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General path algebras

K always denotes a field. Any field.

Let E be a directed graph. E = (E 0,E 1, r , s)

•s(e) e // •r(e)

The path algebra KE is the K -algebra with basis {pi} consisting of
the directed paths in E . (View vertices as paths of length 0.)

p · q = pq if r(p) = s(q), 0 otherwise.

In particular, s(e) · e = e = e · r(e).

Note: E 0 finite ⇔ KE is unital; then 1KE =
∑

v∈E0 v .
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e = r(e) for all e ∈ E 1; f ∗e = 0 for all f 6= e ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at regular vertices v , i.e., not sinks, not infinite emitters)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >

Gene Abrams University of Colorado Colorado SpringsUCCS

Connections between Leavitt path algebras and graph C∗-algebras Is there a Rosetta Stone?



Leavitt path algebras Connections to graph C∗-algebras What we know: Similarities and Differences What we don’t know

Building Leavitt path algebras
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w hh∗ = u ff ∗ = ... (no simplification)

But (ff ∗)2 = f (f ∗f )f ∗ = f · w · f ∗ = ff ∗.
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the “Leavitt K -algebra of order n”.

(W.G. Leavitt, Transactions. A.M.S. 1962).

LK (1, n) is the universal K -algebra R for which RR ∼= RRn.

LK (1, n) = 〈x1, ..., xn, y1, ..., yn | xiyj = δi ,j1K ,
n∑

i=1

yixi = 1K 〉
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Leavitt path algebras

Some general properties of Leavitt path algebras:

1 LK (E ) = spanK{pq∗ | p, q paths in E}.

2 LK (E ) ∼= LK (E )op.

3 LK (E ) admits a natural Z-grading: deg(pq∗) = `(p)− `(q).

4 J(LK (E )) = {0}.
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Graph C∗-algebras

E any directed graph, H a Hilbert space.

Definition. A Cuntz-Krieger E -family in B(H) is a collection of
mutually orthogonal projections {Pv | v ∈ E 0}, and partial
isometries {Se | e ∈ E 1} with mutually orthogonal ranges, for
which:

(CK1) S∗e Se = Pr(e) for all e ∈ E 1,

(CK2)
∑
{e|s(e)=v} SeS∗e = Pv whenever v is a regular vertex, and

(CK3) SeS∗e ≤ Ps(e) for all e ∈ E 1.

The graph C∗-algebra C ∗(E ) of E is the universal C∗-algebra
generated by a Cuntz-Krieger E -family.
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Graph C∗-algebras

For µ = e1e2 · · · en a path in E ,
let Sµ denote Se1Se2 · · · Sen ∈ C ∗(E ).

The Key Connection: Consider

A = spanC{Pv , SµS∗ν | v ∈ E 0, µ, ν paths in E} ⊆ C ∗(E ).

Then LC(E ) ∼= A as ∗-algebras.

Consequently, C ∗(E ) may be viewed as the completion (in
operator norm) of LC(E ).

So it’s probably not surprising that there are some close
relationships between LC(E ) and C ∗(E ).
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Graph C∗-algebras: Examples

Here are the graph C∗-algebras which arise from the graphs of the
previous examples.

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then C ∗(E ) ∼= Mn(C) ∼= LC(E ).

E = •v ff
Then C ∗(E ) ∼= C (T), the continuous functions on the unit circle.
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Graph C∗-algebras: Examples

E = Rn = •v y1ff

y2
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Then C ∗(E ) ∼= On, the Cuntz algebra of order n.
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Brief History

1962: Leavitt defines / investigates LK (1, n).

1977: Cuntz defines / investigates On.

1980 - 2000: Various authors generalize Cuntz’ construction;
eventually, graph C∗-algebras are defined / investigated.

2005: Leavitt path algebras are defined / investigated.
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Some graph terminology

Example •u
h

~~
•v

g

==•w
f

{{

i
QQ j

// •x

1 cycle;

2 exit for a cycle;

3 Condition (L);

4 connects to a cycle;

5 cofinal

Standing hypothesis: All graphs are finite (for now) ...
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Similarities

We begin by looking at some similarities between
the structure of LK (E ) and the structure of C ∗(E ).
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Simplicity

Simplicity:

Algebraic: No nontrivial two-sided ideals.

Analytic: No nontrivial closed two-sided ideals.
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Simplicity

Theorem: These are equivalent for any finite graph E :

1 LC(E ) is simple

2 LK (E ) is simple for any field K

3 C ∗(E ) is (topologically) simple

4 C ∗(E ) is (algebraically) simple

5 E is cofinal, and satisfies Condition (L).

Sketch of Proof: Show (3) ⇔ (5). This uses some fairly heavy
C∗-artillery, “Gauge Invariant Uniqueness Theorem” (2000)

Show (2) ⇔ (5). This essentially can be done by an analysis of
specific elements of LK (E ). (2005) (1) ⇔ (5) similarly.
(3) ⇔ (4) is some elementary analysis.

