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Triangular Matrices

An upper-triangular n × n matrix is of the following form:
a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

 ,

where the aij are coefficients in a field k.

The eigenvalues, determinant, and trace of an upper-triangular (or
lower-triangular) matrix are very easy to compute.

Taking products and powers of upper-triangular (or lower-triangular)
matrices is substantially easier than those of arbitrary matrices.

Proofs of many linear algebra results rely on putting matrices in some
kind of upper-triangular (or lower-triangular) form (e.g., Jordan canonical
form) to simplify computations.



Classical Triangularization Theorem

Let k be a field, V a finite-dimensional k-vector space, and T a linear
transformation of V . Then the following are equivalent.

(1) T has an upper-triangular representation as a matrix with respect to
some basis for V .

(1′) T has a lower-triangular representation as a matrix with respect to some
basis for V .

(2) There is a polynomial p(x) ∈ k[x ] \ k that factors into linear terms in
k[x ], such that p(T ) = 0.

(3) There exists a well-ordered set of T -invariant subspaces of V , which is
maximal as a well-ordered set of subspaces of V .

(3′) There exists a totally ordered set of T -invariant subspaces of V , which is
maximal as a totally ordered set of subspaces of V .

(4) T has a representation as a matrix in Jordan canonical form with respect
to some basis for V .



Definitions and Notation

Let k be a field, V a nonzero k-vector space, and Endk(V ) the ring of
k-linear transformations of V .

If dimk(V ) = n < ℵ0, then we identify Endk(V ) with the ring Mn(k) of
n × n matrices over k .

Let (B,≤) be a partially ordered basis for V . Then T ∈ Endk(V ) is
triangular with respect to (B,≤) if T (v) ∈ 〈{u ∈ B | u ≤ v}〉 for all
v ∈ B, and T is strictly triangular with respect to (B,≤) if
T (v) ∈ 〈{u ∈ B | u < v}〉 for all v ∈ B.

If T ∈ Endk(V ) is triangular, respectively strictly triangular, with respect
to some well-ordered basis for V , then we say that T is triangularizable,
respectively strictly triangularizable.

If dimk(V ) = n < ℵ0, then T ∈ Endk(V ) = Mn(k) being
“triangularizable” is equivalent to there being an invertible matrix
S ∈Mn(k) such that STS−1 is upper-triangular.
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Infinite-Dimensional Triangularization Theorem

The following are equivalent for any T ∈ Endk(V ).

(1) T is triangularizable.

(2) For every finite-dimensional subspace W of V there is a polynomial
p(x) ∈ k[x ] \ k that factors into linear terms in k[x ], such that p(T )
annihilates W .

(3) There exists a well-ordered set of T -invariant subspaces of V , which is
maximal as a well-ordered set of subspaces of V .

(4) V =
⊕

a∈k
⋃∞

i=1 ker((T − a · 1)i ).

(5) There is a partially ordered basis (B,�) for V such that T is triangular
with respect to (B,�) and {u ∈ B | u � v} is finite for all v ∈ B.

If k is algebraically closed, then these are also equivalent to the following.

(6) Every finite-dimensional subspace of V is contained in a
finite-dimensional T -invariant subspace of V .

(7) V is locally artinian, viewed as a k[x ]-module, where x acts on V as T .
(I.e., every finitely-generated submodule of V is artinian.)
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Proof

(1)⇒ (6) Let W ⊆ V be a finite-dimensional subspace, and let U1 ⊆ B be
finite such that W ⊆ 〈U1〉. For each i > 1 (i ∈ Z+) define recursively

Ui = {v ∈ B | πvT (Ui−1) 6= 0} ∪ Ui−1,

where πv ∈ Endk(V ) is the projection onto 〈v〉 with kernel 〈B \ {v}〉. Since
U1 is finite, so is every Ui , by induction. Also, T (Ui ) ⊆ 〈Ui+1〉 for all i ∈ Z+.

