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Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector
space V has a basis. Moreover, if B and B′ are two bases for V ,
then |B| = |B′|.

Note: V has a basis B = {b1, b2, ..., bn} ⇔ V ∼= ⊕n
i=1R as vector

spaces. So:

One result of Dimension Theorem, Rephrased:
⊕n

i=1R ∼= ⊕m
i=1R ⇔ m = n.
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if R is a ring, and ⊕n

i=1R ∼= ⊕m
i=1R as R-modules, must

m = n?

Answer: NO

(But the answer is YES for the rings Z, M2(R), C(R))

Example: Consider the ring S of linear transformations from an
infinite dimensional R-vector space V to itself.

Think of V as ⊕∞i=1R. Then think of S as RFM(R).
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Brief history, and motivating examples

Intuitively, S and S ⊕ S have a chance to be “the same”.

M 7→ (Odd numbered columns of M ,Even numbered columns of M)

More formally:

It is not hard to write down matrices Y1,Y2 for which

MY1 gives the Odd Columns of M, while

MY2 gives the Even Columns of M.

So the previous intuitive map is, formally, M 7→ (MY1,MY2).
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Brief history, and motivating examples

Similarly, we should be able to ’go back’ from pairs of matrices to
a single matrix, by interweaving the columns.

More formally, there are matrices X1,X2 for which

(M1,M2) 7→ M1X1 + M2X2 does this.
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Brief history, and motivating examples

Here’s what’s really going on. These equations are easy to verify:

Y1X1 + Y2X2 = I ,

X1Y1 = I = X2Y2, and X1Y2 = 0 = X2Y1.

Using these, we get inverse maps:

S → S ⊕ S via M 7→ (MY1,MY2), and

S ⊕ S → S via (M1,M2) 7→ M1X1 + M2X2.

For example:

M 7→ (MY1,MY2) 7→ MY1X1 + MY2X2 = M · I = M.
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Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains
four elements y1, y2, x1, x2 satisfying

y1x1 + y2x2 = 1R ,

x1y1 = 1R = x2y2, and x1y2 = 0 = x2y1.

Then R ∼= R ⊕ R.
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Brief history, and motivating examples

Remark: Here the sets {1R} and {x1, x2} are each bases for R.

Actually, when R ∼= R ⊕ R as R-modules, then ⊕m
i=1R ∼= ⊕n

i=1R
for all m, n ∈ N.
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Leavitt algebras

Natural question:

Does there exist R with, e.g., R ∼= R ⊕ R ⊕ R, but R � R ⊕ R?

Theorem

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every m < n ∈ N and field K there exists a K -algebra
R = LK (m, n) with ⊕m

i=1R ∼= ⊕n
i=1R, and all isomorphisms

between free left R-modules result precisely from this one.
Moreover, LK (m, n) is universal with this property.
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Leavitt algebras

The m = 1 situation of Leavitt’s Theorem is now somewhat
familiar. Similar to the n = 2 case that we saw above,

R ∼= Rn if and only if there exist

x1, x2, ..., xn, y1, y2, ..., yn ∈ R

for which
n∑

i=1

yixi = 1R and xiyj = δi ,j1R .

LK (1, n) is the quotient

K < X1,X2, ...,Xn,Y1,Y2, ...,Yn > / < (
n∑

i=1

YiXi )−1K ; XiYj−δi ,j1K >

Note: RFM(K ) is much bigger than LK (1, 2).
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Leavitt algebras

As a result, we have: Let S denote LK (1, n). Then

Sa ∼= Sb ⇔ a ≡ b mod(n − 1).

In particular, S ∼= Sn.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and n ≥ 2, LK (1, n) is simple.

Remember, a ring R being simple means:

∀ 0 6= r ∈ R, ∃ αi , βi ∈ R with
∑n

i=1 αi rβi = 1R .

Actually, LK (1, n) is REALLY simple:

∀ 0 6= r ∈ LK (1, n), ∃ α, β ∈ LK (1, n) with αrβ = 1LK (1,n).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Leavitt algebras

As a result, we have: Let S denote LK (1, n). Then

Sa ∼= Sb ⇔ a ≡ b mod(n − 1).

In particular, S ∼= Sn.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and n ≥ 2, LK (1, n) is simple.

Remember, a ring R being simple means:

∀ 0 6= r ∈ R, ∃ αi , βi ∈ R with
∑n

i=1 αi rβi = 1R .

