q.

Example 5. The set R = {2mn meZ,n> 0} is a ring under the
usual addition and multiplication of fractions that contains Z as a
proper subring and is itself a proper subring of Q.

Definition. Let D be an integral domain. The field of fractions of
D is Frac(D) = {£|r,s € D,s # Op}, where

r_r / fe ; ; roro_
e — r's =0, with operations £ - 5 = 5 and
r r__rs’+r's

L4 o=

S ) SS

Definition. Let S be a multiplicative subset of an integral domain
D. The ring of fractions of D with respect to S is the subring of
Frac(D) given by Ds = {%|r € D,s € S}

Notice that the ring R in Example 5 is the ring of fractions Zg,
where S = {2"|n > 0}.



The Classification

Proposition 3. Every ring R that is a subring of Q and contains Z
as a subring is of the form Zg for some multiplicative set S C Z.

Sketch of proof. Define S := {qlg € R, gcd(p,q) = 1}. Choose

5 ? € R with ged(p, q) = gcd(p’, ') = 1. By Bézout's identity,
there are «, 8 € Z such that ap + g = 1. Dividing both sides by

q y|elds 2=« ( ) +B8eR. Slmllarly, 7 € R. Hence -7 € R,
and qq’ 6 S. Observe that 0 ¢ S and 1 6 S,s0Sis multlpllcatlve.
We claim that R = Zs. R C Zg, since each element of R can be
written as g with gcd(p, q) = 1. For the opposite containment,
pick 7 € Zs. Another argument using Bézout's identity shows that
% € R. Whence a (%) = 4 € R. So our claim is true.



The Classification

Proposition 4. If S C Z is multiplicative, then Zs = Zz.

Sketch of proof. Choose x € Zg, so x = ; for some r € Z and
s € 5. Then there exists s’ € Z such that ss' € S. Since 0 ¢ S,
s"#0,and so £ = % € Zs. Hence Zg C Zs. The opposite

containment is an immediate consequence of S containing S.



The Classification

We are now ready to classify all of the rings between Z and Q.

Theorem. Every subring of QQ that contains Z as a subring is of
the form Zs for some saturated set S C Z.

Proof. Immediate from Proposition 3 and Proposition 4.

Consider Zg, where S C 7 is saturated. By Proposition 2
(saturated sets are the complements of unions of prime ideals) and
the fact that all of the nonzero prime ideals of Z are the principal
ideals generated by prime numbers, S = (Upep(p))c, where p is a
set of primes. It follows that each element of S is not a multiple of
any element of p. Whence pts for each p € p and s € S.

In particular, each ring between Z and Q is a set of fractions

whose denominators are not divisible by the elements of some set
of prime numbers.



The Classification

As with the additive subgroups of Q, there are 2% rings between Z

and Q.
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Many thanks to Dr. Oman for suggesting this topic.
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Questions?