Big Question:
Can we go ’directly’ between (1) or (2), and (3) or (4) ??
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1 LC(E ) is simple

2 LK (E ) is simple for any field K

3 C ∗(E ) is (topologically) simple

4 C ∗(E ) is (algebraically) simple

5 E is cofinal, and satisfies Condition (L).
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Purely infinite simplicity

Theorem: These are equivalent for any finite graph E :

1 LC(E ) is purely infinite simple

2 LK (E ) is purely infinite simple for any field K

3 C ∗(E ) is (topologically) purely infinite simple

4 C ∗(E ) is (algebraically) purely infinite simple

5 E is cofinal, satisfies Condition (L), and contains at least one
cycle

Same Big Question:
Can we go ’directly’ between (1) or (2), and (3) or (4) ??
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Rosetta Stone?

There are many additional examples of this sort of behavior:

For instance:

1 primitivity

2 exchange property

3 V-monoid (in particular, K0(LK (E )) ∼= K0(C ∗(E )))

4 possible values of stable rank

But there are no ’direct’ proofs for any of them.

Is there some sort of Rosetta Stone ??
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The Kirchberg Phillips Theorem

Kirchberg Phillips Theorem (2000): Classification result for a class
of C∗-algebras in terms of K -theoretic data.

In the context of graph C∗-algebras for finite graphs, it looks like
this:

Theorem: Suppose E and F are finite graphs for which C ∗(E )
and C ∗(F ) are purely infinite simple. Suppose

(K0(C ∗(E )), [1C∗(E)]) ∼= (K0(C ∗(F )), [1C∗(F )]).

Then C ∗(E ) ∼= C ∗(F ) homeomorphically.

The KP Theorem plays an intriguing role in the Rosetta Stone
question.
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Matrices over Leavitt algebras

Here’s another connection between Leavitt path algebras and
graph C∗-algebras.

W. Paschke and N. Salinas, Matrix algebras over On, Michigan J.
Math, 1979

For which d ∈ N is it the case that On
∼= Md(On)?

The answer (in retrospect) follows from the Kirchberg Phillips
Theorem: if and only of gcd(d , n − 1) = 1.
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Matrices over Leavitt algebras

From the Leavitt path algebra side: Let R = LC(1, n). So

RR ∼= RRn.

So this gives in particular R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...
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Matrices over Leavitt algebras

Question: Are there other matrix sizes d for which R ∼= Md(R)?
Answer: In general, yes.

For instance, if R = L(1, 4), then it’s not hard to show that
R ∼= M2(R) as rings (even though R � RR2 as modules).
Idea: 2 and 4 are nicely related, so these eight matrices inside
M2(L(1, 4)) “work”:

X1 =

(
x1 0
x2 0

)
, X2 =

(
x3 0
x4 0

)
, X3 =

(
0 x1

0 x2

)
, X4 =

(
0 x3

0 x4

)
together with their duals

Y1 =

(
y1 y2

0 0

)
, Y2 =

(
y3 y4

0 0

)
, Y3 =

(
0 0
y1 y2

)
, Y4 =

(
0 0
y3 y4

)
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Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if d |nt for some t ∈ N, then L(1, n) ∼= Md(L(1, n)).

On the other hand ...

If R = L(1, n), then the “type” of R is n − 1. (Think: “smallest
difference”). Bill Leavitt showed the following in his 1962 paper:

The type of Md(L(1, n)) is n−1
g .c.d .(d ,n−1) .

In particular, if g .c .d .(d , n − 1) > 1, then L(1, n) � Md(L(1, n)).

Conjecture: L(1, n) ∼= Md(L(1, n)) ⇔ g .c.d .(d , n − 1) = 1.

(Note: d |nt ⇒ g .c .d .(d , n − 1) = 1.)
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Matrices over Leavitt algebras

Smallest interesting pair: Is L(1, 5) ∼= M3(L(1, 5))?

We are led “naturally” to consider these five matrices (and their
duals) in M3(L(1, 5)):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1

0 0 x3x1

 0 0 x4x1

0 0 x5x1

0 0 x2

 0 0 x3

0 0 x4

0 0 x5


Everything went along nicely...

except, we couldn’t see how to
generate the matrix units e1,3 and e3,1 inside M3(L(1, 5)) using
these ten matrices.
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Matrices over Leavitt algebras

Breakthrough (came from an analysis of isomorphisms between a
specific class of Leavitt path algebras) ... we were using the wrong
ten matrices.