Actually, LK (1, n) is REALLY simple:

∀ 0 6= r ∈ LK (1, n), ∃ α, β ∈ LK (1, n) with αrβ = 1LK (1,n).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Leavitt algebras

As a result, we have: Let S denote LK (1, n). Then

Sa ∼= Sb ⇔ a ≡ b mod(n − 1).

In particular, S ∼= Sn.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and n ≥ 2, LK (1, n) is simple.

Remember, a ring R being simple means:

∀ 0 6= r ∈ R, ∃ αi , βi ∈ R with
∑n

i=1 αi rβi = 1R .

Actually, LK (1, n) is REALLY simple:

∀ 0 6= r ∈ LK (1, n), ∃ α, β ∈ LK (1, n) with αrβ = 1LK (1,n).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Leavitt algebras

As a result, we have: Let S denote LK (1, n). Then

Sa ∼= Sb ⇔ a ≡ b mod(n − 1).

In particular, S ∼= Sn.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and n ≥ 2, LK (1, n) is simple.

Remember, a ring R being simple means:

∀ 0 6= r ∈ R, ∃ αi , βi ∈ R with
∑n

i=1 αi rβi = 1R .

Actually, LK (1, n) is REALLY simple:

∀ 0 6= r ∈ LK (1, n), ∃ α, β ∈ LK (1, n) with αrβ = 1LK (1,n).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Building rings from combinatorial objects

If H is some ’combinatorial object’ (semigroup) and K is a field
then we can build KH.

Some of these are well-known:

group algebra;

polynomial ring (here H = {x0, x1, x2, ....})

many others (e.g. matrix rings, incidence rings, ...)
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General path algebras

Let E be a directed graph. (We will assume E is finite for this talk,
but analysis can be done in general.) E = (E 0,E 1, r , s)

s(e)• e // •r(e)

The path algebra of E with coefficients in K is the K -algebra KS

S = the set of all directed paths in E ,

multiplication of paths is juxtaposition. Denote by KE .

In particular, in KE ,

for each edge e, s(e) · e = e = e · r(e)

for each vertex v , v · v = v

1KE =
∑
v∈E0

v .

Gene Abrams University of Colorado @ Colorado SpringsUCCS
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:

E = •t •u
h

~~||
||
||
||

•v

e

>>||||||||

f
//

g

==•w
i
QQ j

// •x

Ê = •t
e

��

•u
h

h∗~~||
||
||
||

•v

e∗
>>||||||||

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e = r(e); and f ∗e = 0 for f 6= e (for all edges e, f in E ).

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for each vertex v in E .

(just at those vertices v which are not sinks, and which emit only

finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Construct the path algebra K Ê . Consider these relations in K Ê :
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Construct the path algebra K Ê . Consider these relations in K Ê :
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:

Ê = •t
e

��

•u
h

h∗~~||
||
||
||

•v

e∗
>>||||||||

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW

ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w (CK 1) hh∗ = u (CK 2)

ff ∗ = ... (no simplification) Note: (ff ∗)2 = f (f ∗f )f ∗ = ff ∗
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n).

LK (1, n) has generators and relations:
x1, x2, ..., xn, y1, y2, ..., yn ∈ LK (1, n);∑n

i=1 yixi = 1LK (1,n), and xiyj = δi ,j1LK (1,n),

while LK (Rn) has these SAME generators and relations, where we
identify y∗i with xi .
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Historical note, part 1

1962: Leavitt gives construction of LK (1, n).

1977: Cuntz gives construction of the C∗-algebras On.

1980’s: Cuntz and Krieger, and then many others generalize the
On construction to building C∗-algebras based on the data given in
0/1 matrices.

1997-2000: Various authors realize that these algebras (and more)
could be realized as C∗-algebras built from the data of directed
graphs: the graph C∗-algebras C ∗(E ).

late spring 2004:
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The connection

When K = C, then LC(E ) may be viewed as a C-subalgebra of
C ∗(E ).

Indeed,
LC(E ) ↪→ C ∗(E )

is a dense ∗-subalgebra.

Graph C∗-algebras without the topology?
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Some graph definitions

1. A cycle •a

x

DD•b

y

��

2. An exit for a cycle.

•a

x

DD•b

y

��
z // •c or •a

x

DD•b

y

��
e

vv
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Some graph definitions

3a. connects to a vertex.

•u // •v // •w ( also •w )

3b. connects to a cycle.

•a

x

DD•b

y

��
•c

f
oo
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Simplicity of Leavitt path algebras

Here’s a natural question, especially in light of Bill Leavitt’s result
that LK (1, n) is simple for all n ≥ 2:

For which graphs E and fields K is LK (E ) simple?

