Leavitt path algebras of Cayley graphs arising from cyclic groups

Gene Abrams

UCCES University of Colorado Colorado Springs

Conference on Algebraic Structures and Their Applications

Spineto, Italy June 18, 2014

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

For a unital ring R, consider $\mathcal{V}(R)$, the isomorphism classes of finitely generated projective (left) R-modules.

Gene Abrams

University of Colorado @ Colorado Springs

イロン イロン イヨン イヨン

For a unital ring R, consider $\mathcal{V}(R)$, the isomorphism classes of finitely generated projective (left) *R*-modules.

Using operation \oplus , $\mathcal{V}(R)$ is a conical monoid, with 'distinguished' element [R].

Examples:

- 1) R = K, a field. Then $\mathcal{V}(R) = \mathbb{Z}^+$. Note $[R] \mapsto 1$.
- 2) $R = M_2(K)$. Then $\mathcal{V}(R) = \mathbb{Z}^+$. Note $[R] \mapsto 2$.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

3) $R = L_{\mathcal{K}}(1, n)$, the Leavitt algebra of order n.

R is generated by $x_1, ..., x_n, y_1, ..., y_n$, with relations

$$y_i x_j = \delta_{i,j} \mathbb{1}_R$$
 and $\sum_{i=1}^n x_i y_i = \mathbb{1}_R.$

R has $R \cong R^n$ as left *R*-modules. In this case

$$\mathcal{V}(R) = \{0, x, 2x, \ldots, (n-1)x\},\$$

with relation x = nx. Note $[R] \mapsto x$.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

3) $R = L_{\mathcal{K}}(1, n)$, the Leavitt algebra of order n.

R is generated by $x_1, ..., x_n, y_1, ..., y_n$, with relations

$$y_i x_j = \delta_{i,j} \mathbb{1}_R$$
 and $\sum_{i=1}^n x_i y_i = \mathbb{1}_R$.

R has $R \cong R^n$ as left *R*-modules. In this case

$$\mathcal{V}(R) = \{0, x, 2x, \ldots, (n-1)x\},\$$

with relation x = nx. Note $[R] \mapsto x$.

Notes:

(1) For any R, K₀(R) is the universal group of V(R).
(2) If R ≅ R' then there is an isomorphism of monoids
φ: V(R) → V(R') for which φ([R]) = [R'].

Gene Abrams

University of Colorado @ Colorado Springs

Bergman's Theorem

Theorem

(George Bergman, Trans. A.M.S. 1975) Let K be a field. Let S be a finitely generated conical monoid S with a distinguished element I, and choose a set of relations \mathcal{R} for S. Then there exists a K-algebra $B = B(\mathcal{R})$ for which $\mathcal{V}(B) \cong S$, and for which, under this isomorphism, $[B] \mapsto I$.

The construction is explicit, uses amalgamated products.

Bergman included the algebras $L_{\mathcal{K}}(1, n)$ as examples of these universal algebras. $L_{\mathcal{K}}(1, n)$ is the algebra *B* corresponding to the monoid with generator *x* and relation x = nx

(a)

Let *E* be a directed graph. $E = (E^0, E^1, r, s)$ (Today: *E* finite)

$$\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$$

Construct the abelian monoid M_E :

generators
$$\{a_v \mid v \in E^0\}$$

relations $a_v = \sum_{r(e)=w} a_w$ (for v not a sink)

・ロン ・回 と ・ ヨ と ・ ヨ と …

University of Colorado @ Colorado Springs

In M_E , define $x = \sum_{v \in E^0} a_v$. Easily, x is distinguished.

In M_E , denote the zero element by z.

Gene Abrams

$$M_E: \qquad \{a_v \mid v \in E^0\}; \quad a_v = \sum_{r(e)=w} a_w; \quad x = \sum_{v \in E^0} a_v.$$

1) Example: $E = \bullet$ Then $M_E = \mathbb{Z}^+$, and x = 1.