Original set:x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1

0 0 x3x1

 0 0 x4x1

0 0 x5x1

0 0 x2

 0 0 x3

0 0 x4

0 0 x5


Instead, this set (together with duals) works:x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1

0 0 x3x1

 0 0 x4x1

0 0 x5x1

0 0 x2

 0 0 x4

0 0 x3

0 0 x5
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Matrices over Leavitt algebras

Theorem

(A-, Ánh, Pardo; Crelle’s J. 2008) For any field K ,

LK (1, n) ∼= Md(LK (1, n)) ⇔ g .c .d .(d , n − 1) = 1.

Indeed, more generally,

Md(LK (1, n)) ∼= Md ′(LK (1, n′)) ⇔
n = n′ and g .c .d .(d , n − 1) = g .c .d .(d ′, n − 1).

Moreover, we can write down the isomorphisms explicitly.

Along the way, some elementary (but apparently new) number
theory ideas come into play.
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Given n, d with g .c.d .(d , n − 1) = 1, there is a “natural” partition
of {1, 2, . . . , n} into two disjoint subsets.

Here’s what made this second set of matrices work. Using this
partition in the particular case n = 5, d = 3, then the partition of
{1, 2, 3, 4, 5} turns out to be the two sets

{1, 4} and {2, 3, 5}.

The matrices that “worked” are ones where we fill in the last
columns with terms of the form xix

j
1 in such a way that i is in the

same subset as the row number of that entry.

The number theory underlying this partition in the general case
where g.c.d.(d , n− 1) = 1 is elementary. But we are hoping to find
some other ’context’ in which this partition process arises.
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Matrices over Leavitt algebras

Computations when n = 5, d = 3.

gcd(3, 5− 1) = 1. Now 5 = 1 · 3 + 2, so that r = 2, r − 1 = 1, and
define s = d − (r − 1) = 3− 1 = 2.

Consider the sequence starting at 1, and increasing by s each step,
and interpret mod d (1 ≤ i ≤ d). This will necessarily give all
integers between 1 and d .

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 1, here we get

{1, 2, 3} = {1} ∪ {2, 3}.
Now extend these two sets mod 3 to all integers up to 5.

{1, 4} ∪ {2, 3, 5}
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Matrices over Leavitt algebras

Computations when n = 5, d = 3.

gcd(3, 5− 1) = 1. Now 5 = 1 · 3 + 2, so that r = 2, r − 1 = 1, and
define s = d − (r − 1) = 3− 1 = 2.

Consider the sequence starting at 1, and increasing by s each step,
and interpret mod d (1 ≤ i ≤ d). This will necessarily give all
integers between 1 and d .

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 1, here we get

{1, 2, 3} = {1} ∪ {2, 3}.
Now extend these two sets mod 3 to all integers up to 5.

{1, 4} ∪ {2, 3, 5}
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Matrices over Leavitt algebras

Does this look familiar?
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Matrices over Leavitt algebras

Corollary. (Answer to the Paschke Salinas Question)

On
∼= Md(On) ⇔ g .c.d .(d , n − 1) = 1.

(And the isomorphisms are explicitly described.)

Proof. The explicitly constructed algebraic isomorphism between
the matrices over Leavitt path algebras turns out to preserve the ∗
structure, and so (easily) can be shown to extend to the
corresponding completions.
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Matrices over Leavitt algebras

An important recent application:

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group G +

n,r .

These were introduced by G. Higman, 1974.

Theorem. (E. Pardo, 2011)

G +
n,r
∼= G +

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Show that G +
n,r can be realized as an appropriate subgroup

of the invertible elements of Mr (LC(1, n)), and then use the
explicit isomorphisms provided in the A -, Ánh, Pardo result.
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Differences

We now look at some differences between
the structure of LK (E ) and the structure of C ∗(E ).
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Primeness

Algebraic: R is a prime ring in case {0} is a prime ideal of R; that
is, in case for any two-sided ideals I , J of R, I · J = {0} if and only
if I = {0} or J = {0}.

Theorem. K any field, E any graph.
LK (E ) is prime ⇔ E is downward directed.
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Primeness

Analytic: A is a prime C∗-algebra in case {0} is a prime ideal of A;
that is, in case for any closed two-sided ideals I , J of R, I · J = {0}
if and only if I = {0} or J = {0}.

Theorem: C ∗(E ) is prime ⇔ E downward directed and satisfies
Condition (L).

So for example LK ( • ee ) is prime, but C ∗( • ee ) is not prime.
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More Differences

Here are some additional properties which differ between Leavitt
path algebras and graph C∗-algebras.

1 (for E purely infinite simple) K1(C ∗(E )) depends only on AE ,
while K1(LK (E )) depends also on the unit group of K .

