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Triangular Matrices

An upper-triangular n X n matrix is of the following form:

a1 d12 813 -+ din
0 ax a3 -+ a
0 0 a3 - azn|,
0 0 0 -+ ap

where the a;; are coefficients in a field k.

m The eigenvalues, determinant, and trace of an upper-triangular (or
lower-triangular) matrix are very easy to compute.

m Taking products and powers of upper-triangular (or lower-triangular)
matrices is substantially easier than those of arbitrary matrices.

m Proofs of many linear algebra results rely on putting matrices in some
kind of upper-triangular (or lower-triangular) form (e.g., Jordan canonical
form) to simplify computations.



Classical Triangularization Theorem

Let k be a field, V a finite-dimensional k-vector space, and T a linear

transformation of V. Then the following are equivalent.

(1) T has an upper-triangular representation as a matrix with respect to
some basis for V.

(1) T has a lower-triangular representation as a matrix with respect to some
basis for V.

(2) There is a polynomial p(x) € k[x] \ k that factors into linear terms in
k[x], such that p(T) = 0.

(3) There exists a well-ordered set of T-invariant subspaces of V/, which is
maximal as a well-ordered set of subspaces of V.

(3') There exists a totally ordered set of T-invariant subspaces of V/, which is
maximal as a totally ordered set of subspaces of V.

(4) T has a representation as a matrix in Jordan canonical form with respect
to some basis for V.
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m Let k be a field, V a nonzero k-vector space, and End, (V) the ring of
k-linear transformations of V.
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n X n matrices over k.

m Let (B, <) be a partially ordered basis for V. Then T € Endk(V) is
triangular with respect to (B, <) if T(v) € ({u e B | u < v}) for all
v € B, and T is strictly triangular with respect to (B, <) if
T(v)e {ueB|u<v}) forall veB.

m If T € Endk(V) is triangular, respectively strictly triangular, with respect
to some well-ordered basis for V, then we say that T is triangularizable,
respectively strictly triangularizable.

m If dimy(V) = n <N, then T € Endy(V) = M, (k) being
“triangularizable” is equivalent to there being an invertible matrix
S € M, (k) such that STS™! is upper-triangular.
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If k is algebraically closed, then these are also equivalent to the following.

(6) Every finite-dimensional subspace of V is contained in a
finite-dimensional T-invariant subspace of V.

(7) V is locally artinian, viewed as a k[x]-module, where x acts on V as T.
(I.e., every finitely-generated submodule of V is artinian.)



(1) = (6) Let W C V be a finite-dimensional subspace, and let U; C B be
finite such that W C (U;). For each i > 1 (i € Z™) define recursively
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where 7, € End,(V) is the projection onto (v) with kernel (B \ {v}). Since
Ui is finite, so is every U;, by induction. Also, T(U;) C (Ujy1) forall i € Z7.

Suppose that the chain U; C U, C U3 C --- does not stabilize. Then for each
i € Z1 let v; € B be the maximal element, with respect to <, such that

vi € U; \ Ui_1 (where Uy = (). This is well-defined since each U; \ U;_1 is
finite but nonempty. It follows from T being triangular with respect to B that
vi > v» > v3 > - .- is a strictly descending chain, contradicting B being
well-ordered.

Hence U, = Up41 for some n € Z*, and therefore T(U,) C (U,11) = (U,).
Thus T((Upn)) C (Up), where W C (U,) and (U,) is finite-dimensional.
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If k is algebraically closed, then these are also equivalent to the following.

(6) Every finite-dimensional subspace of V is contained in a
finite-dimensional T-invariant subspace of V.

(7) V is locally artinian, viewed as a k[x]-module, where x acts on V as T.
(l.e., every finitely-generated submodule of V is artinian.)



(6) = (2) Suppose that k is algebraically closed, and let W be a
finite-dimensional subspace of V. Then, by (6), there is a finite-dimensional
T-invariant subspace W’ of V containing W. Viewing the restriction of T to
W’ as a (finite) matrix, there is a polynomial p(x) € k[x] \ k such that p(T)
annihilates W’ (by the Cayley-Hamilton theorem), and hence also W. Since k
is algebraically closed, p(x) factors into linear terms in k[x], proving (2).
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finite-dimensional subspace of V. Then, by (6), there is a finite-dimensional
T-invariant subspace W’ of V containing W. Viewing the restriction of T to
W’ as a (finite) matrix, there is a polynomial p(x) € k[x] \ k such that p(T)
annihilates W’ (by the Cayley-Hamilton theorem), and hence also W. Since k
is algebraically closed, p(x) factors into linear terms in k[x], proving (2).

(7) = (6) Let W be a finite-dimensional subspace of V. Then, by (7), the
k[x]-submodule M = k[x]W of V is artinian. Since M is a T-invariant
subspace of V/, it suffices to show that M is finite-dimensional. But since k[x]
is a principal ideal domain and M is a finitely-generated k[x]-module,

M = k[x]" & k[x]/(f(x)) & - -- & k[x]/(fa(x)),

where r € N, fi(x),..., fa(x) € k[x] \ {0}, and (fi(x)) is the ideal of k[x]
generated by fj(x). Since M is artinian, r = 0, and hence M is a
finite-dimensional k-vector space.



