
Gene Abrams, Pere Ara, Mercedes Siles Molina

Leavitt path algebras

June 14, 2016

Springer





vi

Preface

The great challenge in writing a book about a topic of ongoing mathematical research interest lies in
determining who and what. Who are the readers for whom the book is intended? What pieces of the research
should be included?

The topic of Leavitt path algebras presents both of these challenges, in the extreme. Indeed, much
of the beauty inherent in this topic stems from the fact that it may be approached from many different
directions, and on many different levels.

The topic encompasses classical ring theory at its finest. While at first glance these Leavitt path algebras
may seem somewhat exotic, in fact many standard, well-understood algebras arise in this context: matrix
rings and Laurent polynomial rings, to name just two. Many of the fundamental, classical ring-theoretic
concepts have been and continue to be explored here, including the ideal structure, Z-grading, and structure
of finitely generated projective modules, to name just a few.

The topic continues a long tradition of associating an algebra with an appropriate combinatorial structure
(here, a directed graph), the subsequent goal being to establish relationships between the algebra and the
associated structures. In this particular setting, the topic allows for (and is enhanced by) visual, pictorial
representation via directed graphs. Many readers are no doubt familiar with the by-now classical way
of associating an algebra over a field with a directed graph, the standard path algebra. The construction
of the Leavitt path algebra provides another such connection. The path algebra and Leavitt path algebra
constructions are indeed related, via algebras of quotients. However, one may understand Leavitt path
algebras without any prior knowledge of the path algebra construction.

The topic has significant, deep connections with other branches of mathematics. For instance, many of
the initial results in Leavitt path algebras were guided and motivated by results previously known about
their analytic cousins, the graph C*-algebras. The study of Leavitt path algebras quickly matured to ado-
lescence (when it became clear that the algebraic results are not implied by the C* results), and almost
immediately thereafter to adulthood (when in fact some C* results, including some new C* results, were
shown to follow from the algebraic results). Indeed, a number of longstanding questions in algebra have
recently been resolved using Leavitt path algebras as a tool, thus further establishing the maturity of the
subject.

The topic continues a deep tradition evident in many branches of mathematics in which K-theory plays
an important role. Indeed, in retrospect, one can view Leavitt path algebras as precisely those algebras
constructed to produce specified K-theoretic data in a universal way, data arising naturally from directed
graphs. Much of the current work in the field is focused on better understanding just how large a role the
K-theoretic data plays in determining the structure of these algebras.

Our goal in writing this book, the Why? of this book, simultaneously addresses both the Who? and What?
questions. We provide here a self-contained presentation of the topic of Leavitt path algebras, a presentation
which will allow readers having different backgrounds and different topical interests to understand and
appreciate these structures. In particular, graduate students having only a first year course in ring theory
should find most of the material in this book quite accessible. Similarly, researchers who don’t self-identify
as algebraists (e.g., people working in C*-algebras or symbolic dynamics) will be able to understand how
these Leavitt path algebras stem from, or apply to, their own research interests. While most of the results
contained here have appeared elsewhere in the literature, a few of the central results appear here for the
first time. The style will be relatively informal. We will often provide historical motivation and overview,
both to increase the reader’s understanding of the subject and to play up the connections with other areas
of mathematics. Although space considerations clearly require us to eliminate some otherwise interesting
and important topics from inclusion, we provide an extensive bibliography for those readers who seek
additional information about various topics which arise herein.

More candidly, our real Why? for writing this book is to share what we know about Leavitt path algebras
in such a way that others might become prepared, and subsequently inspired, to join in the game.
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Chapter 1
The basics of Leavitt path algebras: motivations, definitions
and examples
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ABSTRACT: We introduce the central idea, that of a Leavitt path algebra. We start by describing the
classical Leavitt algebras. We then proceed to give the definition of the Leavitt path algebra LK(E) for an
arbitrary directed graph E and field K. After providing some basic examples, we show how Leavitt path
algebras are related to the monoid realization algebras of Bergman, as well as to graph C∗-algebras. We
then introduce the more general construction of relative Cohn path algebras CX

K (E), and show how these are
related to Leavitt path algebras. We finish by describing how any Cohn (specifically, Leavitt) path algebra
may be constructed as a direct limit of Cohn (specifically, Leavitt) path algebras corresponding to finite
graphs. We conclude the chapter with an historical overview of the subject.

In this the initial chapter of the book we introduce the Leavitt path algebra LK(E) which arises from
a directed graph E and field K. We begin in Section 1.1 by reviewing a class of algebras defined and
investigated in the early 1960’s by W.G. Leavitt, the now-so-called Leavitt algebra LK(1,n) corresponding
to any positive integer n and field K. The importance of these algebras is that they are the universal examples
of algebras which fail to have the Invariant Basis Number property; to wit, if R = LK(1,n), then the free
left R-modules R and Rn are isomorphic. Once the definition of LK(E) is given for any graph E, we will
recover LK(1,n) as L(Rn), where Rn is the graph having one vertex and n loops at that vertex.