2 There is no Bott periodicity for LK (E ).

3 O2 ⊗O2
∼= O2, but LC(1, 2)⊗ LC (1, 2) 6∼= LC(1, 2). Note:

The fact that O2 ⊗O2
∼= O2 is used in an essential way in

Phillips’ proof of the KP Theorem.
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1 Leavitt path algebras

2 Connections to graph C∗-algebras

3 What we know: Similarities and Differences

4 What we don’t know
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What we don’t know ...

We continue by looking at properties for which

we do not currently know

whether these give similarities or differences between
the structure of LK (E ) and the structure of C ∗(E ).
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The isomorphism question

Perhaps the most basic question ...

If LC(E ) ∼= LC(F ), does this imply C ∗(E ) ∼= C ∗(F )?

And conversely?

(Need to interpret “isomorphism” appropriately.)

Partial answer: OK in case the graph algebras are simple.

But this result uses some heavy classification machinery, including
the Kirchberg Phillips Theorem.

Answer not known in general.

Converse? It’s not known whether C ∗(E ) ∼= C ∗(F ) implies
LC(E ) ∼= LC(F ), even in the simple case.
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An algebraic Kirchberg Phillips Theorem?
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An algebraic Kirchberg / Phillips Theorem?

We currently don’t know whether there is an algebraic analog to
the KP Theorem for purely infinite simple Leavitt path algebras.
That is ....

Let K be a field. Suppose E and F are finite graphs for which
LK (E ) and LK (F ) are purely infinite simple. Suppose

(K0(LK (E )), [1LK (E)]) ∼= (K0(LK (F )), [1LK (F )]).

Does this imply that LK (E ) ∼= LK (F ) ?

“Algebraic KP Question”
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An algebraic Kirchberg Phillips Theorem?

Here’s one approach which could possibly be used to answer the
Algebraic KP Question. We try to re-prove or re-interpret the KP
Theorem using techniques which might possibly be applicable in
the algebraic setting. Here’s a possible way to do that:

(Step 1) Use results from symbolic dynamics to show that the
isomorphism C ∗(E ) ∼= C ∗(F ) follows in case one also assumes that
det(I − AE ) = det(I − AF ).

(Step 2) Use KK-theory to show that the graph C∗-algebras
C ∗(E2) and C ∗(E4) are isomorphic:

E2 = •v1
** ** •v2

ffjj and

E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4

ffjj

(These have identical K -theory, but different determinants.)
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An algebraic Kirchberg / Phillips Theorem?

(Step 3) Reduce the “bridging of the determinant gap” for all
appropriate pairs of graphs to the question of establishing a
specific isomorphism of an infinite dimensional vector space having
specified properties (use the isomorphism from (2))

(Step 4) Show such an isomorphism exists.
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An algebraic Kirchberg / Phillips Theorem?

For Leavitt path algebras we have:

“Restricted” Algebraic KP Theorem: In this situation, if we
also assume det(I − AE ) = det(I − AF ), then we get
LK (E ) ∼= LK (F ). (The proof uses the same deep results from
symbolic dynamics mentioned above.)

We do not know whether or not LK (E2) ∼= LK (E4).

Is there a good analog to KK theory in the algebraic context?

Is there an explicit isomorphism from C ∗(E2) to C ∗(E4) that
we can possibly exploit?

If it turns out that LK (E2) ∼= LK (E4), it’s not clear how one could
use this to establish isomorphisms between Leavitt path algebras of
different pairs of graphs for which the K -theory matches up but
the signs of the determinants do not.
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An algebraic Kirchberg / Phillips Theorem?

Algebraic KP Conjecture:

Yours is as good as anyone elses ...

There are three possibilities: Yes, No, and Sometimes. The answer
will be interesting, no matter how things play out.

Gene Abrams University of Colorado Colorado SpringsUCCS

Connections between Leavitt path algebras and graph C∗-algebras Is there a Rosetta Stone?



Leavitt path algebras Connections to graph C∗-algebras What we know: Similarities and Differences What we don’t know

An algebraic Kirchberg / Phillips Theorem?

Algebraic KP Conjecture: Yours is as good as anyone elses ...

There are three possibilities: Yes, No, and Sometimes. The answer
will be interesting, no matter how things play out.

Gene Abrams University of Colorado Colorado SpringsUCCS

Connections between Leavitt path algebras and graph C∗-algebras Is there a Rosetta Stone?



Leavitt path algebras Connections to graph C∗-algebras What we know: Similarities and Differences What we don’t know

An algebraic Kirchberg / Phillips Theorem?

Algebraic KP Conjecture: Yours is as good as anyone elses ...

There are three possibilities: Yes, No, and Sometimes. The answer
will be interesting, no matter how things play out.

Gene Abrams University of Colorado Colorado SpringsUCCS

Connections between Leavitt path algebras and graph C∗-algebras Is there a Rosetta Stone?



Leavitt path algebras Connections to graph C∗-algebras What we know: Similarities and Differences What we don’t know

Thank you.

Thanks also to The Simons Foundation.
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