Chen simple modules and Prüfer modules over Leavitt path algebras

Gene Abrams

(joint work with F. Mantese and A. Tonolo)

Vietnam Institute for Advanced Study in Mathematics
May 2018
Overview

- Brief review of Leavitt path algebras
- Chen simple modules
- $\text{Ext}^1_{L_K(E)}(S, T)$ for various simple $L_K(E)$-modules S, T
- Prüfer modules
- Injective modules over $L_K(E)$
The algebra $L_K(E)$

Throughout, K is a field.
The algebra $L_K(E)$

Throughout, K is a field.

Let $E = (E^0, E^1, s, r)$ be a directed graph.

The extended graph of E is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with $(E^1)^* = \{e^* | e \in E^1\}$, $r' | E^1 = r$, $s' | E^1 = s$, $r'(e^*) = s(e)$, $s'(e^*) = r(e)$.

The Leavitt path algebra $L_K(E)$ of E over K is the K-path algebra $K\hat{E}$ modulo the relations:

$$e^* e' = \delta_{e e'},$$

$v = \sum_{\{e \in E^1 | s(e) = v\}} e^*$ (for any $v \in E^0$ with $0 < |s^{-1}(v)| < \infty$).

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
The algebra $L_K(E)$

Throughout, K is a field.

Let $E = (E^0, E^1, s, r)$ be a directed graph.

The **extended graph of** E is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with

$$(E^1)^* = \{e^* \mid e \in E^1\},$$

$r'_{|E^1} = r, s'_{|E^1} = s, r'(e^*) = s(e), s'(e^*) = r(e).$
The algebra $L_K(E)$

Throughout, K is a field.

Let $E = (E^0, E^1, s, r)$ be a directed graph. \(\bullet s(e) \xrightarrow{e} \bullet r(e) \)

The **extended graph of E** is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with

\[
(E^1)^* = \{ e^* \mid e \in E^1 \},
\]

\[
\begin{align*}
r'_{|E^1} &= r, \\
s'_{|E^1} &= s, \\
r'(e^*) &= s(e), \\
s'(e^*) &= r(e).
\end{align*}
\]

The Leavitt path algebra $L_K(E)$ of E over K is the K-path algebra $K\hat{E}$ modulo the relations:
The algebra $L_K(E)$

Throughout, K is a field.

Let $E = (E^0, E^1, s, r)$ be a directed graph. Let $s(e) \rightarrow e \rightarrow r(e)$

The extended graph of E is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with

$$(E^1)^* = \{ e^* \mid e \in E^1 \},$$

$$r'_{|E^1} = r, s'_{|E^1} = s, r'(e^*) = s(e), s'(e^*) = r(e).$$

The Leavitt path algebra $L_K(E)$ of E over K is the K-path algebra $K\hat{E}$ modulo the relations:

- $e^*e' = \delta_{e,e'}r(e)$ for any $e, e' \in E^1$
The algebra $L_K(E)$

Throughout, K is a field.

Let $E = (E^0, E^1, s, r)$ be a directed graph. \[\bullet s(e) \xrightarrow{e} \bullet r(e) \]

The **extended graph of** E is the graph $\hat{E} = (E^0, E^1 \cup (E^1)^*, s', r')$, with

\[(E^1)^* = \{ e^* \mid e \in E^1 \}, \]

\[r'_|_{E^1} = r, s'_|_{E^1} = s, r'(e^*) = s(e), s'(e^*) = r(e). \]

The Leavitt path algebra $L_K(E)$ of E over K is the K-path algebra $K\hat{E}$ modulo the relations:

- $e^* e' = \delta_{e,e'} r(e)$ for any $e, e' \in E^1$
- $\nu = \sum\{e \in E^1 \mid s(e) = \nu\} \ e e^*$ (for any $\nu \in E^0$ with $0 < |s^{-1}(\nu)| < \infty$.)

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
A path $\sigma = e_1 e_2 \cdots e_n$ in E is closed if $r(e_n) = s(e_1)$.

A closed path σ is basic if $\sigma \neq \beta^m$ for any closed path β and integer $m \geq 2$.

If $\alpha \in \text{Path}(E)$, the element $\alpha \in L_K(E)$ is called a real path.

If $\beta = e_1 e_2 \cdots e_n \in \text{Path}(E)$, the element $\beta^* = e_n^* \cdots e_2^* e_1^* \in L_K(E)$ is called a ghost path.

Let M be a left $L_K(E)$-module and $m \in M$. Denote by $\hat{\rho}_m: L_K(E) \rightarrow M, r \mapsto rm$.

For a vertex $v \in E_0$, denote by $\rho_m: L_K(E) \rightarrow M, x \mapsto xm$.

Note: Every $x \in L_K(E)$ can be written as $x = \sum_{i=1}^{n} k_i \alpha_i^* \beta_i$, where $0 \neq k_i \in K$ and $\alpha_i, \beta_i \in \text{Path}(E)$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
A path $\sigma = e_1 e_2 \cdots e_n$ in E is closed if $r(e_n) = s(e_1)$.

A closed path σ is basic if $\sigma \neq \beta^m$ for any closed path β and integer $m \geq 2$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
A path \(\sigma = e_1 e_2 \cdots e_n \) in \(E \) is closed if \(r(e_n) = s(e_1) \).

A closed path \(\sigma \) is basic if \(\sigma \neq \beta^m \) for any closed path \(\beta \) and integer \(m \geq 2 \).

If \(\alpha \in \text{Path}(E) \), the element \(\alpha \in L_K(E) \) is called a real path.
A path $\sigma = e_1 e_2 \cdots e_n$ in E is closed if $r(e_n) = s(e_1)$.

A closed path σ is basic if $\sigma \neq \beta^m$ for any closed path β and integer $m \geq 2$.

If $\alpha \in \text{Path}(E)$, the element $\alpha \in L_K(E)$ is called a real path.

If $\beta = e_1 e_2 \cdots e_n \in \text{Path}(E)$, the element $\beta^* = e_1^* e_2^* \cdots e_n^* \in L_K(E)$ is called a ghost path.
A path $\sigma = e_1 e_2 \cdots e_n$ in E is closed if $r(e_n) = s(e_1)$.

A closed path σ is basic if $\sigma \neq \beta^m$ for any closed path β and integer $m \geq 2$.

If $\alpha \in \text{Path}(E)$, the element $\alpha \in L_K(E)$ is called a real path.

If $\beta = e_1 e_2 \cdots e_n \in \text{Path}(E)$, the element $\beta^* = e_n^* \cdots e_2^* e_1^* \in L_K(E)$ is called a ghost path.

Let M be a left $L_K(E)$-module and $m \in M$. Denote by

\[\hat{\rho}_m : L_K(E) \to M, \ r \mapsto rm. \]

For a vertex $v \in E^0$, denote by

\[\rho_m : L_K(E)v \to M, \ x \mapsto xm. \]
Notation

A path $\sigma = e_1 e_2 \cdots e_n$ in E is closed if $r(e_n) = s(e_1)$.

A closed path σ is basic if $\sigma \neq \beta^m$ for any closed path β and integer $m \geq 2$.

If $\alpha \in \text{Path}(E)$, the element $\alpha \in L_K(E)$ is called a real path.

If $\beta = e_1 e_2 \cdots e_n \in \text{Path}(E)$, the element $\beta^* = e_n^* \cdots e_2^* e_1^* \in L_K(E)$ is called a ghost path.

Let M be a left $L_K(E)$-module and $m \in M$. Denote by

$$\hat{\rho}_m : L_K(E) \to M, \quad r \mapsto rm.$$

For a vertex $v \in E^0$, denote by

$$\rho_m : L_K(E)v \to M, \quad x \mapsto xm.$$

Note: Every $x \in L_K(E)$ can be written as $x = \sum_{i=1}^{n} k_i \alpha_i \beta_i^*$, where $0 \neq k_i \in K$ and $\alpha_i, \beta_i \in \text{Path}(E)$.

Gene Abrams

Chen simple modules and Prüfer modules over Leavitt path algebras
A path \(\sigma = e_1 e_2 \cdots e_n \) in \(E \) is closed if \(r(e_n) = s(e_1) \).

