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The monoid V(R)

For a unital ring R, consider V(R), the isomorphism classes of
finitely generated projective (left) R-modules.

Using operation ⊕, V(R) is a conical monoid, with ‘distinguished’
element [R].

Examples:

1) R = K , a field. Then V(R) = Z+. Note [R] 7→ 1.

2) R = M2(K ). Then V(R) = Z+. Note [R] 7→ 2.
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The monoid V(R)

3) R = LK (1, n), the Leavitt algebra of order n.

R is generated by x1, ..., xn, y1, ..., yn, with relations

yixj = δi ,j1R and
n∑

i=1

xiyi = 1R .

R has R ∼= Rn as left R-modules. In this case

V(R) = {0, x , 2x , . . . , (n − 1)x},

with relation x = nx . Note [R] 7→ x .

Notes:

(1) For any R, K0(R) is the universal group of V(R).

(2) If R ∼= R ′ then there is an isomorphism of monoids
ϕ : V(R)→ V(R ′) for which ϕ([R]) = [R ′].
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Bergman’s Theorem

Theorem

(George Bergman, Trans. A.M.S. 1975) Let K be a field. Let S be
a finitely generated conical monoid S with a distinguished element
I , and choose a set of relations R for S. Then there exists a
K -algebra B = B(R) for which V(B) ∼= S, and for which, under
this isomorphism, [B] 7→ I .

The construction is explicit, uses amalgamated products.

Bergman included the algebras LK (1, n) as examples of these
universal algebras. LK (1, n) is the algebra B corresponding to the
monoid with generator x and relation x = nx
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The monoid ME

Let E be a directed graph. E = (E 0,E 1, r , s) (Today: E finite)

•s(e) e // •r(e)

Construct the abelian monoid ME :

generators {av | v ∈ E 0}

relations av =
∑

r(e)=w

aw (for v not a sink)

In ME , define x =
∑

v∈E0 av . Easily, x is distinguished.

In ME , denote the zero element by z .
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The monoid ME

ME : {av | v ∈ E 0}; av =
∑

r(e)=w aw ; x =
∑

v∈E0 av .

1) Example: E = • Then ME = Z+, and x = 1.

2) Example: E = • → • Then ME = Z+, and x = 2.

3) Example: E = Rn = • eeqq
��
EE . (n ≥ 2)

Then ME = {z , a, 2a, ..., (n − 1)a}, with na = a.

Note: ME \ {z} = Zn−1.
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The monoid ME

4) Example The graph E = C−13

1

�� $$
3

EE

22 2rr

dd

Not hard to show: ME = {z , a1, a2, a3, a1 + a2 + a3}

Note: ME \ {z} ∼= Z2 × Z2.

Here x = a1 + a2 + a3 7→ (0, 0) ∈ Z2 × Z2.
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The Leavitt path algebra of a graph

Let E be a finite graph, and K any field.

We define LK (E ), the Leavitt path algebra of E with coefficients in
K , as the universal K -algebra arising from Bergman’s theorem,
corresponding to the monoid ME (using the above generators and
relations). In particular,

V(LK (E )) ∼= ME .

Under this isomorphism, [LK (E )] 7→
∑

v∈E0 av .

(Note: This is historically not how things began ...)
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The Leavitt path algebra of a graph

Example: LK (•) = K .

Example: LK (• → •) = M2(K ).

Example: LK (Rn) = LK (1, n) for n ≥ 2.
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The Leavitt path algebra of a graph

Example: For each n ∈ N let Cn denote the “directed cycle” graph
with n vertices.

Then it’s easy to show that MCn = Z+, and x = n.

The corresponding Leavitt path algebra is Mn(K [x , x−1]).
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purely infinite simple rings

Definition: An idempotent e ∈ R is infinite in case Re ∼= Rf ⊕ Rg
where f , g are idempotents for which Re ∼= Rf , and Rg 6= {0}.

Example: 1 ∈ R = LK (1, n) = LK (Rn) is infinite, as
R1 = R ∼= Rn = R1⊕ Rg for an appropriate idempotent g .

