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Abstract

The spectral theory of self-adjoint operators provides an abstract
framework for solving some of the main differential equations of
mathematical physics: the heat equation, wave equation, and
Schrödinger equation. When the operators are invariant under a
group action, a much more detailed analysis is often possible. This
work on invariant differential operators on the metric Cayley
graphs of free groups throws differential equations, graphs, group
actions, functional analysis, algebraic topology, linear algebra, and
a pinch of algebraic geometry into the blender. What emerges is a
surprisingly satisfying concoction.



Generalities

I This work will look at differential operators on the Cayley
graphs of free groups FM

I Long history of interplay between groups and spectral theory
of differential operators.

I Group representations and spectral theory of operators have
similar goals: split a ’large’ vector space into ’small’ invariant
pieces, where objects are easier to understand. Use this
understanding to solve other problems.

I The interplay of both approaches can be very powerful: (i)
representation theory of compact Lie groups, (ii) Fourier series
and transforms.



Analysts study differential equations of math physics

I

∆ = − ∂2

∂x2
, ∆ = −

∑
n

∂2
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,

I Heat/diffusion equation

∂u

∂t
+ ∆u = 0, u(0, x) = f (x).

I Wave equation

∂2u

∂t2
+ ∆p = 0, u(0, x) = f (x),

∂u

∂t
= g(x)

I Schrodinger equation

i
∂u

∂t
+ ∆u = 0, u(0, x) = f (x).



Fourier series 1750-1810

I If ∆ has a (Hilbert space) basis of eigenvectors yn(x) with
eigenvalues λn, the equations will have series solutions. For
example the heat equation is solved by

f (x) =
∑

cnyn(x), u(t, x) =
∑

cne−λntyn(x).

I Approach used with Fourier series (Euler-Fourier 1750-1810).

yn(x) = 1, cos(2πnx), sin(2πnx), n = 1, 2, 3, . . .

I The trigonometric functions are linked to the circle group

I There are similar developments using the Fourier transform

f̂ (ω) =

∫ ∞
∞

f (x)e iωx dx .

Here the group structure of R is important.



Further comments

I For heat equation, the low eigenvalues tell you how fast
equilibrium is achieved, how big a finite dimensional
approximation is needed for desired precision.

I The switch from abstract yn to concrete trig functions enables
other important questions like pointwise convergence, uniform
convergence, convergence at jump discontinuities, discrete
versions, etc., behavior in more than one dimension, etc.

I More modern continuations include representations of Lie
groups and operators invariant under Lie group actions
(rotations and ball in RN)



Sturm-Liouville problems 1836

I Fourier series/transforms for spatially homogeneous problems.

I Spatial inhomogeneities in dim 1 or separable cases lead to
eigenvalue equations

P(x)y ′′ + Q(x)y ′ + R(x)y = λy , + bndy cond .

I Usually do not have explicit elementary solutions.

I Sturm-Liouville showed eigenvalues and orthogonal
eigenfunctions exist, and ’look like’ trig case for λ large.

I By a diffeomorphism followed by a conjugation, the equation
is reduced to Liouville normal form

y ′′ + q(x)y = λy , + bndy cond .



Hilbert space and complex variables methods 1910

I Major projects around 1910 highlighted complex variables
methods (contour integrals, residues) for eigenfunction
expansions.

I Hilbert space l2 invented

I Birkhoff studied non-self-adjoint Sturm-Liouville problems

I Weyl studied singular self-adjoint SL problems on L2[0,∞).
Often a continuum of ’eigenvalues’, no eigenfunctions in the
space; a development more like Fourier transforms needed.
Spectral theory strongly linked to measure theory.



Resolvent/Green’s function

I The resolvent of operator A is RA(λ) = (A− λI )−1.

I For ODEs this amounts to solving

−y ′′ + q(x)y − λy = f

for y when f is given. Variation of parameters gives

y(x , λ) = c1y1 + c2y2 +

∫ x

0

y1(t)y2(x)− y1(x)y2(t)

W (y1, y2)
f (t) dt.

I Constants cj are determined by boundary conditions or
behavior at endpoints in singular case.



Analytic methods

I The resolvent set is the subset of C where RA(λ) is bounded
and analytic. The spectrum (eigenvalues) is the complement.
If A is self-adjoint, the spectrum is part of R.

I We want operator valued functions like exp(−t[∆ + q])
Riesz-Dunford functional calculus (non-self-adjoint A in
Banach spaces 1943): if f (z) is analytic near spec(A) then

f (A) =
i

2π

∫
γ

f (λ)RA(λ) dλ.

I For self adjoint Hilbert space operator result is much stronger
(Stone 1932). Orthogonal projection onto ’eigenspaces’

1

2
[P[a,b] + P(a,b)]f = lim

ε↓0

1

2πi

∫ b

a
[R(σ + iε)− R(σ − iε)]f dσ.



Cayley graphs FM

I Free group FM on M generators
FM : equivalence classes of finite length words generated by
distinct s1, . . . , sM and inverse symbols s−11 , . . . , s−1M . Remove
adjacent symbol pairs sms−1m or s−1m sm to get equivalent words.

I Cayley graph ΓG,S for the group G with (minimal) generating
set S is the directed graph with G elements as vertices and
directed edges (v , vs) with s ∈ S. Forget direction for
undirected Γ. G acts (transitively) by left multiplication on
the vertices of Γ; G also acts on edges, usually not transitive.