A closed path \(\sigma \) is basic if \(\sigma \neq \beta^m \) for any closed path \(\beta \) and integer \(m \geq 2 \).

If \(\alpha \in \text{Path}(E) \), the element \(\alpha \in L_K(E) \) is called a real path.

If \(\beta = e_1 e_2 \cdots e_n \in \text{Path}(E) \), the element \(\beta^* = e_n^* \cdots e_2^* e_1^* \in L_K(E) \) is called a ghost path.

Let \(M \) be a left \(L_K(E) \)-module and \(m \in M \). Denote by

\[
\hat{\rho}_m : L_K(E) \to M, \quad r \mapsto rm.
\]

For a vertex \(v \in E^0 \), denote by

\[
\rho_m : L_K(E)v \to M, \quad x \mapsto xm.
\]

Note: Every \(x \in L_K(E) \) can be written as \(x = \sum_{i=1}^n k_i \alpha_i \beta_i^* \), where \(0 \neq k_i \in K \) and \(\alpha_i, \beta_i \in \text{Path}(E) \).
Infinite paths

An infinite path in E is a sequence $p = e_1 e_2 e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
An infinite path in E is a sequence $p = e_1e_2e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
Infinite paths

- An infinite path in E is a sequence $p = e_1 e_2 e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$. Note: If v is a sink, we also view $v = vvv \cdots$ as an infinite path.

- E^∞ denotes the set of infinite paths in E.

Gene Abrams
Chen simple modules and Prüfer modules over Leavitt path algebras
Infinite paths

- An infinite path in E is a sequence $p = e_1 e_2 e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$. Note: If v is a sink, we also view $v = vvv \cdots$ as an infinite path.

- E^∞ denotes the set of infinite paths in E.

- Let c be a closed path in E. Denote $ccc \cdots$ by c^∞.

Gene Abrams
Chen simple modules and Prüfer modules over Leavitt path algebras
Infinite paths

- An *infinite path in* E is a sequence $p = e_1 e_2 e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$. Note: If v is a sink, we also view $v = vvv \cdots$ as an infinite path.

- E^∞ denotes the set of infinite paths in E.

- Let c be a closed path in E. Denote $ccc \cdots$ by c^∞.

- If $p = e_1 e_2 e_3 \cdots \in E^\infty$ and $n \in \mathbb{N}$, denote by $\tau_{>n}(p)$ the infinite path $e_{n+1} e_{n+2} \cdots$.
Infinite paths

- An infinite path in E is a sequence $p = e_1e_2e_3\cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$. Note: If v is a sink, we also view $v = vvv\cdots$ as an infinite path.

- E^∞ denotes the set of infinite paths in E.

- Let c be a closed path in E. Denote $ccc\cdots$ by c^∞.

- If $p = e_1e_2e_3\cdots \in E^\infty$ and $n \in \mathbb{N}$, denote by $\tau_{>n}(p)$ the infinite path $e_{n+1}e_{n+2}\cdots$.

- If $p, q \in E^\infty$, p and q are tail equivalent ($p \sim q$) if there exist integers m, n for which $\tau_{>m}(p) = \tau_{>n}(q)$.
Infinite paths

- An infinite path in E is a sequence $p = e_1 e_2 e_3 \cdots$, where $e_i \in E^1$ for all $i \in \mathbb{N}$, and for which $s(e_{i+1}) = r(e_i)$ for all $i \in \mathbb{N}$. **Warning:** An infinite path is not an element of $L_K(E)$. Note: If v is a sink, we also view $v = vvv \cdots$ as an infinite path.

- E^∞ denotes the set of infinite paths in E.

- Let c be a closed path in E. Denote $ccc \cdots$ by c^∞.

- If $p = e_1 e_2 e_3 \cdots \in E^\infty$ and $n \in \mathbb{N}$, denote by $\tau_{>n}(p)$ the infinite path $e_{n+1} e_{n+2} \cdots$.

- If $p, q \in E^\infty$, p and q are tail equivalent ($p \sim q$) if there exist integers m, n for which $\tau_{>m}(p) = \tau_{>n}(q)$.

- $p \in E^\infty$ is rational if $p \sim c^\infty$ for some closed path c. $p \in E^\infty$ is irrational if it is not rational.
Example

Let R_2 denote the graph

\[e \xrightarrow{\bullet} v \xrightarrow{f} \bullet \]

Any path of the form ef^i for $i \in \mathbb{Z}^+$ is a basic closed path in $\text{Path}(R_2)$.
Example

Let R_2 denote the graph

$$
\begin{array}{c}
\begin{array}{c}
\cdot
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Rightarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\Rightarrow
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
e
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
f
\end{array}
\end{array}
\end{array}
$$

Any path of the form ef^i for $i \in \mathbb{Z}^+$ is a basic closed path in $\text{Path}(R_2)$.

For any $i \in \mathbb{Z}^+$, $c_i = (ef^i)_{\infty}$ is a rational infinite path. Note that $c_i \sim c_j$ if and only if $i = j$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
Chen simple modules and Prüfer modules over Leavitt path algebras
Let R_2 denote the graph

\[\begin{array}{c}
 e \\
 \bullet \\
 f
\end{array} \]

- Any path of the form ef^i for $i \in \mathbb{Z}^+$ is a basic closed path in $\text{Path}(R_2)$.
- For any $i \in \mathbb{Z}^+$, $c_i = (ef^i)^\infty$ is a rational infinite path. Note that $c_i \sim c_j$ if and only if $i = j$.
- $q = efefefeffeffe \cdots$ is an irrational infinite path in R_2^∞.
Let $p \in E^\infty$. Let V_p denote the K-vector space with basis the distinct elements of E^∞ which are tail-equivalent to p.

The K-linear extension of this action endows V_p with the structure of a left $L_K(E)$-module.
Chen simple modules

Let \(p \in E^\infty \). Let \(V[p] \) denote the \(K \)-vector space with basis the distinct elements of \(E^\infty \) which are tail-equivalent to \(p \). For any \(v \in E^0, e \in E^1 \), and \(q = f_1f_2f_3\cdots \) with \(q \sim p \), define

\[
\begin{align*}
 v \cdot q & = \begin{cases} q & \text{if } v = s(f_1) \\ 0 & \text{otherwise} \end{cases} \\
 e \cdot q & = \begin{cases} eq & \text{if } r(e) = s(f_1) \\ 0 & \text{otherwise,} \end{cases} \\
 e^* \cdot q & = \begin{cases} \tau_{1}(q) & \text{if } e = f_1 \\ 0 & \text{otherwise} \end{cases}
\end{align*}
\]

The \(K \)-linear extension of this action endows \(V[p] \) with the structure of a left \(L_K(E) \)-module.
Theorem: Let $p \in E^\infty$. Then the left $L_K(E)$-module $V[p]$ is simple. If $p, q \in E^\infty$, then $V[p] \cong V[q]$ as left $L_K(E)$-modules if and only if $p \sim q$, if and only if $V[p] = V[q]$.

Idea: A linear combination of distinct paths tail equivalent to p can be reduced to a single nonzero term by appropriate multiplication. Then any path tail equivalent to p can be generated from this single term via the module action.

Gene Abrams
Chen simple modules and Prüfer modules over Leavitt path algebras
Note: Let $w \in E^0$ be a sink. We consider $w = w^\infty$ as an element in E^∞. The Chen simple module $V_{[w^\infty]}$ coincides with the ideal $L_K(E)w$.
Example

Consider the graph R_2

\[V[e^\infty], V[f^\infty], V[ef^i\infty] \text{ for any } i \in \mathbb{Z}^+ \text{ are Chen simple modules generated by a rational infinite path.} \]
Consider the graph R_2

\[
\begin{array}{c}
\circ \quad \circ \quad \circ \\
\downarrow \quad \downarrow \quad \downarrow \\
\circ \quad \circ \quad \circ \\
\end{array}
\quad v
\]

- $V_{[e^\infty]}$, $V_{[f^\infty]}$, $V_{[ef^i\infty]}$ for any $i \in \mathbb{Z}^+$ are Chen simple modules generated by a rational infinite path.
- For $q = efefffeffffe \cdots$, $V_{[q]}$ is a Chen simple module generated by an irrational infinite path.
Reminder: For a left R-module M, a projective resolution of M is an exact sequence

$$\cdots P_n \to P_{n-1} \to \cdots \to P_2 \to P_1 \to P_0 \to M \to 0$$

where each P_i is a projective left R-module.
Projective resolutions of Chen simple modules

Aim: To construct a projective resolution of any Chen simple module $V_{[p]}$. We have three cases:

1. $V_{[w]} \sim LK(E_w)$ where w is a sink,
2. $V_{[c]}$ where c is a basic closed path;
3. $V_{[q]}$ where q is an irrational infinite path.