With the general definition of a Leavitt path algebra presented in Section 1.2 in hand, we give in Section
1.3 the three fundamental examples of Leavitt path algebras: the Leavitt algebras; full matrix rings over K;
and the Laurent polynomial algebra K[x,x−1]. These three types of Leavitt path algebras will provide the
motivation and intuition for many of the general results in the subject.

The subject did not arise in a vacuum. Indeed, there are intimate connections between Leavitt path
algebras and a powerful monoid-realization result of Bergman. As well, there are strong and historically
significant connections between Leavitt path algebras and graph C∗-algebras. We describe both of the
connections in Section 1.4.

As we will see, there are natural modifications to the definition of a Leavitt path algebra which provide
the data to construct a (seemingly) more general class of algebras, the relative Cohn path algebras CX

K (E)
corresponding to a graph E, a subset X of the vertices of E, and field K. Although the class of relative
Cohn path algebras contain as specific examples the class of Leavitt path algebras, we will see in Section
1.5 that every relative Cohn path algebra CX

K (E) is in fact isomorphic to the Leavitt path algebra LK(E(X))
for some germane graph E(X).

Although the motivating examples of Leavitt path algebras arise from finite graphs, the definition of
LK(E) allows for the construction even when E is infinite. Indeed, much of the interesting work and many
of the applications-related results about Leavitt path algebras arise in the situation where E is infinite. We
show in Section 1.6 that, perhaps surprisingly, every Leavitt path algebra may be viewed as a direct limit
(in an appropriate category) of Leavitt path algebras associated to finite graphs.

We conclude the chapter by presenting in Section 1.7 a brief historical overview of the subject.
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2 1 The basics of Leavitt path algebras: motivations, definitions and examples

1.1 A motivating construction: the Leavitt algebras
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A student’s first exposure to the theory of rings more than likely involves a study of various “basic ex-
amples”, typically including fields, Z, matrix rings over fields, and polynomial rings with coefficients in a
field. It is not hard to show that each of these rings R has the Invariant Basis Number (IBN) property :

IBN: If m and m′ are positive integers with the property that
the free left modules Rm and Rm′ are isomorphic, then m = m′.

Less formally, a ring has the IBN property (more succinctly: is IBN) in case any two bases (i.e., linearly
independent spanning sets) of any free left R-module have the same number of elements. It turns out that
many general classes of rings have this property (e.g., noetherian rings and commutative rings), classes of
rings which include all of the basic examples with which the student first made acquaintance. (Typically,
the student would have encountered the fact that the field of real numbers has the IBN property in an
undergraduate course on linear algebra.)

Unfortunately, since all of the examples the student first encounters have the IBN property, the student
more than likely is left with the wrong impression, as there are many important classes of rings which
are not IBN. Perhaps the most common such example is the ring B = EndK(V ), where V is an infinite
dimensional vector space over a field K. Then B is not IBN (with a vengeance!): it is not hard to show that
the free left B-modules Bm and Bm′ are isomorphic for all positive integers m,m′.
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Definition 1.1.1. Suppose R is not IBN. Let m ∈ N be minimal with the property that Rm ∼= Rm′ as left
R-modules for some m′ > m. For this m, let n denote the minimal such m′. In this case we say that R has
module type (m,n).

So, for example, B = EndK(V ) has module type (1,2). We note that in the definition of module type it
is easy to show that the same m,n arise if one considers free right R-modules, rather than left.

As we shall see, there is a perhaps surprising amount of structure inherent in non-IBN rings. To start
with, in the groundbreaking article [100], Leavitt proves the following fundamental result.
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Theorem 1.1.2. For each pair of positive integers n > m and field K there exists a unital K-algebra
LK(m,n), unique up to K-algebra isomorphism, such that:

(i) LK(m,n) has module type (m,n), and
(ii) for each unital K-algebra A having module type (m,n) there exists a unit-preserving K-algebra ho-

momorphism φ : LK(m,n)→ A which satisfies certain (natural) compatibility conditions.

Our motivational focus here is on non-IBN rings of module type (1,n) for some n > 1. In particular,
such a ring then has the property that there exist isomorphisms of free modules

φ ∈ HomR(R1,Rn) and ψ ∈ HomR(Rn,R1), for which ψ ◦φ = ιR and φ ◦ψ = ιRn ,

where ι denotes the identity map on the appropriate module. Using the usual interpretation of homomor-
phisms between free modules as matrix multiplications (a description which the student encounters for the
real numbers in an undergraduate linear algebra course, and which is easily shown to be valid for any unital
ring), we see that such isomorphisms exist if and only if there exist 1×n and n×1 R-vectors

(
x1 x2 · · · xn

)
and


y1
y2
...

yn

 ,

for which
(
x1 x2 · · · xn

)
·


y1
y2
...

yn

= (1R) and


y1
y2
...

yn

 · (x1 x2 · · · xn
)
=


1R 0 · · · 0
0 1R · · · 0
...

. . .
...

0 0 · · · 1R

 .