Gene Abrams

University of Colorado @ Colorado Springs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$M_E: \qquad \{a_v \mid v \in E^0\}; \quad a_v = \sum_{r(e)=w} a_w; \quad x = \sum_{v \in E^0} a_v.$$

- 1) Example: $E = \bullet$ Then $M_E = \mathbb{Z}^+$, and x = 1.
- 2) Example: $E = \bullet \rightarrow \bullet$ Then $M_E = \mathbb{Z}^+$, and x = 2.

Gene Abrams

University of Colorado @ Colorado Springs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$M_E: \qquad \{a_v \mid v \in E^0\}; \quad a_v = \sum_{r(e)=w} a_w; \quad x = \sum_{v \in E^0} a_v.$$

- 1) Example: $E = \bullet$ Then $M_F = \mathbb{Z}^+$, and x = 1.
- 2) Example: $E = \bullet \rightarrow \bullet$ Then $M_E = \mathbb{Z}^+$, and x = 2.

3) Example:
$$E = R_n = \underbrace{\bullet}_{\bullet} \underbrace{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace$$

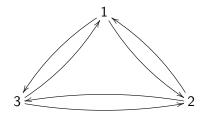
Then $M_F = \{z, a, 2a, ..., (n-1)a\}$, with na = a. Note: $M_F \setminus \{z\} = \mathbb{Z}_{n-1}$.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

4) Example The graph $E = C_3^{-1}$

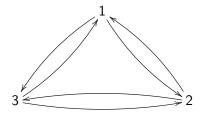


Gene Abrams

イロン イロン イヨン イヨン University of Colorado @ Colorado Springs

э

4) Example The graph $E = C_3^{-1}$



Not hard to show: $M_E = \{z, a_1, a_2, a_3, a_1 + a_2 + a_3\}$

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

4) Example The graph $E = C_3^{-1}$

Not hard to show: $M_E = \{z, a_1, a_2, a_3, a_1 + a_2 + a_3\}$ Note: $M_E \setminus \{z\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Here $x = a_1 + a_2 + a_3 \mapsto (0, 0) \in \mathbb{Z}_2 \times \mathbb{Z}_2$.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Let E be a finite graph, and K any field.

We define $L_K(E)$, the Leavitt path algebra of E with coefficients in K, as the universal K-algebra arising from Bergman's theorem, corresponding to the monoid M_E (using the above generators and relations). In particular,

 $\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.$

Under this isomorphism, $[L_{\mathcal{K}}(E)] \mapsto \sum_{v \in E^0} a_v$.

Gene Abrams

Leavitt path algebras of Cayley graphs arising from cyclic groups

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Let E be a finite graph, and K any field.

We define $L_K(E)$, the Leavitt path algebra of E with coefficients in K, as the universal K-algebra arising from Bergman's theorem, corresponding to the monoid M_E (using the above generators and relations). In particular,

 $\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.$

Under this isomorphism, $[L_{\mathcal{K}}(E)] \mapsto \sum_{v \in E^0} a_v$.

(Note: This is historically not how things began ...)

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Example:
$$L_K(\bullet) = K$$
.

Example:
$$L_{\mathcal{K}}(\bullet \to \bullet) = M_2(\mathcal{K}).$$

Example: $L_{\mathcal{K}}(R_n) = L_{\mathcal{K}}(1, n)$ for $n \ge 2$.

Gene Abrams

University of Colorado @ Colorado Springs

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

- Example: For each $n \in \mathbb{N}$ let C_n denote the "directed cycle" graph with n vertices.
- Then it's easy to show that $M_{C_n} = \mathbb{Z}^+$, and x = n.
- The corresponding Leavitt path algebra is $M_n(K[x, x^{-1}])$.

-

<ロ> <同> <同> < 回> < 回>

Definition: An idempotent $e \in R$ is *infinite* in case $Re \cong Rf \oplus Rg$ where f, g are idempotents for which $Re \cong Rf$, and $Rg \neq \{0\}$.

Example: $1 \in R = L_K(1, n) = L_K(R_n)$ is infinite, as $R1 = R \cong R^n = R1 \oplus Rg$ for an appropriate idempotent g.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Definition: An idempotent $e \in R$ is *infinite* in case $Re \cong Rf \oplus Rg$ where f, g are idempotents for which $Re \cong Rf$, and $Rg \neq \{0\}$.