Remark: Type (1) is trivial, since w is an idempotent and so the left ideal $LK(E_w)$ is a projective left $LK(E)$-module. Type (3) is interesting, but we won't need it in the rest of the lecture, so discussion omitted.
Aim: To construct a projective resolution of any Chen simple module \(V_p \). We have three cases:

1. \(V_{[w, \infty]} \cong L_K(E)w \) where \(w \) is a sink,

Remark: Type (1) is trivial, since \(w \) is an idempotent and so the left ideal \(L_K(E)w \) is a projective left \(L_K(E) \)-module. Type (3) is interesting, but we won't need it in the rest of the lecture, so discussion omitted.
Aim: To construct a projective resolution of any Chen simple module $V[p]$. We have three cases:

1. $V_{[w^\infty]} \cong L_K(E)w$ where w is a sink,
2. $V_{[c^\infty]}$ where c is a basic closed path;

Remark: Type (1) is trivial, since w is an idempotent and so the left ideal $L_K(E)w$ is a projective left $L_K(E)$-module. Type (3) is interesting, but we won’t need it in the rest of the lecture, so discussion omitted.
Aim: To construct a projective resolution of any Chen simple module V_p. We have three cases:

1. $V_{[w^\infty]} \cong L_K(E)w$ where w is a sink,
2. $V_{[c^\infty]}$ where c is a basic closed path;
3. $V_{[q]}$ where q is an irrational infinite path.

Remark: Type (1) is trivial, since w is an idempotent and so the left ideal $L_K(E)w$ is a projective left $L_K(E)$-module. Type (3) is interesting, but we won’t need it in the rest of the lecture, so discussion omitted.
Projective resolutions of Chen simple modules

Aim: To construct a projective resolution of any Chen simple module V_p. We have three cases:

1. $V_{[w\infty]} \cong \mathcal{L}_K(E)w$ where w is a sink,
2. $V_{[c\infty]}$ where c is a basic closed path;
3. $V_{[q]}$ where q is an irrational infinite path.

Remark: Type (1) is trivial, since w is an idempotent and so the left ideal $\mathcal{L}_K(E)w$ is a projective left $\mathcal{L}_K(E)$-module. Type (3) is interesting, but we won’t need it in the rest of the lecture, so discussion omitted.
Type (2)

Theorem: Let c be a basic closed path in E, with $v = s(c)$.

A projective resolution of $V[c^\infty]$ is given by

$$0 \longrightarrow L_K(E)v \overset{\rho_{c-v}}{\longrightarrow} L_K(E)v \overset{\rho_{c^\infty}}{\longrightarrow} V[c^\infty] \longrightarrow 0$$
Theorem: Let c be a basic closed path in E, with $v = s(c)$.

1. A projective resolution of $V_{[c^\infty]}$ is given by

$$0 \longrightarrow L_K(E)v \overset{\rho_{c-v}}{\longrightarrow} L_K(E)v \overset{\rho_{c^\infty}}{\longrightarrow} V_{[c^\infty]} \longrightarrow 0$$

2. If E is a finite graph, an alternate projective resolution of $V_{[c^\infty]}$ is given by

$$0 \longrightarrow L_K(E) \overset{\hat{\rho}_{c^{-1}}}{\longrightarrow} L_K(E) \overset{\hat{\rho}_{c^\infty}}{\longrightarrow} V_{[c^\infty]} \longrightarrow 0$$
Type (2)

Theorem: Let c be a basic closed path in E, with $v = s(c)$.

1. A projective resolution of $V_{[c^\infty]}$ is given by

$$
0 \longrightarrow L_K(E)v \xrightarrow{\rho_{c-v}} L_K(E)v \xrightarrow{\rho_{c^\infty}} V_{[c^\infty]} \longrightarrow 0
$$

2. If E is a finite graph, an alternate projective resolution of $V_{[c^\infty]}$ is given by

$$
0 \longrightarrow L_K(E) \xrightarrow{\hat{\rho}_{c-1}} L_K(E) \xrightarrow{\hat{\rho}_{c^\infty}} V_{[c^\infty]} \longrightarrow 0
$$

In particular, the Chen simple module $V_{[c^\infty]}$ is finitely presented.
Example

Consider the Toeplitz graph

\[
\begin{array}{c}
e \circlearrowleft \bullet \\
v \rightarrow f \\
w
\end{array}
\]

and the Chen simple module \(V_{[e^\infty]} \). Then

\[
0 \longrightarrow L_K(E)v \overset{\rho_{e^v}}{\longrightarrow} L_K(E)v \overset{\rho_{e^\infty}}{\longrightarrow} V_{[e^\infty]} \longrightarrow 0
\]

\[
0 \longrightarrow L_K(E) \overset{\hat{\rho}_{e^{-1}}}{\longrightarrow} L_K(E) \overset{\hat{\rho}_{e^\infty}}{\longrightarrow} V_{[e^\infty]} \longrightarrow 0
\]

are projective resolutions of the finitely presented module \(V_{[e^\infty]} \).
Proof

Main points of the proof:

- Since \((c - v)c^\infty = c^\infty - c^\infty\), we get \(L_K(E)(c - v) \subseteq \text{Ker}(\rho c^\infty)\).
Proof

Main points of the proof:

- Since \((c - \nu)c^\infty = c^\infty - c^\infty\), we get \(L_K(E)(c - \nu) \subseteq \text{Ker}(\rho_{c^\infty})\).
- The inclusion \(\text{Ker}(\rho_{c^\infty}) \subseteq L_K(E)(c - \nu)\) follows analyzing the shape of the standard form monomials in \(\text{Ker}(\rho_{c^\infty})\).
Proof

Main points of the proof:

- Since \((c - v)c^\infty = c^\infty - c^\infty\), we get \(L_K(E)(c - v) \subseteq \text{Ker}(\rho_{c^\infty})\).
- The inclusion \(\text{Ker}(\rho_{c^\infty}) \subseteq L_K(E)(c - v)\) follows analyzing the shape of the standard form monomials in \(\text{Ker}(\rho_{c^\infty})\).
- By a degree argument, we get \(r(c - v) = 0\) if and only if \(r = 0\). So the map \(\rho_{c-v} : L_K(E)v \to L_K(E)v\) is a monomorphism of left \(L_K(E)\)-modules.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
Chen simple modules and Prüfer modules over Leavitt path algebras
Aim: To describe $\text{Ext}^1_{L_K(E)}(S, T)$, where S and T are Chen simple modules over $L_K(E)$, for E finite.
The Ext groups

Aim: To describe $\text{Ext}^1_{L_K(E)}(S, T)$, where S and T are Chen simple modules over $L_K(E)$, for E finite.

Remarks:

- the abelian group $\text{Ext}^1_{L_K(E)}(S, T)$ has a natural structure of K-vector space
The Ext groups

Aim: To describe $\text{Ext}^1_{L_K(E)}(S, T)$, where S and T are Chen simple modules over $L_K(E)$, for E finite.

Remarks:

- the abelian group $\text{Ext}^1_{L_K(E)}(S, T)$ has a natural structure of K-vector space
- $\text{Ext}^1_{L_K(E)}(S, T) \neq 0$ if and only if there exists a non-splitting short exact sequence $0 \rightarrow T \rightarrow N \rightarrow S \rightarrow 0$
The Ext groups

Aim: To describe $\text{Ext}^1_{L_K(E)}(S, T)$, where S and T are Chen simple modules over $L_K(E)$, for E finite.