Definition: R is called purely infinite simple in case every nonzero
left ideal of R contains an infinite idempotent.

Proposition: (Ara / Goodearl / Pardo, 2002) If R is purely infinite
simple, then V(R) \ {[0]} is a group, the group K0(R).

Proposition: (Pardo, posted online 2011) If R = LK (E ), then R is
purely infinite simple if and only if V(LK (E )) \ {[0]} is a group.
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purely infinite simple Leavitt path algebras

Theorem: (A-, Aranda Pino, 2006): LK (E ) is purely infinite simple
if and only if E has:

1 every vertex in E connects to every cycle in E ,

2 every cycle in E has an exit, and

3 E contains at least one cycle.

So LK (E ) is purely infinite simple for E = Rn (n ≥ 2).

Also LK (E ) is purely infinite simple for E = C−13 .

Note LK (E ) is not purely infinite simple for E = •, or for
E = • → •, or for any of the Cn graphs.
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purely infinite simple Leavitt path algebras

When LK (E ) is purely infinite simple, the K0 groups are easily
described in terms of the adjacency matrix AE of E . Let n = |E 0|.
View In − At

E as a linear transformation Zn → Zn. Then

K0(LK (E )) ∼= Coker(In − At
E ).

Moreover, Coker(In − At
E ) can be computed by finding the Smith

normal form of In − At
E .
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purely infinite simple Leavitt path algebras

E = C−13 A1

�� %%
A3

DD

11 A2
qq

ee

I3−At
E =

 1 −1 −1
−1 1 −1
−1 −1 1

 , whose Smith normal form is:

1 0 0
0 2 0
0 0 2

 .

Conclude that K0(LK (E )) ∼= Coker(I3 − At
E ) ∼= Z/2Z× Z/2Z.

And under this isomorphism, [LK (E )] 7→ (0, 0).
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The Restricted Algebraic KP Theorem

Using some very powerful and deep results from symbolic
dynamics, we can show

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose LK (E )
and LK (F ) are purely infinite simple. If

K0(LK (E )) ∼= K0(LK (F ))

via an isomorphism ϕ for which ϕ([LK (E )]) = [LK (F )],

and sign(det(I − At
E )) = sign(det(I − At

F )),

then LK (E ) ∼= LK (F ).

The Restricted Algebraic KP Theorem
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The Restricted Algebraic KP Theorem

Goal: Use the Restricted Algebraic KP Theorem to recognize the
Leavitt path algebras of various graphs as “basic” or
“well-understood” Leavitt path algebras.

For instance:

E = •A

  
•C

>>

88 •BQQoo

jj

1 K0(LK (E )) ∼= Z3

2 under this isomorphism, [LK (E )] 7→ 1

3 det(I − At
E ) = −3 < 0.

But LK (R4) has this same data. So LK (E ) ∼= LK (R4) = LK (1, 4).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras of Cayley graphs arising from cyclic groups



The Restricted Algebraic KP Theorem

Goal: Use the Restricted Algebraic KP Theorem to recognize the
Leavitt path algebras of various graphs as “basic” or
“well-understood” Leavitt path algebras. For instance:

E = •A

  
•C

>>

88 •BQQoo

jj

1 K0(LK (E )) ∼= Z3

2 under this isomorphism, [LK (E )] 7→ 1

3 det(I − At
E ) = −3 < 0.

But LK (R4) has this same data. So LK (E ) ∼= LK (R4) = LK (1, 4).
Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras of Cayley graphs arising from cyclic groups



Using the Restricted Algebraic KP Theorem

Now apply the Goal to an infinite class of graphs.

The graphs C−1n :

C−11 = •v1EE
��

C−12 = •v1

!! 		
•v2

aaII

C−13 = •v1



 !!
•v3 55

==

•v2

kk

oo

C−14 = •v1



 !!
•v4

++

==

•v2

kk

}}
•v3

IIaa
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Using The Restricted Algebraic KP Theorem

Let En denote C−1n , with vertices labeled 1, 2, ..., n.