1.1 A motivating construction: the Leavitt algebras 3

Rephrased,

RR1 ∼= RRn for some n > 1

if and only if there exist 2n elements x1, ...,xn,y1, ...,yn of R for which

n

∑
i=1

xiyi = 1R and yix j = δi j1R (for all 1≤ i, j ≤ n). (1.1) {L
ea
vi
tt
eq

}

The relations displayed in (1.1) provide the key idea in constructing the Leavitt algebras, and will play a
central role in motivating the subsequent more general construction of Leavitt path algebras. For example,
in the ring B = EndK(V ) having module type (1,2), it is straightforward to describe a set x1,x2,y1,y2 of
2 ·2 = 4 elements of R which behave in this way.

Indeed, given n > 1, it is relatively easy to construct an algebra A which contains 2n elements behaving
as do those in (1.1). Specifically, let K be any field, let

S = K〈X1, ...,Xn,Y1, ...,Yn〉

be the free associative K-algebra in 2n non-commuting variables, let I denote the ideal of S generated by
the relations

I = 〈
n

∑
i=1

XiYi−1, YiX j−δi j1 | 1≤ i, j ≤ n〉,

and let
A = S/I.

Then the set {xi = Xi,y j = Yj | 1≤ i, j ≤ n} behaves in the desired way (by construction), so that A1 ∼= An

as left A-modules.
At this point one must be careful: although we have just constructed a K-algebra A for which A1 ∼= An,

we cannot conclude that the module type of A is (1,n) until we can guarantee the minimality of n. (For
instance, it’s not immediately clear that the algebra A = S/I is necessarily nonzero.) But this is precisely
what Leavitt establishes in [100]. Indeed, the K-algebra LK(1,n) of Theorem 1.1.2 is exactly the algebra
A = S/I constructed here. We formalize this in the following.
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Definition 1.1.3. Let K be any field, and n > 1 any integer. Then the Leavitt K-algebra of type (1,n),
denoted LK(1,n), is the K-algebra

K〈X1, ...,Xn,Y1, ...,Yn〉 / 〈
n

∑
i=1

XiYi−1, YiX j−δi j1 | 1≤ i, j ≤ n 〉.

Notationally, it is often more convenient to view R = LK(1,n) as the free associative K-algebra on the 2n
variables x1, ...,xn,y1, ...,yn, subject to the relations ∑

n
i=1 xiyi = 1R and yix j = δi j1R (1≤ i, j ≤ n). Specifi-

cally, LK(1,n) is the universal K-algebra of type (1,n).

We summarize our discussion thus far. Although non-IBN rings might seem exotic on first sight, they in
fact occur naturally. Non-IBN rings having module type (1,n) can be constructed with relative ease. The
key ingredient to produce such rings is the existence of elements x1, ...,xn,y1, ...,yn for which the relations
displayed in (1.1) are satisfied.

For those readers curious about the previous “surprising amount of structure” comment, we conclude
this section with the following morsel of supporting evidence, established by Leavitt in [101].
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Theorem 1.1.4. For all n≥ 2, and for any field K, LK(1,n) is a simple K-algebra.

This remarkable result will in fact follow as a corollary of the more general results presented in Chapter
2.



4 1 The basics of Leavitt path algebras: motivations, definitions and examples

1.2 Leavitt path algebras
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With the construction of the Leavitt algebras LK(1,n) as motivational backdrop, we are nearly in position
to present the central idea of this book, the Leavitt path algebras. We start by setting some basic notation
and definitions.{r
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Notation 1.2.1. If K is a field, then by K× we denote the nonzero elements of K, i.e., the invertible elements.
Z denotes the set of integers; Z+ = {0,1,2, . . .}; N= {1,2,3, . . .}.
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Definitions 1.2.2 A (directed) graph E = (E0,E1,r,s) consists of two sets E0,E1 and two functions r,s :
E1→ E0. The elements of E0 are called vertices and the elements of E1 edges. We place no restriction on
the cardinalities of E0 and E1, nor on properties of the functions r and s. Throughout, the word “graph”
will always mean “directed graph”.

If s−1(v) is a finite set for every v∈ E0, then the graph is called row-finite. A vertex v for which s−1(v) =
/0 is called a sink, while a vertex v for which r−1(v) = /0 is called a source. In other words, v is a sink (resp.,
source) if v is not the source (resp., range) of any edge of E. A vertex which is both a source and a sink
is called isolated. A vertex v such that |s−1(v)| is infinite is called an infinite emitter. If v is either a sink
or an infinite emitter, we call v a singular vertex; otherwise, v is called a regular vertex. The expressions
Sink(E), Source(E), Isol(E), Reg(E), and Inf(E) will be used to denote, respectively, the sets of sinks,
sources, isolated vertices, regular vertices, and infinite emitters of E.