Example: $1 \in R = L_{\mathcal{K}}(1, n) = L_{\mathcal{K}}(R_n)$ is infinite, as $R1 = R \cong R^n = R1 \oplus Rg$ for an appropriate idempotent g.

Definition: R is called *purely infinite simple* in case every nonzero left ideal of R contains an infinite idempotent.

Proposition: (Ara / Goodearl / Pardo, 2002) If R is purely infinite simple, then $\mathcal{V}(R) \setminus \{[0]\}\$ is a group,

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

-

Definition: An idempotent $e \in R$ is *infinite* in case $Re \cong Rf \oplus Rg$ where f, g are idempotents for which $Re \cong Rf$, and $Rg \neq \{0\}$.

Example: $1 \in R = L_{\mathcal{K}}(1, n) = L_{\mathcal{K}}(R_n)$ is infinite, as $R1 = R \cong R^n = R1 \oplus Rg$ for an appropriate idempotent g.

Definition: R is called *purely infinite simple* in case every nonzero left ideal of R contains an infinite idempotent.

Proposition: (Ara / Goodearl / Pardo, 2002) If R is purely infinite simple, then $\mathcal{V}(R) \setminus \{[0]\}\$ is a group, the group $K_0(R)$.

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

-

Definition: An idempotent $e \in R$ is *infinite* in case $Re \cong Rf \oplus Rg$ where f, g are idempotents for which $Re \cong Rf$, and $Rg \neq \{0\}$.

Example: $1 \in R = L_K(1, n) = L_K(R_n)$ is infinite, as $R1 = R \cong R^n = R1 \oplus Rg$ for an appropriate idempotent g.

Definition: R is called *purely infinite simple* in case every nonzero left ideal of R contains an infinite idempotent.

Proposition: (Ara / Goodearl / Pardo, 2002) If R is purely infinite simple, then $\mathcal{V}(R) \setminus \{[0]\}$ is a group, the group $\mathcal{K}_0(R)$.

Proposition: (Pardo, posted online 2011) If $R = L_{\mathcal{K}}(E)$, then R is purely infinite simple if and only if $\mathcal{V}(L_{\mathcal{K}}(E)) \setminus \{[0]\}$ is a group.

Gene Abrams

University of Colorado @ Colorado Springs

purely infinite simple Leavitt path algebras

Theorem: (A-, Aranda Pino, 2006): $L_{\mathcal{K}}(E)$ is purely infinite simple if and only if E has:

- **1** every vertex in *E* connects to every cycle in *E*,
- 2 every cycle in E has an exit, and
- 3 E contains at least one cycle.

So $L_{\mathcal{K}}(E)$ is purely infinite simple for $E = R_n$ (n > 2). Also $L_{\mathcal{K}}(E)$ is purely infinite simple for $E = C_2^{-1}$.

Note $L_{\mathcal{K}}(E)$ is not purely infinite simple for $E = \bullet$, or for $E = \bullet \rightarrow \bullet$, or for any of the C_n graphs.

-

purely infinite simple Leavitt path algebras

When $L_{\mathcal{K}}(E)$ is purely infinite simple, the \mathcal{K}_0 groups are easily described in terms of the adjacency matrix A_F of E. Let $n = |E^0|$. View $I_n - A_F^t$ as a linear transformation $\mathbb{Z}^n \to \mathbb{Z}^n$. Then

$$K_0(L_K(E)) \cong \operatorname{Coker}(I_n - A_E^t).$$

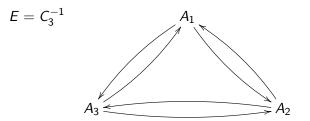
Moreover, $\operatorname{Coker}(I_n - A_F^t)$ can be computed by finding the Smith normal form of $I_n - A_F^t$.