Suppose that the chain U1 ⊆ U2 ⊆ U3 ⊆ · · · does not stabilize. Then for each
i ∈ Z+ let vi ∈ B be the maximal element, with respect to ≤, such that
vi ∈ Ui \ Ui−1 (where U0 = ∅). This is well-defined since each Ui \ Ui−1 is
finite but nonempty. It follows from T being triangular with respect to B that
v1 > v2 > v3 > · · · is a strictly descending chain, contradicting B being
well-ordered.

Hence Un = Un+1 for some n ∈ Z+, and therefore T (Un) ⊆ 〈Un+1〉 = 〈Un〉.
Thus T (〈Un〉) ⊆ 〈Un〉, where W ⊆ 〈Un〉 and 〈Un〉 is finite-dimensional.
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Proof

(6)⇒ (2) Suppose that k is algebraically closed, and let W be a
finite-dimensional subspace of V . Then, by (6), there is a finite-dimensional
T -invariant subspace W ′ of V containing W . Viewing the restriction of T to
W ′ as a (finite) matrix, there is a polynomial p(x) ∈ k[x ] \ k such that p(T )
annihilates W ′ (by the Cayley-Hamilton theorem), and hence also W . Since k
is algebraically closed, p(x) factors into linear terms in k[x ], proving (2).

(7)⇒ (6) Let W be a finite-dimensional subspace of V . Then, by (7), the
k[x ]-submodule M = k[x ]W of V is artinian. Since M is a T -invariant
subspace of V , it suffices to show that M is finite-dimensional. But since k[x ]
is a principal ideal domain and M is a finitely-generated k[x ]-module,

M ∼= k[x ]r ⊕ k[x ]/〈f1(x)〉 ⊕ · · · ⊕ k[x ]/〈fn(x)〉,

where r ∈ N, f1(x), . . . , fn(x) ∈ k[x ] \ {0}, and 〈fi (x)〉 is the ideal of k[x ]
generated by fi (x). Since M is artinian, r = 0, and hence M is a
finite-dimensional k-vector space.
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Inverses

Suppose that T ∈ Endk(V ) triangular with respect to a well-ordered basis
(B,≤) for V . Also for each v ∈ B let πv ∈ Endk(V ) be the projection onto
〈v〉 with kernel 〈B \ {v}〉. Then the following are equivalent.

(1) T is invertible.

(2) The restriction of T to any finite-dimensional T -invariant subspace of V
is invertible.

(3) T is injective.

(4) T (〈{u ∈ B | u ≤ v}〉) = 〈{u ∈ B | u ≤ v}〉 for all v ∈ B.

(5) πvTπv 6= 0 for all v ∈ B.

Moreover, if T is invertible, then its inverse is triangular with respect to
(B,≤).



Strictly Triangularizable Transformations

The following are equivalent for any T ∈ Endk(V ).

(1) T is strictly triangularizable.

(2) V =
⋃∞

i=1 ker(T i ).

(3) T is triangularizable, and if (B,≤) is a well-ordered basis for V with
respect to which T is triangular, then T is strictly triangular with respect
to (B,≤).

(4) T is triangularizable, and ker(T − a · 1) 6= 0 if and only if a = 0, for all
a ∈ k.



Simultaneous Triangularization

Theorem (Frobenius, 1878)

If k is algebraically closed, and T1,T2 ∈Mn(k) commute with each other,
then there is an invertible matrix S ∈Mn(k) such that ST1S

−1 and ST2S
−1

are both upper-triangular.

Since Mn(k) is finite-dimensional, it follows that any commuting set of
matrices in Mn(k) is simultaneously triangularizable.

Question

Does this generalize to arbitrary fields and vector spaces?

Theorem

Let X ⊆ Endk(V ) a finite commutative collection of transformations. If each
element of X is triangularizable, then there exists a well-ordered basis for V
with respect to which every element of X is triangular.
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Function Topology

Definition

A basis of open sets for the function topology on Endk(V ) is given by the sets

{T ∈ Endk(V ) | T (x1) = y1, . . . ,T (xn) = yn},

with x1, . . . , xn, y1, . . . , yn ∈ V .