Inverses

Suppose that T € Endg (V) triangular with respect to a well-ordered basis
(B, <) for V. Also for each v € B let 7, € Endk(V) be the projection onto
(v) with kernel (B \ {v}). Then the following are equivalent.

(1) T is invertible.

(2) The restriction of T to any finite-dimensional T-invariant subspace of V
is invertible.

(3) T is injective.
(4) T({ueB|u<v})={ueB|u<v}) forall veB.
(5) m, Tm, # 0 for all v € B.

Moreover, if T is invertible, then its inverse is triangular with respect to
(B, <).



Strictly Triangularizable Transformations

The following are equivalent for any T € End (V).

(1) T is strictly triangularizable.

(2) V=T, ker(TH).

(3) T is triangularizable, and if (B, <) is a well-ordered basis for V' with
respect to which T is triangular, then T is strictly triangular with respect
to (B, <).

(4) T is triangularizable, and ker(T — a-1) # 0 if and only if a =0, for all
ac k.



Simultaneous Triangularization

Theorem (Frobenius, 1878)

If k is algebraically closed, and T, To € M,(k) commute with each other,
then there is an invertible matrix S € M,(k) such that ST;S~! and ST,S™!
are both upper-triangular.

Since M,(k) is finite-dimensional, it follows that any commuting set of
matrices in M,(k) is simultaneously triangularizable.
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Theorem (Frobenius, 1878)

If k is algebraically closed, and T, To € M,(k) commute with each other,
then there is an invertible matrix S € M,(k) such that ST;S~! and ST,S™!
are both upper-triangular.
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Let X C Endk(V) a finite commutative collection of transformations. If each
element of X is triangularizable, then there exists a well-ordered basis for V
with respect to which every element of X is triangular.
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(1) R =Endk(V) is a topological ring with respect to the function topology.
Thatis, - :RXxR—- R, +: Rx R— R, and — : R — R are continuous.

(2) The function topology on End, (V) is Hausdorff and complete.

(3) If V is finite-dimensional, then the function topology on
Endg (V) = Mpu(k) is the discrete topology.
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m A typical basic open set in Endx (V) consists column-finite matrices of
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where A € M,,(k) is a fixed n x m matrix.



The Countable Case

Suppose that V is countably infinite-dimensional, with basis {v; | i € Z"}.

m A typical basic open set in Endx (V) consists column-finite matrices of

the form
A x
0 */’

where A € M,,(k) is a fixed n x m matrix.

m The function topology on End, (V) is induced by the following metric d.
Given T,S € Endg(V), let

0 if T=S5
d(T’S):{ 2—(i+1) if T#S ;

where i € N is the least number such that T(v;) # S(v;).
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Schur's Theorem

Theorem (Schur, early 1900s)

For every T € M,,(C) there exists a unitary U € M,(C) (i.e., U* = U™1) such
that UTU* is upper-triangular.

Define T C Endk(V) to be the subset of all triangularizable transformations,
and let T C End(V) be the closure of T in the function topology.

Then for all T € Endy(V), we have T € T if and only if the restriction of T
to any finite-dimensional T-invariant subspace of V is triangularizable.

In particular, if k is algebraically closed, then T = End, (V).
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Topologically Nilpotent Transformations

Theorem (Levitzki, 1931)

Every nilpotent multiplicative subsemigroup of M, (k) is triangularizable.

X C Endk(V) is topologically nilpotent if (T;--- ToT1)?2; converges to 0 in
the function topology on Endy(V), given any infinite list Ty, T, T3,... € X.
Equivalently, for all T1, T, T3,... € X and every finite-dimensional subspace
W of V, there exists n € Z* such that T,--- T, Ty(W) = 0.

Let X C Endk(V). Then X is (simultaneously) strictly triangularizable if and
only if X is topologically nilpotent.

Corollary

If X C Endk(V) is topologically nilpotent, then so is the nonunital
k-subalgebra of End, (V') generated by X.



Triangularizable Algebras

Theorem (McCoy, 1936)

If k is algebraically closed and R is a k-subalgebra of M, (k), then R is
triangularizable if and only if R/rad(R) is commutative.



Triangularizable Algebras

Theorem (McCoy, 1936)

If k is algebraically closed and R is a k-subalgebra of M, (k), then R is
triangularizable if and only if R/rad(R) is commutative.

The following are equivalent for any k-subalgebra R of End(V).
(1) R is triangularizable.

(2) R is contained in a k-subalgebra A of Endy (V) such that
A/rad(A) = k as topological k-algebras for some set Q, and rad(A) is
topologically nilpotent.

Moreover, if (2) holds and R is closed, then rad(R) = R Nrad(A).



Triangularizable Algebras

The following are equivalent for any k-subalgebra R of End(V).

(1) R is triangularizable.
(2) There exist a k-subalgebra R C A C Endk(V) and a set Q such that
A/rad(A) = k as topological k-algebras, and rad(A) is topologically

nilpotent.

Corollary

The following are equivalent for any k-subalgebra R of M,(k).

(1) R is triangularizable.
(2) R/rad(R) = k™ as k-algebras, for some m € Z*.
If k is algebraically closed, then these are also equivalent to the following.

(3) R/rad(R) is commutative.



Thank you!