Remarks:
- The abelian group $\text{Ext}^1_{L_K(E)}(S, T)$ has a natural structure of K-vector space.
- $\text{Ext}^1_{L_K(E)}(S, T) \neq 0$ if and only if there exists a non-splitting short exact sequence $0 \rightarrow T \rightarrow N \rightarrow S \rightarrow 0$.
- If w is a sink, then $\text{Ext}^1_{L_K(E)}(V[w], M) = 0$ for any M.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
When S is of type (2)

Let T be a Chen simple module. Let $U(T) := \{ v \in E^0 \mid vT \neq \{0\} \}$.

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Then the following are equivalent:

1. $\text{Ext}^1_L K(E)(V[d]_{\infty}, T) \neq 0$.
2. $s(d) \in U(T)$.

Corollary: Let E be a finite graph. Let d be a basic closed path. Then $\text{Ext}^1_L K(E)(V[d]_{\infty}, V[d]_{\infty}) \neq 0$. In particular, $V[d]_{\infty}$ is neither projective, nor injective.
When S is of type (2)

Let T be a Chen simple module. Let $U(T) := \{ v \in E^0 \mid vT \neq \{0\}\}$.

Assume $T = V_{[q]}$, for $q \in E^\infty$. Then $v \in U(T)$ if and only if there is an infinite path tail-equivalent to q starting from v.
When S is of type (2)

Let T be a Chen simple module. Let $U(T) := \{ v \in E^0 \mid vT \neq \{0\} \}$. Assume $T = V_{[q]}$, for $q \in E^\infty$. Then $v \in U(T)$ if and only if there is an infinite path tail-equivalent to q starting from v.

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Then the following are equivalent:

1. $\text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, T) \neq 0$.

Corollary: Let E be a finite graph. Let d be a basic closed path. Then $\text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, V_{[d^\infty]}) \neq 0$. In particular, $V_{[d^\infty]}$ is neither projective, nor injective.
When S is of type (2)

Let T be a Chen simple module. Let $U(T) := \{ v \in E^0 \mid vT \neq \{0\} \}$.

Assume $T = V_{[q]}$, for $q \in E^\infty$. Then $v \in U(T)$ if and only if there is an infinite path tail-equivalent to q starting from v.

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Then the following are equivalent:

1. $\text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, T) \neq 0$.
2. $s(d) \in U(T)$.

Corollary: Let E be a finite graph. Let d be a basic closed path. Then $\text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, V_{[d^\infty]}) \neq 0$. In particular, $V_{[d^\infty]}$ is neither projective, nor injective.
When S is of type (2)

Let T be a Chen simple module. Let $U(T) := \{v \in E^0 \mid vT \neq \{0\}\}$.

Assume $T = V[q]$, for $q \in E^\infty$. Then $v \in U(T)$ if and only if there is an infinite path tail-equivalent to q starting from v.

Theorem: (A-, Mantese, Tonolo, 2015) Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Then the following are equivalent:

1. $\text{Ext}^1_{L_K(E)}(V[d^\infty], T) \neq 0$.
2. $s(d) \in U(T)$.

Corollary: Let E be a finite graph. Let d be a basic closed path. Then $\text{Ext}^1_{L_K(E)}(V[d^\infty], V[d^\infty]) \neq 0$. In particular, $V[d^\infty]$ is neither projective, nor injective.
Consider the graph R_2:

![Graph](image)

Let $q \in R_2^{\infty}$ and let $T = V[q]$. Let d be a basic closed path in R_2. Since $v = s(d) \in U(T) = \{v\}$, the previous theorem applies and hence $\text{Ext}^1_{L_K(R_2)}(V[d^{\infty}], T) \neq 0$.
Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

\[0 \longrightarrow L_K(E) \xrightarrow{\hat{\rho}_{d-1}} L_K(E) \xrightarrow{\hat{\rho}_d} V_{[d\infty]} \longrightarrow 0 \] and the resulting standard long exact sequence

\[\text{Hom}_{L_K(E)}(V_{[d\infty]}, T) \xrightarrow{\hat{\rho}_d\ast} \text{Hom}_{L_K(E)}(L_K(E), T) \xrightarrow{\hat{\rho}(d-1)\ast} \text{Hom}_{L_K(E)}(L_K(E), T) \]
Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

$$0 \longrightarrow L_K(E) \xrightarrow{\hat{\rho}_{d-1}} L_K(E) \xrightarrow{\hat{\rho}_{d}} V[d\infty] \longrightarrow 0$$

and the resulting standard long exact sequence

$$\pi \longrightarrow \text{Ext}^1_{L_K(E)}(V[d\infty], T) \xrightarrow{\hat{\rho}_{d\infty}^*} \text{Hom}_{L_K(E)}(L_K(E), T) \xrightarrow{\hat{\rho}(d-1)^*} \text{Hom}_{L_K(E)}(L_K(E), T) \longrightarrow \cdots$$

So for $t \in T$, $\pi(\hat{\rho}_{d-1}^* t) = 0 \iff \hat{\rho}_{d-1}^* f = \hat{\rho}_t$ for some $f = \hat{\rho}_X \in \text{Hom}_{L_K(E)}(L_K(E), T) \iff$ the equation $(d-1)X = t$ has a solution in T.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
Chen simple modules and Prüfer modules over Leavitt path algebras
Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

$$0 \rightarrow L_K(E) \xrightarrow{\hat{\rho}_{d^{-1}}} L_K(E) \xrightarrow{\hat{\rho}_{d^\infty}} V_{[d^\infty]} \rightarrow 0$$

and the resulting standard long exact sequence

$$\pi \rightarrow \text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, T) \xrightarrow{\pi} \text{Ext}^1_{L_K(E)}(L_K(E), T) \xrightarrow{\pi} \text{Ext}^1_{L_K(E)}(L_K(E), T) (=0) \rightarrow \cdots$$

So for $t \in T$,

$$\pi(\hat{\rho}_t) = 0 \Leftrightarrow$$
Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

$$0 \to L_K(E) \xrightarrow{\hat{\rho}_{d^{-1}}} L_K(E) \xrightarrow{\hat{\rho}_d} V_{[d, \infty]} \to 0$$

and the resulting standard long exact sequence

$$\begin{align*}
\pi & \quad \text{Ext}^1_{L_K(E)}(V_{[d, \infty]}, T) \\
\hat{\rho}_{d^{-1}} & \quad \text{Hom}_{L_K(E)}(L_K(E), T) \\
\hat{\rho}_d & \quad \text{Hom}_{L_K(E)}(L_K(E), T)
\end{align*}$$

So for $t \in T$,

$$\pi(\hat{\rho}_t) = 0 \iff \hat{\rho}_{d^{-1}}(f) = \hat{\rho}_t \text{ for some } f = \hat{\rho}_X \in \text{Hom}_{L_K(E)}(L_K(E), T) \iff$$
Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

$$0 \rightarrow L_K(E) \xrightarrow{\hat{\rho}_{d-1}} L_K(E) \xrightarrow{\hat{\rho}_d} V_{[d]} \rightarrow 0$$

and the resulting standard long exact sequence

$$\pi \rightarrow \text{Ext}^1_{L_K(E)}(V_{[d]}, T) \xrightarrow{\hat{\rho}_d} \text{Hom}_{L_K(E)}(L_K(E), T) \xrightarrow{\hat{\rho}_{(d-1)*}} \text{Hom}_{L_K(E)}(L_K(E), T) \xrightarrow{\pi} \text{Ext}^1_{L_K(E)}(L_K(E), T) = 0 \rightarrow \cdots$$

So for $t \in T$,

$$\pi(\hat{\rho}_t) = 0 \Leftrightarrow \hat{\rho}_{(d-1)*}(f) = \hat{\rho}_t \text{ for some } f = \hat{\rho}_X \in \text{Hom}_{L_K(E)}(L_K(E), T) \Leftrightarrow$$

the equation $(d - 1)X = t$ has a solution in T.

