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Hooks to interest the listener

Subgroups of Q.
Some of examples of additive subgroups of Q are: Z,{

m
3n

∣∣m, n ∈ Z
}

, and 2Z.

It turns out that there are card(R) = 2ℵ0 additive subgroups of Q.
These subgroups were classified by Baer in 1937.

Interesting Note: The additive subgroups of Q×Q remain
unclassified.

Our goal is to classify all of the subrings of Q that contain Z as a
subring.



Preliminaries

R will always denote a commutative, unital ring.

Definitions.
A proper ideal P of R is prime if ab ∈ P =⇒ a ∈ P or b ∈ P.

Example 1. The principal ideal (3) is a prime ideal of Z.

A subset S of a ring R is multiplicative provided:
(i) 0R /∈ S , (ii) 1R ∈ S , (iii) x , y ∈ S =⇒ xy ∈ S .

Example 2. S = {2n|n ≥ 0} is a multiplicative subset of Z.

A multiplicative set S is saturated if xy ∈ S =⇒ x , y ∈ S .

The saturated closure Ŝ of a multiplicative set S is the set of all
r ∈ R for which there exists t ∈ R such that rt ∈ S . Intuitively, Ŝ
consists of all “divisors” of elements of S .

Example 3. The saturated closure (in Z) of S = {2n|n ≥ 0} is
Ŝ = {±2n|n ≥ 0}, since each divisor of 2n is of the form ±2k for
0 ≤ k ≤ n.



Preliminaries

Lemma. For any multiplicative set S ⊆ R, the saturated closure Ŝ
is a saturated set.

Proof. 12R = 1R ∈ S , so 1R ∈ Ŝ . If 0R ∈ Ŝ , then t0R = 0R ∈ S for

some t ∈ R, a contradiction. So 0R /∈ Ŝ . If a, b ∈ Ŝ , then there
exist t, t ′ ∈ R such that at, bt ′ ∈ S . But S is multiplicative and R
is commutative, so (at)(bt ′) = (ab)(tt ′) ∈ S . By definition,
ab ∈ Ŝ . So Ŝ is multiplicative. Finally, ab ∈ Ŝ means there exists
t ∈ R such that (ab)t = a(bt) = b(at) ∈ S . Hence a, b ∈ Ŝ , which
shows that Ŝ is saturated. Note that S ⊆ Ŝ , since R is unital.

Proposition 1. If S ⊆ R is multiplicative and I is an ideal of R
with I ∩ S = ∅, then I is contained in a prime ideal P with
P ∩ S = ∅.

Sketch of proof. Use Zorn’s Lemma to prove that the collection
I := {J|J an ideal of R that contains I , and is disjoint from S},
partially ordered by ⊆, has a maximal element M. Then show that
M is prime.



Preliminaries

Example 4. Let R = Z and S = {2n|n ≥ 0}. The ideal I = (6)
is disjoint from S and I ⊆ (3), which is prime.

Proposition 2. If S is saturated, then S is the complement of a
union of prime ideals.

Proof. Suppose S is a saturated subset of R. By definition of
multiplicative, 0R /∈ S , so Sc 6= ∅. Choose x ∈ Sc and consider
the principal ideal (x). Claim that (x) ∩ S = ∅. Otherwise, rx ∈ S
for some r ∈ R. Since S is saturated, x ∈ S , a contradiction. So
(x) ∩ S = ∅. By Proposition 1, (x) is contained in a prime ideal
Px ⊆ Sc . Invoke the Axiom of Choice to pick a prime ideal Px ,
which contains x , for each x ∈ Sc . So Sc =

⋃
x∈Sc Px . Thus

S = (
⋃

x∈Sc Px)c .



The Classification

Recall that our goal is to classify all rings R for which Z ⊆ R ⊆ Q.

Example 5. The set R =
{

m
2n

∣∣m ∈ Z, n ≥ 0
}

is a ring under the
usual addition and multiplication of fractions that contains Z as a
proper subring and is itself a proper subring of Q.

Definition. Let D be an integral domain. The field of fractions of
D is Frac(D) =

{
r
s

∣∣r , s ∈ D, s 6= 0D
}

, where
r
s = r ′

s′ ⇐⇒ rs ′ − r ′s = 0, with operations r
s ·

r ′

s′ = rr ′

ss′ and
r
s + r ′

s′ = rs′+r ′s
ss′ .

Definition. Let S be a multiplicative subset of an integral domain
D. The ring of fractions of D with respect to S is the subring of
Frac(D) given by DS =

{
r
s

∣∣r ∈ D, s ∈ S
}

Notice that the ring R in Example 5 is the ring of fractions ZS ,
where S = {2n|n ≥ 0}.



The Classification

Proposition 3. Every ring R that is a subring of Q and contains Z
as a subring is of the form ZS for some multiplicative set S ⊆ Z.

Sketch of proof. Define S :=
{
q|pq ∈ R, gcd(p, q) = 1

}
. Choose

p
q ,

p′

q′ ∈ R with gcd(p, q) = gcd(p′, q′) = 1. By Bézout’s identity,
there are α, β ∈ Z such that αp + βq = 1. Dividing both sides by

q yields 1
q = α

(
p
q

)
+ β ∈ R. Similarly, 1

q′ ∈ R. Hence 1
qq′ ∈ R,

and qq′ ∈ S . Observe that 0 /∈ S and 1 ∈ S , so S is multiplicative.
We claim that R = ZS . R ⊆ ZS , since each element of R can be
written as p

q with gcd(p, q) = 1. For the opposite containment,
pick a

b ∈ ZS . Another argument using Bézout’s identity shows that
1
b ∈ R. Whence a

(
1
b

)
= a

b ∈ R. So our claim is true.



The Classification

Proposition 4. If S ⊆ Z is multiplicative, then ZS = Z
Ŝ

.

Sketch of proof. Choose x ∈ Z
Ŝ

, so x = r
s for some r ∈ Z and

s ∈ Ŝ . Then there exists s ′ ∈ Z such that ss ′ ∈ S . Since 0 /∈ S ,
s ′ 6= 0, and so r

s = rs′

ss′ ∈ ZS . Hence Z
Ŝ
⊆ ZS . The opposite

containment is an immediate consequence of Ŝ containing S .



The Classification

We are now ready to classify all of the rings between Z and Q.

Theorem. Every subring of Q that contains Z as a subring is of
the form ZS for some saturated set S ⊆ Z.

Proof. Immediate from Proposition 3 and Proposition 4.

Consider ZS , where S ⊆ Z is saturated. By Proposition 2
(saturated sets are the complements of unions of prime ideals) and
the fact that all of the nonzero prime ideals of Z are the principal

ideals generated by prime numbers, S =
(⋃

p∈p(p)
)c

, where p is a

set of primes. It follows that each element of S is not a multiple of
any element of p. Whence p - s for each p ∈ p and s ∈ S .
In particular, each ring between Z and Q is a set of fractions
whose denominators are not divisible by the elements of some set
of prime numbers.



The Classification

As with the additive subgroups of Q, there are 2ℵ0 rings between Z
and Q.
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Questions?