I The undirected Cayley graph TM of FM is a tree whose
vertices have degree 2M.



Quantum Cayley graphs FM

I Intervals {[0, le ], e ∈ E} indexed by the graph edges. Vertices
identify interval endpoints for topological graph. Edges
(v , vsm) same length. Extend Euclidean metric from intervals
to paths to graph for metric graph.

I L2(Γ) is ⊕eL2[0, le ] with the inner product

〈f , g〉 =

∫
TM

f g =
∑
e

∫ le

0
fe(x)ge(x) dx .

Self-adjoint −D2 + q acts component-wise. Continuity plus
derivative conditions for domain.

I Functions q ≥ 0 are even on each edge, same on (v , vsm).



Problem: analyze ∆ + q on L2(TM)

I Like to know (i) spectrum as set, (ii) are there eigenvalues,
(iii) can these be determined by ’explicit’ formulas or more
elementary calculations, (iv) what are consequences for
(finite) graphs with tree as universal cover ?

I Previous work - R. Brooks - discrete homogeneous trees -
1991, R. Carlson - quantum homogeneous trees - 1997

I No explicit group theory. Every edge looked the same. Able to
use ’Floquet’ theory: spectrum is determined by the
eigenvalues of a 2× 2 analytic matrix function D(λ) for
λ ∈ C \ [0,∞) and extension to [0,∞). Methods/results need
extensive rework.



Outline 1

I (i) For λ ∈ C \ [0,∞), focus on the restricted operator
Re(λ)f , where support(f ) ⊂ e, with e of type (color) m.

I (ii) By ODEs, we expect

Re(λ)f =

∫
e

Re(x , t, λ)f (t) dt,

where the kernel has the form

Re(x , t, λ) =
y−(x , λ)y+(t, λ)/Wk(λ), 0 ≤ x ≤ t ≤ le ,
y−(t, λ)y+(x , λ)/Wk(λ), 0 ≤ t ≤ x ≤ le .

(0.1)
and y±(x , λ) extend past e to whole tree.



Outline 2

I (iii) For λ ∈ C \ [0,∞), functional analysis shows existence of
a distinguished one-dimensional space Xe of functions y+ on
the half-tree T +

e (same for −).

I (iv) The abelian subgroups vskmv−1 act to give a nested family
of subtrees T +

e(k). The induced action on Xe(k) is by complex

multiplication by µm(λ).

Theorem
Assume λ ∈ C \ [0,∞), e = (v , vsm) and y+ ∈ X+

e with
y+(v) = 1. Suppose w is a vertex in T +

e , and the path from v to
w is given by the reduced word sms±1k(1) . . . s

±1
k(n). Then

y+(w) = µmµk(1) . . . µk(n). (0.2)

By ODE the vertex values of y+ can be interpolated to the edges.



Outline 3

I Solutions also extend by solving −y ′′ + qmy = λy , with
standard basis

Cm(x , λ) ∼ cos(
√
λx), Sm(x , λ) ∼ sin(

√
λx)/

√
λ.

Comparison of extensions leads to

Theorem
For λ ∈ C \ [0,∞) and m = 1, . . . ,M, the multipliers µm(λ)
satisfy the system of equations

µ2m(λ)− 1

Sm(lm, λ)µm(λ)
− 2

M∑
k=1

µk(λ)− Ck(lk , λ)

Sk(lk , λ)
= 0. (0.3)



Outline 4

I The equations have solutions ξm(λ) including µm(λ).

Corollary

Suppose λ ∈ C, Sm(λ, lm) 6= 0, and

ξm(λ)2 + 1 6= 0,
M∑

m=1

ξ2m
ξ2m + 1

6= 1/2, m = 1, . . . ,M.

Solutions ξm(λ) are locally holomorphic CM - valued functions of λ.

Elimination algorithm reduces to 1− var polynomials.

I Theorem
There is a discrete set Z0 ⊂ R and a positive integer N such that
for all λ ∈ C \ Z0 the equations satisfied by the multipliers µm(λ)
have at most N solutions ξ1(λ), . . . , ξM(λ). For λ ∈ C \ Z0, the
functions µm(λ) are solutions of 1− var polynomial equations
pm(ξm) = 0 of positive degree, with coefficients entire in λ.



Outline 5

I For σ ∈ [0,∞) there are limiting values µ±(σ).

I Let Zm ⊂ C be the discrete set where the leading coefficient
of pm(ξm) vanishes. For λ ∈ C \ Zm the roots of pm(λ), in
particular µm(λ), are holomorphic if root is simple. Otherwise
the roots extend continuously The limiting values µ±(σ) need
not agree.

Theorem
Suppose (α, β) ∩ Z0 = ∅. For m = 1, . . . ,M also assume that
(α, β) ∩ Zm = ∅ and that µ±m(σ) 6= ±1 for all σ ∈ (α, β). If
[a, b] ⊂ (α, β), e is an edge of type m, and f ∈ L2(e), then

P[a,b]f =
1

2πi

∫ b

a
[R+

e (σ)− R−e (σ)]f dσ. (0.4)

If σ1 ∈ (α, β), then σ1 is not an eigenvalue of ∆ + q.



Outline 6

I The spectrum can be recognized.

Corollary

Assume σ ∈ [0,∞) \ Z0 and for m = 1, . . . ,M suppose
µ±m(σ) 6= ±1. Then σ is in the resolvent set of ∆ + q if and only if
µ+m(σ) is real valued in open neighborhood of σ for m = 1, . . . ,M.
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