A path µ in a graph E is a sequence of edges µ = e1,e2, . . . ,en such that r(ei) = s(ei+1) for i = 1, . . . ,n−
1. In this case, s(µ) = s(e1) is the source of µ , r(µ) = r(en) is the range of µ , and n = `(µ) (or n = |µ|) is
the length of µ . We typically denote µ by using the more efficient notation e1e2 · · ·en. We view the vertices
of E as paths of length 0; to streamline notation, we will sometimes extend the functions s and r to E0 by
defining s(v) = r(v) = v for v ∈ E0. If µ = e1e2 · · ·en is a path then we denote by µ0 the set of its vertices,
that is, µ0 = {s(e1),r(ei) | 1 ≤ i ≤ n}. For n ≥ 2 we define En to be the set of paths in E of length n, and
define Path(E) =

⋃
n≥0 En, the set of all paths in E.

Here now are the main objects of our desire.
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Definition 1.2.3. (Leavitt path algebras) Let E be an arbitrary (directed) graph and K any field. We define
a set (E1)∗ consisting of symbols of the form {e∗ | e ∈ E1}. The Leavitt path algebra of E with coefficients
in K, denoted LK(E), is the free associative K-algebra generated by the set E0∪E1∪ (E1)∗, subject to the
following relations:

(V) vv′ = δv,v′v for all v,v′ ∈ E0 ,
(E1) s(e)e = er(e) = e for all e ∈ E1 ,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1 ,
(CK1) e∗e′ = δe,e′r(e) for all e,e′ ∈ E1 , and
(CK2) v = ∑{e∈E1|s(e)=v} ee∗ for every regular vertex v ∈ E0.

Phrased another way, LK(E) is the free associative K-algebra on the symbols E0∪E1∪ (E1)∗, modulo
the ideal generated by the five types of relations indicated in the previous list.
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Remark 1.2.4. There is a connection between the classical notion of path algebras and the notion of Leavitt
path algebras, which we describe here. As a brief reminder, if K is a field and G = (G0,G1) is a directed
graph then the path K-algebra of G, denoted KG, is defined as the free associative K-algebra generated as
an algebra by the set G0∪G1, with relations given by (V) and (E1) of Definition 1.2.3. Equivalently, KG is
the K-algebra having Path(G) as basis, and in which multiplication is defined by the K-linear extension of
path concatenation (i.e., p ·q = pq if r(p) = s(q), 0 otherwise).

Given a graph E, we define the extended graph of E (also sometimes called the double graph of E)
as the new graph Ê = (E0,E1∪ (E1)∗,r′,s′), where (E1)∗ = {e∗ | e ∈ E1}, and the functions r′ and s′ are
defined as

r′|E1 = r, s′|E1 = s, r′(e∗) = s(e), and s′(e∗) = r(e) for all e ∈ E1.

(In other words, each edge e∗ in (E1)∗ has orientation the reverse of that of its counterpart e ∈ E1.) Then
LK(E) is the quotient of the path K-algebra KÊ by the ideal of KÊ generated by relations given in (CK1)
and (CK2) of Definition 1.2.3.
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Remark 1.2.5. (The Universal Property of LK(E)) Suppose E is a graph, and A is a K-algebra which
contains a set of pairwise orthogonal idempotents {av | v ∈ E0}, and two sets {ae | e ∈ E1}, {be | e ∈ E1}
for which

(1) as(e)ae = aear(e) = ae and ar(e)be = beas(e) = be for all e ∈ E1,
(2) b f ae = δe, f ar(e) for all e, f ∈ E1, and
(3) av = ∑{e∈E1|s(e)=v} aebe for every regular vertex v ∈ E0.

We call such a family an E-family in A. By the relations defining the Leavitt path algebra, there exists a
unique K-algebra homomorphism ϕ : LK(E)→ A such that ϕ(v) = av, ϕ(e) = ae, and ϕ(e∗) = be for all
v ∈ E0 and e ∈ E1. We will often refer to this as the Universal Property of LK(E).
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Notation 1.2.6. We sometimes refer to the edges in the graph E as the real edges, and the additional edges
of Ê (i.e., the elements of (E1)∗) as the ghost edges. If µ = e1e2 · · ·en is a path in E, then the element
e∗n · · ·e∗2e∗1 of LK(E) is denoted by µ∗.

Remark 1.2.7. Less formally (but no less accurately), one may view the Leavitt path algebra LK(E) as
follows. Consider the standard path algebra KÊ of the extended graph. Then impose on KÊ the following
relations:

(1) If e is an edge of E, we replace any expression of the form e∗e in KÊ by the vertex r(e).
(2) If e and f are distinct edges in E, then we define e∗ f = 0 in KÊ.
(3) If v is a regular vertex, then the sum over all terms of the form ee∗ for which s(e) = v is replaced by v

in KÊ.

The resulting algebra is precisely LK(E).

In the standard pictorial description of a directed graph E, we use the notation •v (n) // •w to indicate
that there are n distinct edges ei in E for which s(ei) = v and r(ei) = w; the value of n may be finite or
infinite.
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Example 1.2.8. An example will no doubt help clarify the definition of a Leavitt path algebra. Let E be the
graph pictorially described by

•v2
g // •v3

•v1
e 55

f
==

h

!!
•v4

(N) // •v5

Here are some representative computations in LK(E) (for any field K).

v1 f = f = f v2 by (E1), while v2 f ∗ = f ∗ = f ∗v1 by (E2)

f ∗ f = v2, while f ∗h = f ∗e = 0 both by (CK1)

v1 = ee∗+ f f ∗+hh∗ by (CK2)

gg∗ = v2 by (CK2) (the sum contains only one term)

We observe that there is no (CK2) relation at v4 (as v4 ∈ Inf(E)); neither is there a (CK2) relation at the
sinks v3 and v5.

