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Throughout R is associative K -algebra, but not necessarily with
identity.

Assume R at least has enough idempotents: RR = ⊕i∈IRei .

If R is not unital, denote by R1 the (standard) unital K -algebra for
which dimK (R1/R) = 1. (Dorroh extension)
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Prime rings

Definition: R is prime if the product of any two nonzero two-sided
ideals of R is nonzero.

e.g. K , K [x , x−1], any simple K -algebra.

Note: Definition of primeness makes sense for nonunital rings.

Lemma: R nonunital. Then R prime ⇔ R1 prime.
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Primitive rings

Definition: R is left primitive if R admits a faithful simple
(= irreducible) left R-module;
i.e. if there exists RM simple for which AnnR(M) = {0}.

Examples: any simple K -algebra.
Note: a set of enough idempotents can be used to build
irreducibles.

NON-Examples: many, e.g. K [x , x−1].

Note: Definition of primitivity makes sense for non-unital rings.

If R is prime, then R is primitive ⇔ R1 is primitive.

Well-known (and easy) Proposition: Every primitive ring is prime.
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Leavitt path algebras

Let E = (E 0,E 1, r , s) be any directed graph, and K any field.

•s(e) e // •r(e)

Construct the double graph (or extended graph) Ê , and then the
path algebra KÊ .

Impose these relations in KÊ :

(CK1) e∗e = r(e); f ∗e = 0 for f 6= e in E 1; and

(CK2) v =
∑
{e∈E1|s(e)=v} ee

∗ for all v ∈ E 0

(just at those vertices v which are regular: 0 < |s−1(v)| <∞)

Then the Leavitt path algebra of E with coefficients in K is:

LK (E ) = KÊ / < (CK1), (CK2) >
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(CK1) e∗e = r(e); f ∗e = 0 for f 6= e in E 1; and

(CK2) v =
∑
{e∈E1|s(e)=v} ee

∗ for all v ∈ E 0

(just at those vertices v which are regular: 0 < |s−1(v)| <∞)

Then the Leavitt path algebra of E with coefficients in K is:
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Leavitt path algebras: Examples

Example 1.

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

Example 2.

E = •v1
e1 // •v2

e2 // •v3 // · · ·
Then LK (E ) ∼= FMN(K ).

Example 3.

E = •v1
(N) // •v2

Then LK (E ) ∼= FMN(K )1.
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Leavitt path algebras: Examples

Example 4.
E = R1 = •v xff

Then LK (E ) ∼= K [x , x−1].

Example 5.

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the Leavitt algebra of type (1, n).
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Leavitt path algebras: basic properties

1. LK (E ) has enough idempotents. LK (E ) is unital if and only if
E 0 is finite; in this case 1LK (E) =

∑
v∈E0 v .

2. Every element of LK (E ) can be expressed as
∑n

i=1 kiαiβ
∗
i where

ki ∈ K and αi , βi are paths for which r(αi ) = r(βi ). (This is not
generally a basis.)

3. An exit e for a cycle c = e1e2 · · · en based at v is an edge for
which s(e) = s(ei ) for some 1 ≤ i ≤ n, but e 6= ei .

If every cycle in E has an exit (Condition (L)), then every
nonzero ideal of LK (E ) contains a vertex.

4. If c is a cycle based at v for which c has no exit, then
vLK (E )v ∼= K [x , x−1].

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Leavitt path algebras: basic properties

1. LK (E ) has enough idempotents. LK (E ) is unital if and only if
E 0 is finite; in this case 1LK (E) =

∑
v∈E0 v .

2. Every element of LK (E ) can be expressed as
∑n

i=1 kiαiβ
∗
i where

ki ∈ K and αi , βi are paths for which r(αi ) = r(βi ). (This is not
generally a basis.)

3. An exit e for a cycle c = e1e2 · · · en based at v is an edge for
which s(e) = s(ei ) for some 1 ≤ i ≤ n, but e 6= ei .

If every cycle in E has an exit (Condition (L)), then every
nonzero ideal of LK (E ) contains a vertex.

4. If c is a cycle based at v for which c has no exit, then
vLK (E )v ∼= K [x , x−1].

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Leavitt path algebras: basic properties

1. LK (E ) has enough idempotents. LK (E ) is unital if and only if
E 0 is finite; in this case 1LK (E) =

∑
v∈E0 v .

2. Every element of LK (E ) can be expressed as
∑n

i=1 kiαiβ
∗
i where

ki ∈ K and αi , βi are paths for which r(αi ) = r(βi ). (This is not
generally a basis.)

3. An exit e for a cycle c = e1e2 · · · en based at v is an edge for
which s(e) = s(ei ) for some 1 ≤ i ≤ n, but e 6= ei .

If every cycle in E has an exit (Condition (L)), then every
nonzero ideal of LK (E ) contains a vertex.