Note that En satisfies the conditions of the Purely Infinite Simple
Theorem, so that MEn \ {z} is a group (necessarily K0(LK (En))).

In MEn \ {z} we have, for each 1 ≤ i ≤ n,

ai+1 = ai + ai+2

(interpret subscripts mod n). So in particular

ai+1 = ai + (ai+1 + ai+3).

So (using that MEn \ {z} is a group) we get 0 = ai + ai+3, i.e., that

ai = −ai+3

in MEn \ {z}. This gives

ai = ai+6

in MEn \ {z}.Gene Abrams University of Colorado @ Colorado SpringsUCCS
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Using The Restricted Algebraic KP Theorem

Using this idea, one can show

Proposition: If m ≡ n mod 6, then MEn \ {z} ∼= MEm \ {z}.

Rephrased: If m ≡ n mod 6, then K0(LK (En)) ∼= K0(LK (Em)).

Here are those K0 groups:

n mod 6 1 2 3 4 5 6

K0(LK (En)) ∼= {0} Z3 Z2 × Z2 Z3 {0} Z× Z
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Using The Restricted Algebraic KP Theorem

Since ai = ai−1 + ai+1 for all 1 ≤ i ≤ n in MEn \ {z}, we get that

x =
n∑

i=1

ai =
n∑

i=1

(ai−1 + ai+1) =
n∑

i=1

ai−1 +
n∑

i=1

ai+1 = x + x ,

so that x = 0 in the group MEn \ {z}.
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Using The Restricted Algebraic KP Theorem

The adjacency matrix AEn is circulant.

Hence so is I − At
En

.

Using a formula for the determinant of a circulant matrix
(involving roots of unity in C), one can show that

det(In − At
En

) =
n−1∏
j=0

(1− 2 cos
2π

n
j).

Elementary computations then give: det(In − At
En

) ≤ 0 for all n.
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Using The Restricted Algebraic KP Theorem

We now have all the ingredients in place to achieve our main result.

Theorem: (A-, Schoonmaker; to appear) Up to isomorphism the
collection of Leavitt path algebras {LK (C−1n ) | n ∈ N} is
completely described by the following four pairwise non-isomorphic
classes of K -algebras.

1 LK (C−1n ) ∼= LK (Cm) in case m ≡ 1 or 5 mod6 and n ≡ 1 or
5 mod6.

In this case, these algebras are isomorphic to LK (1, 2).

2 LK (C−1n ) ∼= LK (Cm) in case m ≡ 2 or 4 mod6 and n ≡ 2 or
4 mod6.

In this case, these algebras are isomorphic to M3(LK (1, 4)).

3 LK (C−1n ) ∼= LK (Cm) in case m, n ≡ 3 mod6.

4 LK (C−1n ) ∼= LK (Cm) in case m, n ≡ 6 mod6.
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What’s next?

For each n ∈ N, let Cn be the “basic cycle graph” with n vertices.

For 0 ≤ i ≤ n − 1, let C j
n be the graph gotten by taking Cn and

adding, at each vertex vi , an edge from vi to vi+j .

So Cn−1
n = C−1n .

We understand LK (C 0
n ) and LK (C 1

n ) quite well.

We also understand LK (C 2
n ); the description involves the Fibonacci

sequence.

We have some conjectures about LK (C 3
n ).

Interestingly, we have not seen any sort of cyclic pattern in the K0

groups of LK (Cn−2
n ).
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Can we drop the determinant hypothesis?

Algebraic KP Question:

Can we drop the hypothesis
on the sign of the determinants

in the Restricted Algebraic KP Theorem?
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Can we drop the determinant hypothesis?

Here’s the “smallest” example of a situation of interest. Consider
the Leavitt path algebras L(R2) and L(E4), where

R2 = •v ff
��

and E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4 ffjj

It is not hard to establish that

(K0(L(R2)), [1L(R2)]) = ({0}, 0) = (K0(L(E4)), [1L(E4)]);

det(I − At
R2

) = −1; and det(I − At
E4

) = 1.

Question: Is LK (R2) ∼= LK (E4)?
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Questions?

Thanks to the Simons Foundation
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