Gene Abrams

Chen simple modules and Prüfer modules over Leavitt path algebras
Proof: main points

Let E be a finite graph. Let d be a basic closed path in E and let T be a Chen simple module. Consider the projective resolution

$$0 \to L_K(E) \xrightarrow{\hat{\rho}_{d-1}} L_K(E) \xrightarrow{\hat{\rho}_{d}} V_{[d]} \to 0$$

and the resulting standard long exact sequence

$$\hom_{L_K(E)}(V_{[d]}, T) \xrightarrow{\hat{\rho}_{d-1}*} \hom_{L_K(E)}(L_K(E), T) \xrightarrow{\hat{\rho}_(d-1)*} \hom_{L_K(E)}(L_K(E), T)$$

$$\pi \to \ext_{L_K(E)}^1(V_{[d]}, T) \to \ext_{L_K(E)}^1(L_K(E), T) \to 0 \to \cdots$$

So for $t \in T$,

$$\pi(\hat{\rho}_t) = 0 \iff$$

$$\hat{\rho}_{(d-1)*}(f) = \hat{\rho}_t$$

for some $f = \hat{\rho}_X \in \hom_{L_K(E)}(L_K(E), T) \iff$

the equation $(d - 1)X = t$ has a solution in T.

Gene Abrams

Chen simple modules and Prüfer modules over Leavitt path algebras
Proof: main points

So we get:

Proposition: \(\text{Ext}^1_{L_K(E)}(V_{d^\infty}, T) = 0 \) if and only if
\((d - 1)X = t\) has a solution in \(T\) for every \(t \in T\).
Proof: main points

So we get:

Proposition: \(\text{Ext}^1_{\mathbb{K}(E)}(V_{[d^{\infty}]}, T) = 0 \) if and only if \((d - 1)X = t\) has a solution in \(T\) for every \(t \in T\).

But then it’s not hard to show:

Lemma:

1) Let \(T = V_{[q]}\), with \(V_{[q]} \neq V_{[d^{\infty}]}\). Suppose \(s(d) \in U(T)\). Let \(t \in T\) be “not divisible” by \(d\). Then the equation \((d - 1)X = t\) has no solution in \(T\)
Proof: main points

So we get:

Proposition: $\text{Ext}_{L_K(E)}^1(V_{[d^\infty]}, T) = 0$ if and only if $(d - 1)X = t$ has a solution in T for every $t \in T$.

But then it’s not hard to show:

Lemma:

1) Let $T = V_{[q]}$, with $V_{[q]} \neq V_{[d^\infty]}$. Suppose $s(d) \in U(T)$. Let $t \in T$ be “not divisible” by d. Then the equation $(d - 1)X = t$ has no solution in T.

2) The equation $(d - 1)X = d^\infty$ has no solution in $V_{[d^\infty]}$. \qed
Proof: main points

So we get:

Proposition: $\text{Ext}^1_{L_K(E)}(V_{[d^\infty]}, T) = 0$ if and only if $(d - 1)X = t$ has a solution in T for every $t \in T$.

But then it’s not hard to show:

Lemma:

1) Let $T = V_{[q]}$, with $V_{[q]} \neq V_{[d^\infty]}$. Suppose $s(d) \in U(T)$. Let $t \in T$ be “not divisible” by d. Then the equation $(d - 1)X = t$ has no solution in T.

2) The equation $(d - 1)X = d^\infty$ has no solution in $V_{[d^\infty]}$. □
Prüfer modules

In particular, we have

Corollary: For d a cycle in E, the left $L_K(E)$-module $V_{[d^\infty]}$ is (simple and) not injective.

Question: What is the injective hull of $V_{[d^\infty]}$?

Recall: $\hat{\rho}_{d-1}: L_K(E) \to L_K(E)$ is a monomorphism. (In other words, $d-1$ is not a right zero-divisor in $L_K(E)$.) Moreover, $V_{[d^\infty]} \cong L_K(E)/L_K(E)(d-1)$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
In particular, we have

Corollary: For d a cycle in E, the left $L_K(E)$-module $V_{[d\infty]}$ is (simple and) not injective.

Question: What is the injective hull of $V_{[d\infty]}$?
In particular, we have

Corollary: For \(d \) a cycle in \(E \), the left \(L_K(E) \)-module \(V_{[d^\infty]} \) is (simple and) not injective.

Question: What is the injective hull of \(V_{[d^\infty]} \)?

Recall: \(\hat{\rho}_{d-1} : L_K(E) \rightarrow L_K(E) \) is a monomorphism. (In other words, \(d - 1 \) is not a right zero-divisor in \(L_K(E) \).) Moreover,

\[
V_{[d^\infty]} \cong L_K(E)/L_K(E)(d - 1).
\]
Prüfer modules

We look at the standard Prüfer abelian groups for guidance.

\[p \] denotes a prime in \(\mathbb{Z} \).

\[\mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}/p^2\mathbb{Z} \hookrightarrow \mathbb{Z}/p^3\mathbb{Z} \hookrightarrow \cdots \]

The embedding is \[a + p^i\mathbb{Z} \mapsto pa + p^{i+1}\mathbb{Z} \]

The Prüfer \(p \)-group is

\[\mathbb{Z}(p^\infty) = \bigcup_{i=1}^{\infty} \mathbb{Z}/p^i\mathbb{Z} \]

Another point of view: \[\mathbb{Z}(p^\infty) = \left\{ \frac{a}{p^i} \mid i \in \mathbb{N} \right\} \], with addition mod \(\mathbb{Z} \).
Prüfer modules

Well-known properties of $\mathbb{Z}(p^\infty)$:

1) $\mathbb{Z}(p^\infty)$ is divisible as a \mathbb{Z}-module: for every $z \in \mathbb{Z}$ and $t \in \mathbb{Z}(p^\infty)$ the equation $zX = t$ has a solution in $\mathbb{Z}(p^\infty)$. In particular, $\mathbb{Z}(p^\infty)$ is injective as a \mathbb{Z}-module.

2) The only proper subgroups of $\mathbb{Z}(p^\infty)$ are the $\mathbb{Z}/p^i\mathbb{Z}$ ($i \in \mathbb{N}$). In particular, $\mathbb{Z}(p^\infty)$ has d.c.c., but not a.c.c., on submodules.

3) Each of the quotients $\mathbb{Z}/p^i+1\mathbb{Z}/\mathbb{Z}/p^i\mathbb{Z}$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

4) $\mathbb{Z}(p^\infty)/\mathbb{Z}/p^i\mathbb{Z} \cong \mathbb{Z}(p^\infty)$ for all $i \in \mathbb{N}$.

5) The equation $pX = 1 + p^i\mathbb{Z}$ has no solution in $\mathbb{Z}/p^i\mathbb{Z}$.
Prüfer modules

Well-known properties of \(\mathbb{Z}(p^\infty) \):

1) \(\mathbb{Z}(p^\infty) \) is divisible as a \(\mathbb{Z} \)-module: for every \(z \in \mathbb{Z} \) and \(t \in \mathbb{Z}(p^\infty) \) the equation \(zX = t \) has a solution in \(\mathbb{Z}(p^\infty) \). In particular, \(\mathbb{Z}(p^\infty) \) is injective as a \(\mathbb{Z} \)-module.

2) The only proper subgroups of \(\mathbb{Z}(p^\infty) \) are the \(\mathbb{Z}/p^i\mathbb{Z} \) \((i \in \mathbb{N}) \). In particular, \(\mathbb{Z}(p^\infty) \) has d.c.c., but not a.c.c., on submodules.
Well-known properties of $\mathbb{Z}(p^\infty)$:

1) $\mathbb{Z}(p^\infty)$ is divisible as a \mathbb{Z}-module: for every $z \in \mathbb{Z}$ and $t \in \mathbb{Z}(p^\infty)$ the equation $zX = t$ has a solution in $\mathbb{Z}(p^\infty)$. In particular, $\mathbb{Z}(p^\infty)$ is injective as a \mathbb{Z}-module.