Note LK (E ) is simple for

E = • // • // // • since LK (E ) ∼= Mn(K )

and for

and for E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ since LK (E ) ∼= LK (1, n)

but not simple for

E = R1 = •v xff since LK (E ) ∼= K [x , x−1]
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Simplicity of Leavitt path algebras

Theorem

(A -, Aranda Pino, 2005) LK (E ) is simple if and only if:

1 Every vertex connects to every cycle and to every sink in E ,
and

2 Every cycle in E has an exit.

Note: No role played by K .
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Other ring-theoretic properties of Leavitt path algebras

We know precisely the graphs E for which LK (E ) has various other
properties, e.g.:

1 one-sided chain conditions

2 prime

3 von Neumann regular

4 two-sided chain conditions

5 primitive

Many more.
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P ⊕ Q ∼= Rn for some Q, some n ∈ N.

Key example: R itself, or any Rn.

Additional examples: Rf where f is idempotent (i.e., f 2 = f ),
since Rf ⊕ R(1− f ) = R1.

So, for example, in R = M2(R), P = M2(R)e1,1 =

(
∗ 0
∗ 0

)
is a finitely projective R-module. Note P � Rn for any n.

So LK (E ) contains projective modules of the form LK (E )ee∗ for
each edge e of E .
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation ⊕, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K , a field. Then V(R) ∼= Z+.

Example. S = Md(K ), K a field. Then V(S) ∼= Z+.
( But note that the ’position’ of S in V(S) is different than the
position of R in V(R). )

Remark: Given a ring R, it is in general not easy to compute
V(R).
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The monoid ME

Here’s a ‘natural’ monoid arising from any directed graph E .

Associate to E the abelian monoid (ME ,+):

ME = {
∑
v∈E0

nvav}

with nv ∈ Z+ for all v ∈ E 0.

Relations in ME are given by: av =
∑

e∈s−1(v) ar(e).
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The monoid ME

Example. Let F be the graph

1

�� $$
3

EE

22 2rr

dd

So MF consists of elements {n1a1 + n2a2 + n3a3} (ni ∈ Z+),

subject to: a1 = a2 + a3; a2 = a1 + a3; a3 = a1 + a2.

It’s not hard to get: MF = {0, a1, a2, a3, a1 + a2 + a3}.
In particular, MF \ {0} ∼= Z2 × Z2.
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The monoid V(LK (E ))

Example:

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then ME is the set of symbols of the form

n1av (n1 ∈ Z+)

subject to the relation: av = nav

So here, ME = {0, av , 2av , ..., (n − 1)av}.
In particular, ME \ {0} ∼= Zn−1.
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The monoid V(LK (E ))

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007)
For any row-finite directed graph E ,

V(LK (E )) ∼= ME .

Moreover, LK (E ) is universal with this property.
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Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

1) the “quotient of a path algebra” approach, and

2) the “universal algebra which supports ME as its V-monoid”
approach.

These were developed in parallel.

The two approaches together have complemented each other in
the development of the subject.
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Purely infinite simplicity

Here’s a property (most likely unfamiliar to most of you ...)

We call a unital simple ring R purely infinite simple if R is not a
division ring, and for every r 6= 0 in R there exists α, β in R for
which

αrβ = 1R .
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Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle ⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle ⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple,

and E contains a cycle ⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle

⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle ⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Purely infinite simplicity

Leavitt showed that the Leavitt algebras LK (1, n) are in fact purely
infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle ⇔

ME \ {0} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − AE .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

1 Leavitt path algebras: Introduction and Motivation

2 Algebraic properties

3 Projective modules

4 Connections and Applications

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Connections and Applications

In addition to expected types of results, during the “Adolescent
Years” years Leavitt path algebras have played an interesting /
important role in resolving various questions outside the subject
per se.

1 Kaplansky’s question on prime non-primitive von Neumann
regular algebras.

2 The realization question for von Neumann regular rings.

3 Constructing simple Lie algebras.

4 Connections to various C∗-algebras.

5 Constructing algebras with prescribed sets of prime / primitive
ideals
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Matrices over Leavitt algebras

One such connection:

Let R = LC(1, n). So RR ∼= RRn.

So this gives in particular R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...
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Matrices over Leavitt algebras

Question: Are there other matrix sizes d for which R ∼= Md(R)?
Answer: In general, yes.