Remark 1.2.9. We note that the construction of the Leavitt path algebra for a graph E over a field K can
be extended in the obvious way to the construction of the Leavitt path ring for a graph E over an arbitrary
unital ring R. (See for example [136], where the author studies Leavitt path algebras with coefficients in a
commutative ring.)
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The existence of a multiplicative identity in LK(E) depends on whether or not E0 is finite (see Lemma
1.2.12 below). But even in nonunital situations, there is still much structure to be exploited.
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Definition 1.2.10. An associative ring R is said to have a set of local units F in case F is a set of idempotents
in R having the property that, for each finite subset r1, ...,rn of R, there exists f ∈ F for which f ri f = ri for
all 1 ≤ i ≤ n. Rephrased, a set of idempotents F ⊆ R is a set of local units for R in case each finite subset
of R is contained in a (unital) subring of the form f R f for some f ∈ F .

An associative ring R is said to have enough idempotents in case there exists a set of nonzero orthogonal
idempotents E in R for which RR =⊕e∈ERe as left R-modules.

It is easy to show that any ring with enough idempotents E is necessarily a ring with local units, where
the set F can be taken as the set of sums of distinct elements of E.

For a ring with local units, an abelian group M is a left R-module in case there is a (standard) module
action of R on M, but with the added proviso that RM = M. (This is the appropriate generalization of the
requirement that 1R ·m = m for all m in a module M over a unital ring R.)

For a field K, a ring R with local units is said to be a K-algebra in case R is a K-vector space (with scalar
action ·), and (k · r)s = k · (rs) for all k ∈ K, r,s ∈ R.
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Remark 1.2.11. In any K-algebra R with local units, every (one-sided, resp., two-sided) ring ideal of R is a
(one-sided, resp., two-sided) K-algebra ideal of R. This is easy to see: for instance, let I be a ring left ideal
of R, let k ∈ K and y ∈ I. Let u ∈ R with y = uy. Then ky = k(uy) = (ku)y ∈ RI ⊆ I.

We give now some basic properties of the elements of LK(E).
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Lemma 1.2.12. Let E be an arbitrary graph and K any field. Let γ,λ ,µ,ρ be elements of Path(E).

(i) Products of monomials in LK(E) are computed here:

(γλ
∗)(µρ

∗) =


γκρ∗ if µ = λκ for some κ ∈ Path(E)
γσ∗ρ∗ if λ = µσ for some σ ∈ Path(E)
0 otherwise

In particular, if `(λ ) = `(µ), then λ ∗µ 6= 0 if and only if λ = µ , in which case λ ∗µ = r(λ ).
(ii) The K-action on the algebra LK(E) is trivial; that is,

(kγλ
∗)(k′µρ

∗) = kk′(γλ
∗
µρ
∗)

for k,k′ ∈ K.
(iii) The algebra LK(E) is spanned as a K-vector space by the set of monomials of the form

{γλ
∗ | γ,λ ∈ Path(E) for which r(γ) = r(λ )}.

In other words, every nonzero element x of LK(E) may be expressed as

x =
n

∑
i=1

kiγiλ
∗
i ,

where ki ∈ K×, and γi,λi ∈ Path(E) with r(γi) = r(λi) for each 1≤ i≤ n. We note that this represen-
tation is not unique; i.e., the displayed monomials do not form a basis of LK(E).

(iv) The algebra LK(E) is unital if and only if E0 is finite. In this case,

1LK(E) = ∑
v∈E0

v.

(v) For each α ∈ LK(E) there exists a finite set of distinct vertices V (α) for which α = f α f , where
f = ∑v∈V (α) v. Moreover, the algebra LK(E) is a ring with enough idempotents (consisting of the
vertices E0), and thus a ring with local units (consisting of sums of distinct elements of E0).
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Proof. (i) By (CK1), any expression of the form e∗ f in LK(E) reduces either to 0 or to the vertex r(e),
from which the statement follows by a straightforward computation.

(ii) follows directly from the definition of LK(E) as the free K-algebra on various generators.
(iii) follows easily from (i).
(iv) For E0 finite, the indicated element acts as the identity by the representation of elements of LK(E)

given in (iii). If E0 is infinite, then there is no element of LK(E) which acts as an identity on each element
of the set {v | v ∈ E0}.