2) The only proper subgroups of $\mathbb{Z}(p^\infty)$ are the $\mathbb{Z}/p^i\mathbb{Z}$ ($i \in \mathbb{N}$). In particular, $\mathbb{Z}(p^\infty)$ has d.c.c., but not a.c.c., on submodules.

3) Each of the quotients $\mathbb{Z}/p^{i+1}\mathbb{Z} / \mathbb{Z}/p^i\mathbb{Z}$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
Prüfer modules

Well-known properties of $\mathbb{Z}(p^\infty)$:

1) $\mathbb{Z}(p^\infty)$ is divisible as a \mathbb{Z}-module: for every $z \in \mathbb{Z}$ and $t \in \mathbb{Z}(p^\infty)$ the equation $zX = t$ has a solution in $\mathbb{Z}(p^\infty)$. In particular, $\mathbb{Z}(p^\infty)$ is injective as a \mathbb{Z}-module.

2) The only proper subgroups of $\mathbb{Z}(p^\infty)$ are the $\mathbb{Z}/p^i\mathbb{Z}$ ($i \in \mathbb{N}$). In particular, $\mathbb{Z}(p^\infty)$ has d.c.c., but not a.c.c., on submodules.

3) Each of the quotients $\mathbb{Z}/p^{i+1}\mathbb{Z} / \mathbb{Z}/p^i\mathbb{Z}$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

4) $\mathbb{Z}(p^\infty) / \mathbb{Z}/p^i\mathbb{Z} \cong \mathbb{Z}(p^\infty)$ for all $i \in \mathbb{N}$.
Well-known properties of $\mathbb{Z}(p^\infty)$:

1) $\mathbb{Z}(p^\infty)$ is divisible as a \mathbb{Z}-module: for every $z \in \mathbb{Z}$ and $t \in \mathbb{Z}(p^\infty)$ the equation $zX = t$ has a solution in $\mathbb{Z}(p^\infty)$. In particular, $\mathbb{Z}(p^\infty)$ is injective as a \mathbb{Z}-module.

2) The only proper subgroups of $\mathbb{Z}(p^\infty)$ are the $\mathbb{Z}/p^i\mathbb{Z}$ ($i \in \mathbb{N}$). In particular, $\mathbb{Z}(p^\infty)$ has d.c.c., but not a.c.c., on submodules.

3) Each of the quotients $\mathbb{Z}/p^{i+1}\mathbb{Z} / \mathbb{Z}/p^i\mathbb{Z}$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$

4) $\mathbb{Z}(p^\infty) / \mathbb{Z}/p^i\mathbb{Z} \cong \mathbb{Z}(p^\infty)$ for all $i \in \mathbb{N}$.

5) The equation $pX = 1 + p^i\mathbb{Z}$ has no solution in $\mathbb{Z}/p^i\mathbb{Z}$.

Gene Abrams
Chen simple modules and Prüfer modules over Leavitt path algebras
Prüfer modules

6) \(\text{End}_\mathbb{Z}(\mathbb{Z}(p^\infty)) \) is the ring of \(p \)-adic integers; think of this as "formal power series in \(p \)", with coefficients in \(\{0, 1, \ldots, p - 1\} \).
6) $\text{End}_\mathbb{Z}(\mathbb{Z}(p^\infty))$ is the ring of p-adic integers; think of this as “formal power series in p”, with coefficients in $\{0, 1, \ldots, p - 1\}$.

OR, think of it as an inverse limit of the rings / maps

$$\cdots \to \mathbb{Z}/p^3\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p^1\mathbb{Z}.$$
Prüfer modules

We can do this in general.

Proposition: Suppose $a \in R$ has these two properties:

(1) R/Ra is a simple left R-module, and

(2) for every $i \in \mathbb{N}$, the equation $aX = 1 + Ra^i$ has no solution in R/Ra^i.

Then the direct limit $U_{R,a}$ of the sequence

$$R/Ra \hookrightarrow R/Ra^2 \hookrightarrow R/Ra^3 \hookrightarrow \cdots$$

has structural properties analogous to those for $\mathbb{Z}(p^\infty)$ given above.
Prüfer modules

Now we apply these ideas to the specific case where

\[R = L_K(E), \ a = c - 1 \]

where \(c \) is a cycle in the finite graph \(E \).

\[L_K(E)/L_K(E)(c-1) \hookrightarrow L_K(E)/L_K(E)(c-1)^2 \hookrightarrow L_K(E)/L_K(E)(c-1)^3 \hookrightarrow \cdots \]

Denote the direct limit of this sequence by \(U_{E,c-1} \).
Prüfer modules

We already have property (1):

\[L_K(E)/L_K(E)(c - 1) \] is a simple left \(L_K(E) \)-module, because it is isomorphic to \(V_{[c^\infty]} \).

For property (2):

Proposition: For any basic closed path \(c \) in \(E \), the equation

\[(c - 1)X = 1 + L_K(E)(c - 1)^n \]

has NO solution in \(L_K(E)/L_K(E)(c - 1)^n \).
Prüfer modules

We already have property (1):

$L_K(E)/L_K(E)(c - 1)$ is a simple left $L_K(E)$-module, because it is isomorphic to $V_{[c^\infty]}$.

For property (2):

Proposition: For any basic closed path c in E, the equation

$$(c - 1)X = 1 + L_K(E)(c - 1)^n$$

has NO solution in $L_K(E)/L_K(E)(c - 1)^n$.

Idea of proof: Establish a “Division Algorithm by $c - 1$” inside $L_K(E)$. (Messy, but relatively straightforward.)
Proposition: Let E be a finite graph, let c be a basic closed path in E based at v, and let $U_{E,c^{-1}}$ be the Prüfer module associated to c. Suppose that there exists a cycle $d \neq c$ which connects to v. Then $U_{E,c^{-1}}$ is not injective.
Prüfer modules

Proof: By work on Ext^1 groups described previously (using the hypothesis that d connects to v),

$$\text{Ext}^1(V_{[d]}^{\infty}, V_{[c]}^{\infty}) \neq 0.$$

Let α_1 denote $1 + L_K(E)(c - 1)$. We get

$$0 \to V_{[c]}^{\infty} \cong L_K(E) \alpha_1 \to U_{E,c-1} \to U_{E,c-1}/L_K(E) \alpha_1 \cong U_{E,c-1} \to 0$$

But $\text{Hom}(V_{[d]}^{\infty}, U_{E,c-1}) = 0$, because the only simple submodule of $U_{E,c-1}$ is isomorphic to $V_{[c]}^{\infty} \not\cong V_{[d]}^{\infty}$.
Prüfer modules

This gives the resulting long exact sequence

\[
\begin{align*}
\text{Hom}_{L_K(E)}(V_{d\infty}, V_{c\infty}) & \longrightarrow \text{Hom}_{L_K(E)}(V_{d\infty}, U_{E,c-1}) & \longrightarrow \text{Hom}_{L_K(E)}(V_{d\infty}, U_{E,c-1}) &= 0
\end{align*}
\]
This gives the resulting long exact sequence

\[
\begin{align*}
\text{Hom}_{L_K(E)}(V_{[d \infty]}, V_{[c \infty]}) & \to \text{Hom}_{L_K(E)}(V_{[d \infty]}, U_{E, c-1}) \to \text{Hom}_{L_K(E)}(V_{[d \infty]}, U_{E, c-1}) \quad (=0) \\
\pi \to \text{Ext}^1_{L_K(E)}(V_{[d \infty]}, V_{[c \infty]}) \quad (\neq 0) & \to \text{Ext}^1_{L_K(E)}(V_{[d \infty]}, U_{E, c-1}) \to \text{Ext}^1(V_{[d \infty]}, U_{E, c-1})
\end{align*}
\]
This gives the resulting long exact sequence

\[
\begin{align*}
\text{Hom}_{L_K(E)}(V_{d\infty}, V_{c\infty}) & \longrightarrow \text{Hom}_{L_K(E)}(V_{d\infty}, U_{E, c-1}) \longrightarrow \text{Hom}_{L_K(E)}(V_{d\infty}, U_{E, c-1}) (=0) \\
\pi & \longrightarrow \text{Ext}_1^{L_K(E)}(V_{d\infty}, V_{c\infty}) (\neq 0) \longrightarrow \text{Ext}_1^{L_K(E)}(V_{d\infty}, U_{E, c-1}) \longrightarrow \text{Ext}_1(V_{d\infty}, U_{E, c-1})
\end{align*}
\]

Consequently, \(\text{Ext}_1^{L_K(E)}(V_{d\infty}, U_{E, c-1}) \neq 0\), so that \(U_{E, c-1}\) is not injective.
On the other hand what happens when there is NO cycle \(d \) which connects to \(c \)?