4. If c is a cycle based at v for which c has no exit, then
vLK (E )v ∼= K [x , x−1].

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Leavitt path algebras: basic properties

1. LK (E ) has enough idempotents. LK (E ) is unital if and only if
E 0 is finite; in this case 1LK (E) =

∑
v∈E0 v .

2. Every element of LK (E ) can be expressed as
∑n

i=1 kiαiβ
∗
i where

ki ∈ K and αi , βi are paths for which r(αi ) = r(βi ). (This is not
generally a basis.)

3. An exit e for a cycle c = e1e2 · · · en based at v is an edge for
which s(e) = s(ei ) for some 1 ≤ i ≤ n, but e 6= ei .

If every cycle in E has an exit (Condition (L)), then every
nonzero ideal of LK (E ) contains a vertex.

4. If c is a cycle based at v for which c has no exit, then
vLK (E )v ∼= K [x , x−1].

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Prime Leavitt path algebras

Notation: u ≥ v means either u = v or there exists a path p in E
for which s(p) = u, r(p) = v . u connects to v .

Lemma. If I is a two-sided ideal of LK (E ), and u ∈ E 0 has u ∈ I ,
and u ≥ v , then v ∈ I .
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Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary.
Then

LK (E ) is prime ⇐⇒

for each pair v ,w ∈ E 0 there exists u ∈ E 0 with v ≥ u and w ≥ u.

Downward Directed or Condition (MT3)

Idea of Proof.

(⇒) 〈v〉〈w〉 6= {0}.
(⇐) Use previous Lemma.
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The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable
Separation Property (CSP) if there exists a countable set of vertices
S in E for which every vertex of E connects to an element of S .

E has the Countable Separation Property with respect to S .
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The Countable Separation Property

So trivially, if E 0 is countable, then E has CSP.

Example: X uncountable, S the set of finite subsets of X . Define
the graph EX :

1 vertices indexed by S , and
2 edges induced by proper subset relationship.

Then EX does not have CSP.
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Primitive Leavitt path algebras

Note: Since LK (E ) ∼= LK (E )op, left primitivity and right primitivity
coincide for Leavitt path algebras.

Theorem. (A-, Bell, Rangaswamy, to appear, Trans. A.M.S.)

LK (E ) is primitive ⇐⇒

1 LK (E ) is prime (i.e., E is downward directed),
2 every cycle in E has an exit (i.e., E has Condition (L)), and
3 E has the Countable Separation Property.
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LK (E ) primitive ⇔ E has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a
left ideal N 6= R of R such that for every nonzero two-sided ideal I
of R , N + I = R .

2. Embed a prime LK (E ) in a unital algebra LK (E )1 in the usual
way; primitivity is preserved.

3. Show that CSP allows us to build a left ideal in LK (E )1 with the
desired properties.

4. Then show that the lack of the CSP implies that no such left
ideal can exist in LK (E )1.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

(⇐). Suppose E downward directed, E has Condition (L), and E
has CSP.

Suffices to establish primitivity of LK (E )1. Let T denote a set of
vertices w/resp. to which E has CSP.

T is countable: label the elements T = {v1, v2, ...}.
Using downward directedness of E , inductively define a sequence
λ1, λ2, ... of paths in E for which, for each i ∈ N,

1 λi is an initial subpath of λj whenever i ≤ j , and
2 vi ≥ r(λi ).
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Note: Each λiλ
∗
i is idempotent in LK (E )1.

And since λi is an initial subpath of λt for all i ≤ t, we get that

(1− λiλ
∗
i )(1− λtλ

∗
t ) = 1− λiλ

∗
i for i ≤ t.

Define N =
∑∞

i=1 LK (E )1(1− λiλ
∗
i ).

Easily N 6= LK (E )1.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of LK (E )1 contains some
λnλ

∗
n.

Idea: E is downward directed, so LK (E ), and therefore LK (E )1, is
prime. Since LK (E ) embeds in LK (E )1 as a two-sided ideal, we get
I ∩ LK (E ) is a nonzero two-sided ideal of LK (E ). So Condition (L)
gives that I contains some vertex w .

Then w ≥ vn for some n by CSP. But vn ≥ r(λn) by construction,
so w ≥ r(λn). So w ∈ I gives r(λn) ∈ I , so

λnλ
∗
n = λn · r(λn) · λ∗n ∈ I .

Now we’re done. Show N + I = LK (E )1 for every nonzero
two-sided ideal I of LK (E )1. But 1− λnλ

∗
n ∈ N (all n ∈ N) and

λnλ
∗
n ∈ I (some n ∈ N) gives 1 ∈ N + I . �
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

For the converse:

1) If E is not downward directed then LK (E ) not prime, so that
LK (E ) not primitive.

2) General ring theory result:

If R is primitive and 0 6= f = f 2 ∈ R then fRf is primitive.

So if E fails to have Condition (L), then E contains a cycle c
(based at v) without exit, so that vLK (E )v ∼= K [x , x−1], which is
not primitive, and thus LK (E ) is not primitive.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then LK (E ) is
not primitive.