(v) By the orthogonality given in Definition 1.2.3(V), it is clear that any sum of distinct vertices in LK(E)
yields an idempotent. Now let α = ∑

m
i=1 kiγiλ

∗
i be an arbitrary element of LK(E), and let V (α) denote the

(finite) set of vertices which appear either as s(γi) or as s(λi) for some 1≤ i≤ n. If we define f = ∑v∈V (α) v,
then an easy computation yields that α = f α f . The additional statements follow in the same manner. ut

Definitions 1.2.13 We say that a graph E is connected if Ê is a connected graph in the usual sense, that is,
if given any two vertices u,v ∈ E0 there exist h1,h2, . . . ,hm ∈ E1∪ (E1)∗ such that η = h1h2 · · ·hm is a path
in Ê such that s(η) = u and r(η) = v. The connected components of a graph E are the graphs {Ei}i∈Λ such
that E is the disjoint union E = ti∈Λ Ei, where every Ei is connected.

We close the section by recording the following observation, which is easily verified utilizing the Uni-
versal Property of LK(E) (Remark 1.2.5).
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Proposition 1.2.14. Let E be an arbitrary graph and K any field. Suppose E = ti∈Λ Ei is a decomposition
of E into its connected components. Then LK(E)∼=⊕i∈Λ LK(Ei).

1.3 The three fundamental examples of Leavitt path algebras
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Part of the beauty of the Leavitt path algebras is that they include many well-known, but seemingly dis-
parate, classes of algebras. To make these connections clear, we introduce some notation which will be
used throughout.
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Notation 1.3.1. We let Rn denote the rose with n petals graph having one vertex and n loops:

Rn = •v e1ff

e2

rr

e3

��

en

QQ

In particular, a special role in the theory is played by the graph R1:

R1 = •v eff

For any n ∈ N we let An denote the oriented n-line graph having n vertices and n−1 edges:

An = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

The examples presented in the following three propositions may be viewed as the three primary colors
of Leavitt path algebras. Making good now on a promise offered earlier, we validate our claim that the
Leavitt algebras LK(1,n) are truly motivating examples for the more general notion of Leavitt path algebra.
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}

Proposition 1.3.2. Let n≥ 2 be any positive integer, and K any field. Let LK(1,n) be the Leavitt K-algebra
of type (1, n) presented in Definition 1.1.3, and let Rn be the rose with n petals. Then

LK(1,n)∼= LK(Rn).
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Proof. That these two algebras are isomorphic follows directly from the definition of LK(1,n) as a quotient
of the free associative algebra on 2n variables, modulo the relations given in display (1.1). Specifically, we
map xi 7→ ei and yi 7→ e∗i . Then the relations given in (1.1) are precisely the relations provided by the (CK1)
and (CK2) relations of Definition 1.2.3. ut

The rose with one petal produces a more-familiar (although less-exotic) algebra. Prior to the description
of LK(R1), the following remark is very much in order.
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Remark 1.3.3. If E is a graph and e ∈ E1, then the element ee∗ of LK(E) is always an idempotent, since
using (CK1) we have (ee∗)(ee∗) = e(e∗e)e∗ = er(e)e∗ = ee∗. However, ee∗ does not equal s(e) unless e is
the only edge emitted by s(e) (since in that case the (CK2) relation reduces to the equation s(e) = ee∗).

For any field K, the Laurent polynomial K-algebra is the associative K-algebra generated by the two
symbols x and y, with relations xy = yx = 1. For obvious reasons this algebra is denoted by K[x,x−1]. The
elements of K[x,x−1] may be written as ∑

n
i=m kixi (where ki ∈ K and m≤ n ∈ Z); note in particular that the

exponents are allowed to include negative integers. Viewed another way, K[x,x−1] is the group algebra of
Z over K.
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Proposition 1.3.4. Let K be any field. Then

K[x,x−1]∼= LK(R1).

Proof. By the (CK1) relation and Lemma 1.2.12(iv) we have x∗x = v = 1 in LK(R1). But since v emits only
the edge x, Remark 1.3.3 yields xx∗ = v = 1 in LK(R1) as well, and the result now follows. ut

The third of the three primary colors of Leavitt path algebras moves us from the less-exotic K[x,x−1] to
the almost-mundane matrix algebras Mn(K).
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Proposition 1.3.5. Let K be any field, and n≥ 1 any positive integer. Then

Mn(K)∼= LK(An).

Proof. Let { fi, j | 1≤ i, j≤ n} denote the standard matrix units in Mn(K). We define the map ϕ : LK(An)→
Mn(K) by setting ϕ(vi) = fi,i, ϕ(ei) = fi,i+1, and ϕ(e∗i ) = fi+1,i. Using Remark 1.3.3, it is then easy to
check that ϕ is an isomorphism of K-algebras as desired. ut

The title of this section notwithstanding, we provide a fourth example of a well-known classical algebra
which arises as a specific example of a Leavitt path algebra.
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Example 1.3.6. The Toeplitz graph is the graph

ET = e •u
88

f // •v .

Let K be any field. We denote by TK the algebraic Toeplitz K-algebra

TK = LK(ET ).
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Proposition 1.3.7. For any field K, the Leavitt path algebra LK(ET ) is isomorphic to the free associative
K-algebra K〈x,y〉, modulo the single relation xy = 1. Rephrased, the algebraic Toeplitz K-algebra TK is
the K-algebra K〈U,V 〉 investigated by Jacobson in [88].