> ・ロ・ ・四・ ・ヨ・ ・ ヨ・ University of Colorado @ Colorado Springs

3

Gene Abrams

purely infinite simple Leavitt path algebras



 $I_3 - A_E^t = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, \text{ whose Smith normal form is: } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$

Conclude that $K_0(L_K(E)) \cong \operatorname{Coker}(I_3 - A_E^t) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

And under this isomorphism, $[L_{\mathcal{K}}(E)] \mapsto (0,0)_{\mathbb{D}}$

Gene Abrams

University of Colorado @ Colorado Springs

Using some very powerful and deep results from symbolic dynamics, we can show

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose $L_{\mathcal{K}}(E)$ and $L_{\mathcal{K}}(F)$ are purely infinite simple. If

 $K_0(L_K(E)) \cong K_0(L_K(F))$ via an isomorphism φ for which $\varphi([L_K(E)]) = [L_K(F)]$,

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

Using some very powerful and deep results from symbolic dynamics, we can show

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose $L_{\mathcal{K}}(E)$ and $L_{\mathcal{K}}(F)$ are purely infinite simple. If

 $\begin{aligned} & \mathcal{K}_0(L_{\mathcal{K}}(E)) \cong \mathcal{K}_0(L_{\mathcal{K}}(F)) \\ \text{via an isomorphism } \varphi \text{ for which } \varphi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)], \\ & \text{ and } \operatorname{sign}(\det(I - A_E^t)) = \operatorname{sign}(\det(I - A_F^t)), \\ \text{ then } L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F). \end{aligned}$

The Restricted Algebraic KP Theorem

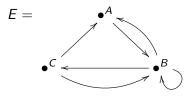
< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

Goal: Use the Restricted Algebraic KP Theorem to recognize the Leavitt path algebras of various graphs as "basic" or "well-understood" Leavitt path algebras.

Gene Abrams

Goal: Use the Restricted Algebraic KP Theorem to recognize the Leavitt path algebras of various graphs as "basic" or "well-understood" Leavitt path algebras. For instance:



1 $K_0(L_K(E)) \cong \mathbb{Z}_3$ 2 under this isomorphism, $[L_K(E)] \mapsto 1$ 3 $\det(I - A_E^t) = -3 < 0.$

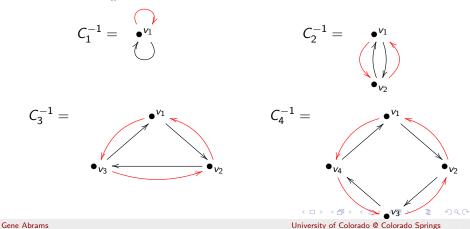
But $L_{\mathcal{K}}(R_4)$ has this same data. So $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(R_4) = L_{\mathcal{K}}(1,4)$.

Gene Abrams

University of Colorado @ Colorado Springs

Now apply the Goal to an infinite class of graphs.

The graphs C_n^{-1} :



Let E_n denote C_n^{-1} , with vertices labeled 1, 2, ..., n.

Note that E_n satisfies the conditions of the Purely Infinite Simple Theorem, so that $M_{E_n} \setminus \{z\}$ is a group (necessarily $K_0(L_K(E_n))$). In $M_{E_n} \setminus \{z\}$ we have, for each $1 \le i \le n$,

$$a_{i+1} = a_i + a_{i+2}$$

(interpret subscripts mod n). So in particular

$$a_{i+1} = a_i + (a_{i+1} + a_{i+3}).$$

So (using that $M_{E_n} \setminus \{z\}$ is a group) we get $0 = a_i + a_{i+3}$, i.e., that

$$a_i = -a_{i+3}$$

in $M_{E_n} \setminus \{z\}$. This gives

$$a_i = a_{i+6}$$

Gene Abrams

Iniversity of Colorado @ Colorado Springs

Using this idea, one can show

Proposition: If $m \equiv n \mod 6$, then $M_{E_n} \setminus \{z\} \cong M_{E_m} \setminus \{z\}$.

Rephrased: If $m \equiv n \mod 6$, then $K_0(L_K(E_n)) \cong K_0(L_K(E_m))$.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Using this idea, one can show

Proposition: If $m \equiv n \mod 6$, then $M_{E_n} \setminus \{z\} \cong M_{E_m} \setminus \{z\}$.