Facts

(1) R = Endk(V ) is a topological ring with respect to the function topology.
That is, · : R × R → R, + : R × R → R, and − : R → R are continuous.

(2) The function topology on Endk(V ) is Hausdorff and complete.

(3) If V is finite-dimensional, then the function topology on
Endk(V ) = Mn(k) is the discrete topology.
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The Countable Case

Suppose that V is countably infinite-dimensional, with basis {vi | i ∈ Z+}.
A typical basic open set in Endk(V ) consists column-finite matrices of
the form (

A ∗
0 ∗

)
,

where A ∈Mnm(k) is a fixed n ×m matrix.

The function topology on Endk(V ) is induced by the following metric d .
Given T ,S ∈ Endk(V ), let

d(T ,S) =

{
0 if T = S

2−(i+1) if T 6= S
,

where i ∈ N is the least number such that T (vi ) 6= S(vi ).
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Given T , S ∈ Endk(V ), let

d(T ,S) =

{
0 if T = S

2−(i+1) if T 6= S
,

where i ∈ N is the least number such that T (vi ) 6= S(vi ).



Schur’s Theorem

Theorem (Schur, early 1900s)

For every T ∈Mn(C) there exists a unitary U ∈Mn(C) (i.e., U∗ = U−1) such
that UTU∗ is upper-triangular.

Theorem

Define T ⊆ Endk(V ) to be the subset of all triangularizable transformations,
and let T ⊆ Endk(V ) be the closure of T in the function topology.

Then for all T ∈ Endk(V ), we have T ∈ T if and only if the restriction of T
to any finite-dimensional T -invariant subspace of V is triangularizable.

In particular, if k is algebraically closed, then T = Endk(V ).
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Topologically Nilpotent Transformations

Theorem (Levitzki, 1931)

Every nilpotent multiplicative subsemigroup of Mn(k) is triangularizable.

Definition

X ⊆ Endk(V ) is topologically nilpotent if (Ti · · ·T2T1)∞i=1 converges to 0 in
the function topology on Endk(V ), given any infinite list T1,T2,T3, . . . ∈ X .
Equivalently, for all T1,T2,T3, . . . ∈ X and every finite-dimensional subspace
W of V , there exists n ∈ Z+ such that Tn · · ·T2T1(W ) = 0.

Theorem

Let X ⊆ Endk(V ). Then X is (simultaneously) strictly triangularizable if and
only if X is topologically nilpotent.

Corollary

If X ⊆ Endk(V ) is topologically nilpotent, then so is the nonunital
k-subalgebra of Endk(V ) generated by X .
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Triangularizable Algebras

Theorem (McCoy, 1936)

If k is algebraically closed and R is a k-subalgebra of Mn(k), then R is
triangularizable if and only if R/rad(R) is commutative.

Theorem

The following are equivalent for any k-subalgebra R of Endk(V ).

(1) R is triangularizable.

(2) R is contained in a k-subalgebra A of Endk(V ) such that
A/rad(A) ∼= kΩ as topological k-algebras for some set Ω, and rad(A) is
topologically nilpotent.

Moreover, if (2) holds and R is closed, then rad(R) = R ∩ rad(A).
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Triangularizable Algebras

Theorem

The following are equivalent for any k-subalgebra R of Endk(V ).

(1) R is triangularizable.

(2) There exist a k-subalgebra R ⊆ A ⊆ Endk(V ) and a set Ω such that
A/rad(A) ∼= kΩ as topological k-algebras, and rad(A) is topologically
nilpotent.

Corollary

The following are equivalent for any k-subalgebra R of Mn(k).

(1) R is triangularizable.

(2) R/rad(R) ∼= km as k-algebras, for some m ∈ Z+.

If k is algebraically closed, then these are also equivalent to the following.

(3) R/rad(R) is commutative.



Thank you!