Proof. We begin by noting that in LK(ET ) we have the relations ee∗+ f f ∗ = u and u+v = 1. We consider
the elements X = e∗ + f ∗ and Y = e + f of LK(ET ). Then by (CK1) we have XY = u + v = 1, while
Y X = ee∗ + f f ∗ = u 6= 1 by (CK1) and (CK2). The subalgebra of TK = LK(ET ) generated by X and
Y then contains 1− u = v, which in turn gives that this subalgebra contains e = Yu, f = Y v, e∗ = uX ,
and f ∗ = vX . These observations establish that the map ϕ : K〈U,V 〉 → LK(ET ) given by the extension of
ϕ(U) = e∗+ f ∗,ϕ(V ) = e+ f is a surjective K-algebra homomorphism. The injectivity of ϕ will follow
from results in Section 1.5; see specifically Example 1.5.20. ut
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1.4 Connections and motivations: the algebras of Bergman, and graph C*-algebras
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In presenting a description of the Leavitt algebras LK(1,n) in the very first section of this book, our intent
was to provide some sort of “natural” motivation for the relations which define the more general Leavitt
path algebras. In this section we present two additional avenues which lead in a natural way to the descrip-
tion of Leavitt path algebras. The first such avenue takes us through a description of the finitely generated
projective modules over a ring, while the second provides an expedition through the world of C∗-algebras.
These two topics will be explored much more extensively, and in more generality, in Chapters 3 and 5
respectively.

{V
(R
)D
ef

}

Definition 1.4.1. Let R be any unital ring. We denote by V (R) the semigroup whose elements are the
isomorphism classes of the finitely generated projective left R-modules, with operation given by [P]+[Q] =
[P⊕Q].

Clearly V (R) is a commutative monoid for any ring R, with zero element [{0}]. In addition, it is apparent
that V (R) has the property that

x+ y = [{0}] in V (R) if and only if x = y = [{0}]. (1.2) {B
er
gm
an
Co
nd
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}

Since R is assumed here to be unital (we will relax this requirement later), then each finitely generated
projective left R-module is isomorphic to a direct summand of Rn for some integer n, so it is similarly
apparent that the element I = [R] of V (R) has the property that

∀ x ∈ V (R) ∃ y ∈ V (R) and n ∈ N for which x+ y = nI. (1.3) {B
er
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}

In a groundbreaking construction conceived and executed by Bergman in [51], it is shown that, in this
context, anything that can happen in fact does happen. That is, if S is any finitely generated commutative
monoid having the (necessary) properties described in displays (1.2) and (1.3), and K is any field, then
there exists an explicitly constructed unital K-algebra R for which V (R) ∼= S. Moreover, this K-algebra
is universal in the sense that, for any unital K-algebra T having V (T ) ∼= S, then there exists a nonzero
homomorphism ϕ : R→ T which induces the identity on S.

We now define, for any graph E, an associated semigroup ME ; with the previous three sections in mind,
the relations which describe ME should seem familiar.
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Definition 1.4.2. Let E be an arbitrary graph. We denote by ME the free abelian monoid on a set of gener-
ators {av | v ∈ E0}, modulo relations given by

av = ∑
{e∈E1|s(e)=v}

ar(e) (1.4)

for each v ∈ Reg(E).

So to any graph E we can associate the semigroup ME , and to any graph E and field K we can associate
the semigroup V (LK(E)). We will prove the following in Chapter 3; this result shows that these two
semigroups are intimately related.

{M
su
bE
is
oV
(L
(E
))
Th
eo
re
m}

Theorem 1.4.3. Let E be any row-finite graph and K any field. Then, using the presentation of the semi-
group ME given in Definition 1.4.2, LK(E) is precisely the universal K-algebra corresponding to the semi-
group ME as guaranteed by Bergman’s Theorem [51, Theorem 6.2]. In particular,

V (LK(E))∼= ME .

The upshot of this discussion is that, with the Leavitt algebras LK(1,n) having been presented as our
first motivational offering, there is now a second motivating description of the Leavitt path algebras (aris-
ing from row-finite graphs): they are precisely the universal K-algebras which arise in [51, Theorem 6.2]
for semigroups of the form ME . This is no small conclusion, in the sense that for general commutative
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monoids which satisfy displayed conditions (1.2) and (1.3), it is rare that one can so explicitly describe the
corresponding universal K-algebras.

In fact, the Leavitt algebras LK(1,n) play a basic role in Bergman’s analysis. Specifically, let Zn−1 be
the standard cyclic group of order n−1, and let S be the semigroup Zn−1∪{z} where z+g = g = g+ z for
all g ∈ S. Then S is a commutative monoid satisfying (1.2) and (1.3) above, and LK(1,n) is the universal
K-algebra corresponding to S. We will investigate this construction much more deeply in Chapter 3.