Rephrased: If $m \equiv n \mod 6$, then $K_0(L_K(E_n)) \cong K_0(L_K(E_m))$.

Here are those K_0 groups:

<i>n</i> mod 6	1	2	3	4	5	6
$K_0(L_K(E_n)) \cong$	{0}	\mathbb{Z}_3	$\mathbb{Z}_2\times\mathbb{Z}_2$	\mathbb{Z}_3	{0}	$\mathbb{Z} imes \mathbb{Z}$

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Since $a_i = a_{i-1} + a_{i+1}$ for all $1 \le i \le n$ in $M_{E_n} \setminus \{z\}$, we get that

$$x = \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (a_{i-1} + a_{i+1}) = \sum_{i=1}^{n} a_{i-1} + \sum_{i=1}^{n} a_{i+1} = x + x,$$

so that x = 0 in the group $M_{F_n} \setminus \{z\}$.

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

3

Gene Abrams

The adjacency matrix A_{E_n} is *circulant*.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

The adjacency matrix A_{E_n} is *circulant*. Hence so is $I - A_{E_n}^t$.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

The adjacency matrix A_{E_n} is *circulant*. Hence so is $I - A_{E_n}^t$. Using a formula for the determinant of a circulant matrix (involving roots of unity in \mathbb{C}), one can show that

$$\det(I_n - A_{E_n}^t) = \prod_{j=0}^{n-1} (1 - 2\cos\frac{2\pi}{n}j).$$

Gene Abrams

The adjacency matrix A_{E_n} is *circulant*. Hence so is $I - A_{E_n}^t$. Using a formula for the determinant of a circulant matrix (involving roots of unity in \mathbb{C}), one can show that

$$\det(I_n - A_{E_n}^t) = \prod_{j=0}^{n-1} (1 - 2\cos\frac{2\pi}{n}j).$$

Elementary computations then give: $det(I_n - A_{F_n}^t) \le 0$ for all n.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

We now have all the ingredients in place to achieve our main result.

Theorem: (A-, Schoonmaker; to appear) Up to isomorphism the collection of Leavitt path algebras $\{L_K(C_n^{-1}) \mid n \in \mathbb{N}\}$ is completely described by the following four pairwise non-isomorphic classes of *K*-algebras.

1 $L_{\mathcal{K}}(C_n^{-1}) \cong L_{\mathcal{K}}(C_m)$ in case $m \equiv 1$ or 5 mod6 and $n \equiv 1$ or 5 mod6.

In this case, these algebras are isomorphic to $L_{\mathcal{K}}(1,2)$.

2 $L_{\mathcal{K}}(C_n^{-1}) \cong L_{\mathcal{K}}(C_m)$ in case $m \equiv 2$ or $4 \mod 6$ and $n \equiv 2$ or $4 \mod 6$.

In this case, these algebras are isomorphic to $M_3(L_K(1,4))$.

3
$$L_{\mathcal{K}}(C_n^{-1}) \cong L_{\mathcal{K}}(C_m)$$
 in case $m, n \equiv 3 \mod 6$.

4 $L_{\mathcal{K}}(\mathcal{C}_n^{-1}) \cong L_{\mathcal{K}}(\mathcal{C}_m)$ in case $m, n \equiv 6 \mod 6$.

Gene Abrams

500

Gene Abrams

For each $n \in \mathbb{N}$, let C_n be the "basic cycle graph" with *n* vertices. For $0 \le i \le n-1$, let C_n^j be the graph gotten by taking C_n and adding, at each vertex v_i , an edge from v_i to v_{i+i} .

So
$$C_n^{n-1} = C_n^{-1}$$
.

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

For each $n \in \mathbb{N}$, let C_n be the "basic cycle graph" with *n* vertices. For $0 \le i \le n-1$, let C_n^j be the graph gotten by taking C_n and adding, at each vertex v_i , an edge from v_i to v_{i+i} . So $C_n^{n-1} = C_n^{-1}$.