Call such a cycle \(c \) \textit{maximal}.

Example: The Toeplitz graph

\[
\begin{array}{cccc}
\ast & \ast & \ast \\
\uparrow & \uparrow & \Rightarrow \\
\ast & \ast & \ast \\
\end{array}
\]

(The Leavitt path algebra \(L_K(T) \) is isomorphic to the Jacobson algebra \(K\langle X, Y | XY = 1 \rangle \).)
On the other hand what happens when there is NO cycle d which connects to c?

Call such a cycle c maximal.

Example: The Toeplitz graph

$$T = c \circlearrowright \bullet \longrightarrow \bullet$$

(The Leavitt path algebra $L_K(T)$ is isomorphic to the Jacobson algebra $K\langle X, Y | XY = 1 \rangle$.)
Main Theorem: Let E be a finite graph and let c be a basic closed path in E. Let $U_{E,c-1}$ be the Prüfer module associated to c. Then $U_{E,c-1}$ is injective if and only if c is a maximal cycle.

Gene Abrams

Chen simple modules and Prüfer modules over Leavitt path algebras
Main Theorem: Let E be a finite graph and let c be a basic closed path in E. Let $U_{E,c^{-1}}$ be the Prüfer module associated to c. Then $U_{E,c^{-1}}$ is injective if and only if c is a maximal cycle.

Moreover, in case $U_{E,c^{-1}}$ is injective, then:

(1) $U_{E,c^{-1}}$ is the injective envelope of the Chen simple module $V_{[c^\infty]}$, and

(2) $\text{End}_{L_K(E)}(U_{E,c^{-1}})$ is isomorphic to the ring $K[[x]]$ of formal power series in x.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
Prüfer modules

One direction? Done above.

Other direction?
Prüfer modules

One direction? Done above.

Other direction?

Two steps: Reduce to the case when c is a source loop. Then prove the result in this case.
Prüfer modules

Proposition:

1) Source elimination is a Morita equivalence, and preserves Prüfer modules.

2) Reduction of a source cycle to a source loop is a Morita equivalence, and preserves Prüfer modules.

Proof: Omitted. Not too difficult.
Prüfer modules

We analyze specific elements.

Proposition: Let \(c \) be a source loop. Let \(j \in \text{Ann}_{\mathbb{K}}(E) \)(\(U_E, c^{-1} \)). Then there exists \(n \in \mathbb{N} \) such that \(c^n j = 0 \).

Proof: It is not hard to show that any nonzero \(j \in \text{Ann}_{\mathbb{K}}(E) \)(\(U_E, c^{-1} \)) is a \(\mathbb{K} \)-linear combination of elements of the form

\[
\alpha \beta^* w \gamma \delta^* \neq 0,
\]

where \(w \neq s(c) \). Now consider cases.

1) If \(\alpha \beta^* w = w \) then \(c^* \alpha \beta^* w \gamma \delta^* = c^* w \gamma \delta^* = 0 \).

2) If \(\alpha \beta^* w = \beta^* w \neq w \) then \(s(\beta^*) = r(\beta) \neq s(c) \), otherwise \(\beta \) would be a path which starts in \(w \) and ends at \(s(c) \), contrary to \(c \) being a source loop. Then \(c^* \alpha \beta^* w \gamma \delta^* = c^* \beta^* w \gamma \delta^* = 0 \).
3) In all the other cases $\alpha = c^t \eta_1 \cdots \eta_s$ with $c \neq \eta_1 \in E^1$, $t \geq 0$ and $s \geq 1$. Then

$$(c^{t+1})^* \alpha \beta^* w \gamma \delta^* = (c^{t+1})^* c^t \eta_1 \cdots \eta_s \beta^* w \gamma \delta^* = c^* \eta_1 \cdots \eta_s \beta^* w \gamma \delta^* = 0.$$

Since j is a finite sum of terms of the form $\alpha \beta^* w \gamma \delta^*$, the result follows.
Prüfer modules

Proposition: For any \(\ell \in L_K(E) \setminus \text{Ann}_{L_K(E)}(U_{E,c-1}) \) and for any \(u \in U_{E,c-1} \), there exists \(X \in U_{E,c-1} \) such that \(\ell X = u \). That is, \(u \) is divisible by any element in \(L_K(E) \setminus \text{Ann}_{L_K(E)}(U_{E,c-1}) \).
Prüfer modules

Proposition: For any \(\ell \in L_K(E) \setminus \text{Ann}_{L_K(E)}(U_{E,c-1}) \) and for any \(u \in U_{E,c-1} \), there exists \(X \in U_{E,c-1} \) such that \(\ell X = u \). That is, \(u \) is divisible by any element in \(L_K(E) \setminus \text{Ann}_{L_K(E)}(U_{E,c-1}) \).

Idea of Proof: It can be shown that

\[
\text{Ann}_{L_K(E)}(U_{E,c-1}) = \bigcap_{n \geq 1} L_K(E)(c - 1)^n = \langle E^0 \setminus s(c) \rangle.
\]

Then using the “Division Algorithm” for \(c - 1 \) (and some computation) yields the result.
Corollary: If $0 \neq u \in U_{E, c-1}$ then $(c^*)^m u \neq 0$ for all $m \in \mathbb{N}$.
Prüfer modules

Corollary: If $0 \neq u \in U_{E,c-1}$ then $(c^*)^m u \neq 0$ for all $m \in \mathbb{N}$.

Proof: Since $c \notin L_K(E)(c-1) \supseteq \text{Ann}_{L_K(E)}(U_{E,c-1})$, by previous Proposition there exists $0 \neq x \in U_{E,c-1}$ with

$$cx = u.$$

We may assume that $s(c)x = x$. Then

$$0 \neq x = s(c)x = c^* cx = c^* u.$$

Repeating the same argument for $0 \neq c^* u \in U_{E,c-1}$, we get $(c^*)^2 u \neq 0$. Now continue.
Prüfer modules

Key Proposition: Let c be a source loop in E. Let I_f be a finitely generated left ideal of $L_K(E)$, and let $\varphi : I_f \to U_{E,c^{-1}}$ be a $L_K(E)$-homomorphism. Then there exists $\psi : L_K(E) \to U_{E,c^{-1}}$ such that $\psi|_{I_f} = \varphi$. Consequently,

$$\text{Ext}^1(L_K(E)/I_f, U_{E,c^{-1}}) = 0.$$
Key Proposition: Let \(c \) be a source loop in \(E \). Let \(I_f \) be a finitely generated left ideal of \(L_K(E) \), and let \(\varphi : I_f \to U_{E,c-1} \) be a \(L_K(E) \)-homomorphism. Then there exists \(\psi : L_K(E) \to U_{E,c-1} \) such that \(\psi|_{I_f} = \varphi \). Consequently,

\[
\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0.
\]

Proof: By the result presented in this morning’s lecture, we know that \(L_K(E) \) is a Bézout ring, i.e., that every finitely generated left ideal of \(L_K(E) \) is principal.
Prüfer modules

Key Proposition: Let \(c \) be a source loop in \(E \). Let \(I_f \) be a finitely generated left ideal of \(L_K(E) \), and let \(\varphi : I_f \to U_{E,c-1} \) be a \(L_K(E) \)-homomorphism. Then there exists \(\psi : L_K(E) \to U_{E,c-1} \) such that \(\psi|_{I_f} = \varphi \). Consequently,

\[
\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0.
\]

Proof: By the result presented in this morning’s lecture, we know that \(L_K(E) \) is a Bézout ring, i.e., that every finitely generated left ideal of \(L_K(E) \) is principal.