Use this easy Lemma:
Let N be a left ideal of a unital ring A. If there exist x , y ∈ A with

1+ x ∈ N, 1+ y ∈ N, and xy = 0,

then N = A.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist a
left ideal N 6= LK (E )1 for which N + I = LK (E )1 for all two-sided
ideals I of LK (E )1.

To do this: assume N is such an ideal, show N = LK (E )1.

Strategy: If N has this property, then for each v ∈ E 0 we have
N + 〈v〉 = LK (E )1.

This gives a set {xv | v ∈ E 0} ⊆ LK (E )1 for which xv ∈ 〈v〉, and
1+ xv ∈ N for all v ∈ E 0.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Now show that the lack of CSP in E 0 forces the existence of a pair
of vertices v ,w for which xv · xw = 0. (This is the technical part.)

Then use the Lemma.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Key pieces of the technical part:

1 Every element ` of LK (E ) can be written as
∑n

i=1 kiαiβ
∗
i for

some n = n(`), and paths αi , βi . In particular, we can cover all
elements of LK (E ) by specifying n and lengths of paths. This
is a countable covering of LK (E ). (Not a partition.)

2 Collect up the xv according to this covering. Since E does not
have CSP, then some specific subset in the cover does not
have CSP.

3 Show that, in this specific subset Z , there exists v ∈ Z for
which the set

{w ∈ Z | xvxw = 0}

does not have CSP. In particular, this set is nonempty. Pick
such v and w . Then we are done by the Lemma. �
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von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

∀a ∈ R ∃ x ∈ R with a = axa.

R is not required to be unital.

R is regular ⇔ R1 is regular.
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Kaplansky’s Question

Kaplansky’s Question:

I. Kaplansky, Algebraic and analytic aspects of operator algebras,
AMS, 1970.

Is every regular prime algebra primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example. (Clever, but very ad hoc.)
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Kaplansky’s Question

Theorem. (A-, K.M. Rangaswamy 2010)

LK (E ) is von Neumann regular ⇔ E is acyclic.

Idea of Proof: (⇐) If E contains a cycle c based at v , can show
that a = v + c has no regular inverse.
(⇒) Show that if E is acyclic then every element of LK (E ) can be
trapped in a subring of LK (E ) which is isomorphic to a finite direct
sum of finite matrix rings.
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Application to Kaplansky’s question

It’s not hard to find acyclic graphs E for which LK (E ) is prime but
for which C.S.P. fails.

Example (described previously): X uncountable, S the set of finite
subsets of X . Define the graph EX :
- vertices indexed by S , and
- edges induced by proper subset relationship.

Then for the graph EX ,
1 LK (EX ) is regular (E is acyclic)
2 LK (EX ) is prime (E is downward directed)
3 LK (EX ) is not primitive (E does not have CSP).
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Application to Kaplansky’s question

By using uncountable sets of different cardinalities, we get an
infinite class of algebras which answer Kaplansky’s question in the
negative.

Theorem: For any field K , there exists an infinite class of
K -algebras (of the form LK (EX )) which are von Neumann regular
and prime, but not primitive.

Remark: These examples are also Cohn path algebras.

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Application to Kaplansky’s question

By using uncountable sets of different cardinalities, we get an
infinite class of algebras which answer Kaplansky’s question in the
negative.

Theorem: For any field K , there exists an infinite class of
K -algebras (of the form LK (EX )) which are von Neumann regular
and prime, but not primitive.

Remark: These examples are also Cohn path algebras.

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras



Application to Kaplansky’s question

For these graphs E , embedding LK (E ) in LK (E )1 in the usual way
gives unital, prime, non-primitive, von Neumann regular algebras.
So we get

Theorem: For any field K , there exists an infinite class of unital
K -algebras (of the form LK (EX )1) which are prime, non-primitive,
and von Neumann regular.

Remark: The algebras LK (EX )1 are never Leavitt path algebras.
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Application to Kaplansky’s question

Note: There are additional classes of graphs E which are

- acyclic,

- and downward directed,

- but don’t have C.S.P.

From these we get additional examples of (both unital and
nonunital) von Neumann regular, prime, non-primitive algebras.
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Primitive graph C∗-algebras

An intriguing connection:

Theorem. (A-, Mark Tomforde, submitted)

Let E be any graph. Then C ∗(E ) is primitive ⇐⇒
1 E is downward directed,
2 E satisfies Condition (L), and
3 E satisfies the Countable Separation Property.

⇐⇒ LK (E ) is primitive for every field K .

This theorem yields an infinite class of examples of prime,
nonprimitive C∗-algebras.
Proofs of the sufficiency direction for LC(E ) and C ∗(E ) results are
dramatically different.
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Questions?

Gene Abrams University of Colorado @ Colorado Springs
UCCS

Constructing classes of prime, non-primitive, von Neumann regular algebras