For instance, if R = L(1, 4), then it’s not hard to show that
R ∼= M2(R) as rings (even though R � RR2 as modules).
Idea: 2 and 4 are nicely related, so these eight matrices inside
M2(L(1, 4)) “work”:

X1 =

(
x1 0
x2 0

)
, X2 =

(
x3 0
x4 0

)
, X3 =

(
0 x1
0 x2

)
, X4 =

(
0 x3
0 x4

)
together with their duals

Y1 =

(
y1 y2
0 0

)
, Y2 =

(
y3 y4
0 0

)
, Y3 =

(
0 0
y1 y2

)
, Y4 =

(
0 0
y3 y4

)
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Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if d |nt for some t ∈ N, then L(1, n) ∼= Md(L(1, n)).

On the other hand ...

If R = L(1, n), then the “type” of R is n − 1. (Think: “smallest
difference”). Bill Leavitt showed the following in his 1962 paper:

The type of Md(L(1, n)) is n−1
g .c.d .(d ,n−1) .

In particular, if g .c .d .(d , n − 1) > 1, then L(1, n) � Md(L(1, n)).

Conjecture: L(1, n) ∼= Md(L(1, n)) ⇔ g .c.d .(d , n − 1) = 1.

(Note: d |nt ⇒ g .c .d .(d , n − 1) = 1.)
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Matrices over Leavitt algebras

Smallest interesting pair: Is L(1, 5) ∼= M3(L(1, 5))?

We are led “naturally” to consider these five matrices (and their
duals) in M3(L(1, 5)):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x3
0 0 x4
0 0 x5


Everything went along swimmingly...

But we couldn’t see how to
generate the matrix units e1,3 and e3,1 inside M3(L(1, 5)) using
these ten matrices.
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Matrices over Leavitt algebras

Breakthrough (came from an analysis of isomorphisms between
more general Leavitt path algebras) ... we were using the wrong
ten matrices.

Original set:x1 0 0
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x5 0 0
0 1 0
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 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x3
0 0 x4
0 0 x5


Instead, this set (together with duals) works:x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0
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Matrices over Leavitt algebras

Theorem

(A-, Ánh, Pardo; Crelle’s J. 2008) For any field K ,

LK (1, n) ∼= Md(LK (1, n)) ⇔ g .c .d .(d , n − 1) = 1.

Indeed, more generally,

Md(LK (1, n)) ∼= Md ′(LK (1, n′)) ⇔
n = n′ and g .c .d .(d , n − 1) = g .c .d .(d ′, n − 1).

Moreover, we can write down the isomorphisms explicitly.

Along the way, some elementary (but apparently new) number
theory ideas come into play.
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Given n, d with g .c.d .(d , n − 1) = 1, there is a “natural” partition
of {1, 2, . . . , n} into two disjoint subsets.

Here’s what made this second set of matrices work. Using this
partition in the particular case n = 5, d = 3, then the partition of
{1, 2, 3, 4, 5} turns out to be the two sets

{1, 4} and {2, 3, 5}.

The matrices that “worked” are ones where we fill in the last
columns with terms of the form xix

j
1 in such a way that i is in the

same subset as the row number of that entry.

The number theory underlying this partition in the general case
where g.c.d.(d , n− 1) = 1 is elementary. But we are hoping to find
some other ’context’ in which this partition process arises.
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Matrices over Leavitt algebras

Computations when n = 5, d = 3.

gcd(3, 5− 1) = 1. Now 5 = 1 · 3 + 2, so that r = 2, r − 1 = 1, and
define s = d − (r − 1) = 3− 1 = 2.

Consider the sequence starting at 1, and increasing by s each step,
and interpret mod d (1 ≤ i ≤ d). This will necessarily give all
integers between 1 and d .

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 1, here we get

{1, 2, 3} = {1} ∪ {2, 3}.
Now extend these two sets mod 3 to all integers up to 5.

{1, 4} ∪ {2, 3, 5}
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Matrices over Leavitt algebras

Does this look familiar?

Complete description: academics.uccs.edu/gabrams
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Matrices over Leavitt algebras

Corollary. (Matrices over the Cuntz C∗-algebras)

On
∼= Md(On) ⇔ g .c.d .(d , n − 1) = 1.

(And the isomorphisms are explicitly described.)
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Matrices over Leavitt algebras

A beautiful, surprising(?) application:

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group G+

n,r . These were introduced in the
mid-1970’s. “Higman-Thompson groups”.

Higman knew some conditions regarding isomorphisms between
these groups, but did not have a complete classification.

Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Show that G+
n,r can be realized as an appropriate subgroup

of the invertible elements of Mr (LC(1, n)), and then use the
explicit isomorphisms provided in the A -, Ánh, Pardo result.
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Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Show that G+
n,r can be realized as an appropriate subgroup

of the invertible elements of Mr (LC(1, n)), and then use the
explicit isomorphisms provided in the A -, Ánh, Pardo result.

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: an overview



Leavitt path algebras: Introduction and Motivation Algebraic properties Projective modules Connections and Applications

What else is out there?

(1) LK (E ) ∼= LK (F )⇔ ? ? ?

Remark: K0(R) is the universal group of V(R).

Ideas from symbolic dynamics come into play here. Using some
results on flow equivalence, we have been able to show:

Theorem. (A -, Louly, Pardo, Smith, 2011) If LK (E ) and LK (F )
are purely infinite simple Leavitt path algebras such that

( K0(LK (E )), [1LK (E)] ) ∼= ( K0(LK (F )), [1LK (F )] ),

and det(I − At
E ) = det(I − At

F ),

then LK (E ) ∼= LK (F ). Can we drop the determinant hypothesis?
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What else is out there?

In particular, if

E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4 ffjj

is LC(E4) ∼= LC(1, 2) ?

The answer will be interesting, however it plays out.

Note: C ∗(E4) ∼= O2. Indeed, a very deep theorem in C∗-algebras
says that in the analogous result we CAN drop the determinant
hypothesis.

Note: LZ(E4) 6∼= LZ(1, 2) via any ∗-preserving map.
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What else is out there?

(2) For any graph E there is an intimate relationship between
LC(E ) and C ∗(E ). There are many theorems of the form:

LC(E ) has algebraic property P ⇔ C ∗(E ) has analytic property P

but the proofs are not direct! They all are based on showing that
the two properties are both equivalent to

E has graph property Q.

Why this happens is still a mystery.
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Questions?

Thank you.

More historical info: “Leavitt path algebras: the first decade”,
Bulletin of Mathematical Sciences 5(1), 2015, pp. 59-120.
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Some elementary number theory

The partition of {1, 2, ..., n} induced by d when
g.c.d.(d , n − 1) = 1

Suppose g.c.d.(d , n − 1) = 1. Write

n = dt + r with 1 ≤ r ≤ d .

Let s denote d − (r − 1).

It is easy to show that g.c.d.(d , n − 1) = 1 implies
g.c.d.(d , s) = 1. We consider the sequence {hi}di=1 of
integers, whose i th entry is given by

hi = 1 + (i − 1)s (mod d).
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Some elementary number theory

The integers hi are understood to be taken from the set
{1, 2, ..., d}.

Because g.c.d.(d , s) = 1, basic number theory yields that the set
of entries {h1, h2, ..., hd} equals the set {1, 2, ..., d} (in some
order). Our interest lies in a decomposition of {1, 2, ..., d} effected
by the sequence h1, h2, ..., hd , as follows.
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Some elementary number theory

We let d1 denote the integer for which

hd1 = r − 1

in the previously defined sequence. We denote by Ŝ1 the following
subset of {1, 2, ..., d}:

Ŝ1 = {hi |1 ≤ i ≤ d1}.

We denote by Ŝ2 the complement of Ŝ1 in {1, 2, ..., d}. We now
construct a partition S1 ∪ S2 of {1, 2, ..., n} by defining, for each
j ∈ {1, 2, ..., n} and for i ∈ {1, 2},

j ∈ Si precisely when j ≡ j ′ (mod d) for j ′ ∈ {1, 2, ..., d}, and j ′ ∈ Ŝi .

(In other words, we extend the partition Ŝ1 ∪ Ŝ2 of {1, 2, ..., d} to
a partition S1 ∪ S2 of {1, 2, ..., n} by extending mod d .)
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Some elementary number theory

Example. Suppose n = 35, d = 13. Then gcd(13, 35− 1) = 1, so
we are in the desired situation. Now 35 = 2 · 13 + 9, so that
r = 9, r − 1 = 8, and s = d − (r − 1) = 13− 8 = 5. Then we
consider the sequence starting at 1, and increasing by s each step,
and interpret mod d . (This will give all integers between 1 and d .)

So here we get the sequence 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 8, here we get

{1, 2, ..., 13} = {1, 3, 6, 8, 11} ∪ {2, 4, 5, 7, 9, 10, 12, 13}.

Now extend these two sets mod 13 to all integers up to 35.

{1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 34} ∪

{2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 35}
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