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Background

The study of (what is contemporarily known as) chain conditions
for an associative ring has its genesis in early work of Emmy
Noether and Emil Artin (early 20th century). Rings which satisfy
these conditions now bear their names:

Definition
Let R be a commutative ring. Then R is Noetherian if there is
no infinite, strictly increasing sequence of ideals I1 ( I2 ( I3 ( · · · .
R is Artinian if there is no infinite, strictly decreasing sequence of
ideals · · · ( I3 ( I2 ( I1.

It is not difficult to show that a commutative ring R is Noetherian
if and only if every ideal of R is finitely generated. It is also not
difficult to find commutative rings with identity which are
Noetherian but not Artinian.
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Example

The ring Z of integers is a principal ideal domain, and so every
ideal of Z is finitely generated. However, observe that we have
· · · 〈8〉 ( 〈4〉 ( 〈2〉, and so Z is not Artinian.

If one does not require the presence of a multiplicative identity,
then one can find rings which are Artinian but not Noetherian.

Example

Fix a prime number p, and consider the following subgroup of
Q/Z: C (p∞) := {Z + a

pn : a ∈ Z, n ∈ Z+}. Then C (p∞) is an
infinite abelian group for which all proper subgroups are finite.
One can make C (p∞) into a commutative ring R by definition
xy = 0 for all x , y ∈ C (p∞). Then the subgroups of C (p∞) and
the ideals of R coincide. In particular, every proper ideal of R is
finite, and so R is Artinian. But C (p∞) is not finitely generated as
an abelian group, and so also is not finitely generated as an ideal
(of itself). Thus R is Artinian but not Noetherian.
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Curiously, if one requires the presence of a multiplicative identity,
then there are no such examples. In other words, if R is a
commutative Artinian ring with identity, then R is also Noetherian.
This result is commonly known as Akizuki’s Theorem. In the
noncommutative case, the result still holds (if R is a unital
left/right Artinian ring, then R is also left/right Noetherian), and
is often referred to as the Hopkins-Levitzki Theorem.
Most published proofs in the literature and textbooks invoke the
nilpotency of the Jacobson radical, filtration arguments on finite
products of maximal ideals, Nakayama’s Lemma, and/or exact
sequences. In this talk, we present a short and very elegant proof
due to Karamzadeh (1994) using completely elementary methods.
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Throughout, by “ring”, we will always mean a commutative
ring with identity.

Theorem (First Isomorphism Theorem)

Let R be a ring, and let M and N be R-modules. Suppose that
ϕ : M → N is a surjective module homomorphism with kernel
K := {m ∈ M : ϕ(m) = 0}. Then M/K ∼=R N.

Next, let M be an R-module. Recall that the annihilator of M in
R is given by AnnR(M) := {r ∈ R : rM = {0}}. One shows easily
that AnnR(M) is an ideal of R.
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Proposition

Let R be a ring, and let M be an R-module. Further, let
I := AnnR(M). Then M is naturally an R/I -module via the scalar
product r ·m := rm.

Proof.
It suffices to show that the above scalar product is well-defined.
Thus, let r , s ∈ R and m ∈ M be arbitrary. We must show that if
r = s, then rm = sm. So assume that r = s. Then
r − s ∈ AnnR(M). It follows that (r − s)m = 0, i.e., rm = sm, as
required.
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Next, we establish two more straightforward results.

Proposition

If D is an Artinian integral domain, then D is a field.

Proof.
Suppose D is an Artinian domain which is not a field, and let
x ∈ D be a nonzero, nonunit. Then one checks that
· · · ( 〈x3〉 ( 〈x2〉 ⊆ 〈x〉, and D is not Artinian, a
contradiction.
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Proposition

Let R be a ring, M be an R-module, and N be an R-submodule of
N. If N and M/N are finitely generated, then M is finitely
generated.

Proof.
Let N = 〈n1, n2, . . . , nk〉 and M/N = 〈m1,m2, . . . ,ml〉. Now let
m ∈ M. Then m = r1m1 + · · ·+ rlml for some r1, . . . , rl ∈ R.
Hence m − r1m1 − · · · − rlml ∈ N. So
m− r1m1 − · · · − rlml = s1n1 + · · ·+ sknk for some s1, . . . , sk ∈ R.
But then m = r1m1 + · · ·+ rlml + s1n1 + · · ·+ sknk , and
m ∈ 〈m1, . . . ,ml , n1, . . . , nk〉. Thus M is finitely generated.

Finally, we are ready give Karamzadeh’s proof of the classical result
that every Artinian ring is Noetherian.



The proof

Suppose by way of contradiction that there exists an
(commutative, unital) Artinian ring R which is not Noetherian.
Among all ideals of R which are not finitely generated, pick a least
ideal (relative to set inclusion). Call this ideal I ∗. Then observe
that I ∗ satisfies the following property:

I ∗ is infinitely generated, but all ideals properly contained in I ∗ are
finitely generated.
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Next, we claim that

for all r ∈ R, either rI ∗ = I ∗ or rI ∗ = {0}. (1)

To see this, let r ∈ R be arbitrary, and consider the map
ϕ : I ∗ → rI ∗ defined by ϕ(x) := rx . Then it is clear that ϕ is an
R-linear surjection from the left R-module I ∗ to the left R-module
rI ∗. Let K be the kernel (which is an ideal of R contained in I ∗).
Then as left R-modules, we have
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I ∗/K ∼=R rI ∗. (2)

Now, if rI ∗ = I ∗, then (1) is trivially verified. Thus suppose that
rI ∗ 6= I ∗. Then rI ∗ is an ideal of R properly contained in I ∗, thus
is finitely generated by minimality of I ∗. Recalling (2) above and
the fact that I ∗ is not finitely generated but rI ∗ is, we deduce that
K is not finitely generated. Now, K ⊆ I ∗ and I ∗ is minimal with
respect to not being finitely generated. We conclude that K = I ∗,
and therefore rx = 0 for all x ∈ I ∗. We have established (1) (that
is, for all r ∈ R, either rI ∗ = I ∗ or rI ∗ = {0}). Let
AnnR(I ∗) := {r ∈ R : rI ∗ = {0}}. Observe from (1) that if
r , s ∈ R\AnnR(I ∗), then rI ∗ = I ∗ and sI ∗ = I ∗. Therefore,
rsI ∗ = sI ∗ = I ∗, so clearly rs /∈ AnnR(I ∗). We have shown that
P := AnnR(I ∗) is a prime ideal of R. Now, D := R/P is an
Artinian domain, hence a field. But then V := I ∗ is naturally a
vector space over the field F := D = R/P with scalar product
r · x := rx .
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Because I ∗ is not finitely generated over R yet every proper ideal
of I ∗ is, it follows that V is not finitely generated over F (that is,
V is infinite-dimensional over F ), yet every proper F -subspace of
V , which is simply an ideal of R properly contained in I ∗, is finitely
generated over F (that is, every proper F -subspace of V is
finite-dimensional over F ). However, this is nonsense: since V is
infinite-dimensional over F , V has some infinite basis β over F .
Choose v ∈ β arbitrarily and let W be the (proper) subspace of V
generated over F by β\{v}. Then W remains infinite-dimensional
over F , a contradiction to the fact that V is minimally
infinite-dimensional over F . �



Thanks

Thank you!
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