So \(I_f = L_K(E)\ell \) for some \(\ell \in I_f \).
Assume on one hand that $\ell \in \text{Ann}_{L_K(E)}(U_{E,c-1})$, and hence $I_f \leq \text{Ann}_{L_K(E)}(U_{E,c-1})$.

But we know these two things:

1) Any element of $\text{Ann}_{L_K(E)}(U_{E,c-1})$ is annihilated by some c^*N,

and

2) $c^*n u \neq 0$ for all $0 \neq u \in U_{E,c-1}$ and $n \in \mathbb{N}$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)
But then for $\varphi \in \text{Hom}_{L_K(E)}(I_f, U_E, c-1)$ we see that $\varphi(\ell) = 0$. Here’s why:

Otherwise, if $\varphi(\ell) \neq 0$, then $(c^*)^n\varphi(\ell) \neq 0$ for all n; but $\ell \in \text{Ann}_{L_K(E)}(U_E, c-1)$ gives $(c^*)^N\ell = 0$ for some N, so that $0 = \varphi((c^*)^N\ell) = (c^*)^N \varphi(\ell)$, a contradiction.

And $\varphi(\ell) = 0$ gives $\varphi = 0$, because I_f is generated by ℓ. Thus in this case we must have $\text{Hom}_{L_K(E)}(I_f, U_E, c-1) = 0$, and the conclusion follows trivially.
Assume on the other hand that $\ell \notin \text{Ann}_{L_K(E)}(U_{E,c-1})$. But then there exists $x \in U_{E,c-1}$ for which $\ell x = \varphi(\ell)$.

Let $\psi : L_K(E) \to U_{E,c-1}$ be the map ρ_x. Then, for each $i = r\ell \in I_f$, we have

$$
\psi(i) = \psi(r\ell) = r\ell \psi(1) = r\ell x = \varphi(\ell) = \varphi(r\ell) = \varphi(i),
$$

and so φ extends in this case as well.
Prüfer modules

Proposition: Let E be a finite graph, and c a source loop in E. Then the endomorphism ring of the left $L_K(E)$-module $U_{E,c^{-1}}$ is isomorphic to the ring of formal power series $K[[x]]$.

Proof omitted, but it’s not too hard.
Prüfer modules

We need one more tool.

We know the entire lattice of proper submodules of $U_{E,c-1}$ as a left $L_K(E)$-module, it consists precisely of the $L_K(E)/L_K(E)(c-1)^i$.

Proposition: Each $L_K(E)/L_K(E)(c-1)^i$ is a right S-submodule of $U_{E,c-1}$, and these are ALL the right S-submodules of $U_{E,c-1}$.

In particular, $(U_{E,c-1})_S$ is artinian.

Proof: Not hard.
Prüfer modules

We need one more tool.

We know the entire lattice of proper submodules of $U_{E,c-1}$ as a left $L_K(E)$-module, it consists precisely of the $L_K(E)/L_K(E)(c-1)^i$.

But $U_{E,c-1}$ is a right module over its endomorphism ring S, which is isomorphic to $K[[x]]$.

Proposition: Each $L_K(E)/L_K(E)(c-1)^i$ is a right S-submodule of $U_{E,c-1}$, and these are ALL the right S-submodules of $U_{E,c-1}$. In particular, $(U_{E,c-1})_S$ is artinian.

Proof: Not hard.
Here’s why we care about the right S-structure of $U_{E,c-1}$:

This property implies that the functor $\text{Ext}^1(-, U_{E,c-1})$ sends direct limits to inverse limits.

(More details: If a module is linearly compact over its endomorphism ring, then it is algebraically compact and hence pure-injective. But for a pure-injective left R-module M, the functor $\text{Ext}^1(-, M)$ sends direct limits to inverse limits.)
Finally, we get the result.

Theorem: Let E be a finite graph with source loop c. Then the Prüfer module $U_{E,c-1}$ is injective. Indeed, $U_{E,c-1}$ is the injective envelope of $V_{[c\infty]}$.
Prüfer modules (Key Prop.) $\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0$.

Proof: In order to check the injectivity of $U_{E,c-1}$, we apply Baer’s Lemma; that is, we need only check that $U_{E,c-1}$ is injective relative to any short exact sequence of the form

$$0 \to I \to L_K(E) \to L_K(E)/I \to 0.$$

This is equivalent to showing that $\text{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1}) = 0$ for any left ideal I of $L_K(E)$.

Gene Abrams (joint work with F. Mantese and A. Tonolo)

Chen simple modules and Prüfer modules over Leavitt path algebras
Prüfer modules (Key Prop.) $\text{Ext}^1(L_K(E)/I, U_{E,c-1}) = 0$.

Proof: In order to check the injectivity of $U_{E,c-1}$, we apply Baer’s Lemma; that is, we need only check that $U_{E,c-1}$ is injective relative to any short exact sequence of the form

$$0 \to I \to L_K(E) \to L_K(E)/I \to 0.$$

This is equivalent to showing that $\text{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1}) = 0$ for any left ideal I of $L_K(E)$.

Write $I = \varinjlim I_\lambda$, where the I_λ are the finitely generated submodules of I. It is standard that

$$L_K(E)/I = \varinjlim L_K(E)/I_\lambda.$$
Prüfer modules (Key Prop.) \(\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0. \)

So now applying the functor \(\text{Ext}^1_{L_K(E)}(_, U_{E,c-1}) \), we get:

\[
\text{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1})
\]
Prüfer modules

(Key Prop.) \[\operatorname{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0. \]

So now applying the functor \(\operatorname{Ext}^1_{L_K(E)}(-, U_{E,c-1}) \), we get:

\[
\operatorname{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1}) = \operatorname{Ext}^1_{L_K(E)}(\lim_{\lambda} L_K(E)/I_\lambda, U_{E,c-1}) = 0.
\]

(by Key Proposition)

Since \(L_K(E) \alpha_1 \) is an essential submodule of \(U_{E,c-1} \), the last statement follows.
Prüfer modules

(Key Prop.) \(\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0. \)

So now applying the functor \(\text{Ext}^1_{L_K(E)}(-, U_{E,c-1}) \), we get:

\[
\text{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1}) \\
= \text{Ext}^1_{L_K(E)}(\lim_{\lambda} L_K(E)/I_\lambda, U_{E,c-1}) \\
= \lim_{\lambda} \text{Ext}^1(L_K(E)/I_\lambda, U_{E,c-1}) \quad \text{(by Proposition above)}
\]
Prüfer modules (Key Prop.) \(\Ext^1(L_K(E)/I_f, U_{E,c-1}) = 0. \)

So now applying the functor \(\Ext^1_{L_K(E)}(-, U_{E,c-1}) \), we get:

\[
\Ext^1_{L_K(E)}(L_K(E)/I, U_{E,c-1}) = \Ext^1_{L_K(E)}(\lim_{\lambda \to} L_K(E)/I_{\lambda}, U_{E,c-1}) \\
= \lim_{\leftarrow} \Ext^1(L_K(E)/I_{\lambda}, U_{E,c-1}) \quad \text{(by Proposition above)} \\
= \lim_{\leftarrow} 0 = 0. \quad \text{(by Key Proposition)}
\]
Prüfer modules (Key Prop.) \(\text{Ext}^1(L_K(E)/I_f, U_{E,c-1}) = 0. \)

So now applying the functor \(\text{Ext}^1_{L_K(E)}(-, U_{E,c-1}) \), we get:

\[
\text{Ext}^1_{L_K(E)}(L_K(E)/I, U_{E,c-1})
\]
\[
= \text{Ext}^1_{L_K(E)}(\lim_{\to} L_K(E)/I_\lambda, U_{E,c-1})
\]
\[
= \lim_{\leftarrow} \text{Ext}^1(L_K(E)/I_\lambda, U_{E,c-1}) \quad \text{(by Proposition above)}
\]
\[
= \lim_{\leftarrow} 0 = 0. \quad \text{(by Key Proposition)}
\]

Since \(L_K(E)\alpha_1 \) is an essential submodule of \(U_{E,c-1} \), the last statement follows.