We understand $L_{\mathcal{K}}(C_n^0)$ and $L_{\mathcal{K}}(C_n^1)$ quite well.

Gene Abrams

・ロ・ ・四・ ・ヨ・ ・ ヨ・ University of Colorado @ Colorado Springs

3

For each $n \in \mathbb{N}$, let C_n be the "basic cycle graph" with *n* vertices. For $0 \le i \le n-1$, let C_n^j be the graph gotten by taking C_n and adding, at each vertex v_i , an edge from v_i to v_{i+i} .

So
$$C_n^{n-1} = C_n^{-1}$$
.

We understand $L_{\mathcal{K}}(C_n^0)$ and $L_{\mathcal{K}}(C_n^1)$ quite well.

We also understand $L_{\mathcal{K}}(C_n^2)$; the description involves the Fibonacci sequence.

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

For each $n \in \mathbb{N}$, let C_n be the "basic cycle graph" with *n* vertices. For $0 \le i \le n-1$, let C_n^j be the graph gotten by taking C_n and adding, at each vertex v_i , an edge from v_i to v_{i+i} .

So
$$C_n^{n-1} = C_n^{-1}$$
.

We understand $L_{\mathcal{K}}(C_n^0)$ and $L_{\mathcal{K}}(C_n^1)$ quite well.

We also understand $L_{\mathcal{K}}(C_n^2)$; the description involves the Fibonacci sequence.

We have some conjectures about $L_{\mathcal{K}}(C_n^3)$.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

For each $n \in \mathbb{N}$, let C_n be the "basic cycle graph" with *n* vertices. For $0 \le i \le n-1$, let C_n^j be the graph gotten by taking C_n and adding, at each vertex v_i , an edge from v_i to v_{i+i} .

So
$$C_n^{n-1} = C_n^{-1}$$
.

We understand $L_{\mathcal{K}}(C_n^0)$ and $L_{\mathcal{K}}(C_n^1)$ quite well.

We also understand $L_{\mathcal{K}}(C_n^2)$; the description involves the Fibonacci sequence.

We have some conjectures about $L_{\kappa}(C_n^3)$.

Interestingly, we have not seen any sort of cyclic pattern in the K_0 groups of $L_{\kappa}(C_n^{n-2})$.

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

Can we drop the determinant hypothesis?

Algebraic KP Question:

Can we drop the hypothesis on the sign of the determinants in the Restricted Algebraic KP Theorem?

Iniversity of Colorado @ Colorado Springs

Gene Abrams

Can we drop the determinant hypothesis?

Here's the "smallest" example of a situation of interest. Consider the Leavitt path algebras $L(R_2)$ and $L(E_4)$, where

$$R_2 = \overset{\frown}{\bullet} \overset{\lor}{} \overset{}{} \overset{\lor}{} \overset{}{} \overset{\circ}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset$$

It is not hard to establish that

$$(K_0(L(R_2)), [1_{L(R_2)}]) = (\{0\}, 0) = (K_0(L(E_4)), [1_{L(E_4)}]);$$

 $det(I - A_{R_2}^t) = -1;$ and $det(I - A_{E_4}^t) = 1.$

Gene Abrams

Can we drop the determinant hypothesis?

Here's the "smallest" example of a situation of interest. Consider the Leavitt path algebras $L(R_2)$ and $L(E_4)$, where

$$R_2 = \overset{\frown}{\bullet} \overset{\lor}{} \overset{}{} \overset{\lor}{} \overset{}{} \overset{\circ}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset{}{} \overset$$

It is not hard to establish that

$$(K_0(L(R_2)), [1_{L(R_2)}]) = (\{0\}, 0) = (K_0(L(E_4)), [1_{L(E_4)}]);$$

 $det(I - A_{R_2}^t) = -1;$ and $det(I - A_{E_4}^t) = 1.$

Question: Is
$$L_{\mathcal{K}}(R_2) \cong L_{\mathcal{K}}(E_4)$$
?

Gene Abrams

Questions?

Thanks to the Simons Foundation

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>