And now for something completely different. While the next few paragraphs (and various subsequent
portions of this book) discuss the notion of a C∗-algebra, readers may choose to skip these portions while
still gaining an in-focus picture of Leavitt path algebras. In any event, it behooves us to remark that C∗-
algebras are always algebras in the usual ring-theoretic sense over the field of complex numbers C.
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Definitions 1.4.4 Let E be an arbitrary graph. (In the following context it is typically assumed that the
sets E0 and E1 are at most countable, but we need not make those assumptions here.) A Cuntz-Krieger
E-family in a C∗-algebra B consists of a set of mutually orthogonal projections {pv | v ∈ E0} and a set of
partial isometries {se | e ∈ E1} satisfying

s∗ese = pr(e) for e ∈ E1, pv = ∑
{e | s(e)=v}

ses∗e whenever v ∈ Reg(E), and ses∗e ≤ ps(e) for e ∈ E1.

It is shown in [93] that there is a C∗-algebra C∗(E), called the graph C∗-algebra of E, generated by a
universal Cuntz-Krieger E-family {se, pv}; in other words, for every Cuntz-Krieger E-family {te,qv} in a
C∗-algebra B, there is a homomorphism π = πt,q : C∗(E)→ B such that π(se) = te and π(pv) = qv for all
e ∈ E1,v ∈ E0.

The relations presented in Definitions 1.4.4 clearly smack of those which generate the Leavitt path
algebras, so it is probably not surprising that there is a strong connection between the structures LC(E) and
C∗(E). In fact, we will show in Chapter 5 that LC(E) embeds as a C-algebra inside C∗(E) in a natural way,
and that C∗(E) may be realized as the completion of LC(E) in an appropriate topology.

The main point to be made here is that the Leavitt path C-algebra LC(E) can be realized and motivated
as an algebraic foundation upon which C∗(E) can be built. We will note often throughout the later chapters
that while there are striking (indeed, compellingly mysterious) similarities amongst some of the results
pertaining to the two structures LC(E) and C∗(E), there are other situations in which perhaps-anticipated
parallels between this structures are indeed different. Further, while the Leavitt path C-algebra LC(E) is
then naturally motivated by the C-algebra C∗(E) in this way, we shall see that the structural properties of
LC(E) typically pass to identical structural properties of LK(E) for any field K.

As of the writing of this book, there is no vehicle which allows one to easily establish results on the
algebra side as direct consequences of results on the analytic side, or vice versa.

1.5 The Cohn path algebras and connections to Leavitt path algebras
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In the previous section we focused on two different constructions, both of which naturally led to the con-
struction of Leavitt path algebras: the “realization algebras” of Bergman, and the graph C∗-algebras. In this
section we present a third construction, the relative Cohn path algebras CX

K (E), and specifically the Cohn
path algebras CK(E), which also can be used to produce Leavitt path algebras.

The relative Cohn path algebras will serve two main purposes here. First, it will be trivial to show
that every Leavitt path algebra is a quotient of a relative Cohn path algebra by an appropriately defined
ideal. As will become apparent, the vector space structure of a Cohn path algebra is straightforward (e.g.,
a basis of CK(E) is easy to describe). This structure in turn will allow us to almost seamlessly achieve
various results about Leavitt path algebras simply by appealing to quotient-preserving properties. Second,
the relative Cohn path algebras will allow us to further showcase the ubiquity of the Leavitt path algebras.
Specifically, for any graph E we will show that each relative Cohn path algebra CX

K (E) (including CK(E)
itself) is isomorphic to the Leavitt path algebra LK(F) of some graph F .
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The motivational information given in the previous section was presented almost as an advertising teaser
(“stay tuned for further details!”, the hard work to be confronted in subsequent chapters). In contrast, our
description and use of the relative Cohn path algebras will require us to get our hands dirty right away. We
start with the most important of these.
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Definition 1.5.1. Let E be an arbitrary graph and K any field. We define a set (E1)∗ consisting of symbols
of the form {e∗ | e ∈ E1}. The Cohn path algebra of E with coefficients in K, denoted by CK(E), is the free
associative K-algebra generated by the set E0∪E1∪ (E1)∗, subject to the relations given in (V), (E1), (E2),
and (CK1) of Definition 1.2.3.

In other words, CK(E) is the algebra generated by the same symbols as those which generate LK(E),
but on which we do not impose the (CK2) relation. Since by (CK1) we have e∗ f = δe, f r(e) in CK(E)
for e, f ∈ E1 (and the lack of the (CK2) relation in CK(E) notwithstanding), it is easy to show that there
is still some information to be had about expressions of the form ee∗ in CK(E): namely, that the family
{ee∗ | e ∈ E1} is a set of orthogonal idempotents in CK(E). What we do not impose in CK(E) is any
relationship between this family and the set of vertices E0 in CK(E).

Remark 1.5.2. In a manner similar to the explanation given in Remark 1.2.4, another way of looking at
Cohn path algebras is the following: CK(E) is the quotient of the path K-algebra over the extended graph
KÊ by the ideal of KÊ generated by the relations given in (CK1).

In [60], P.M. Cohn introduced and studied the collection of K-algebras {UK(1,n) | n ∈N} (for any field
K); these have come to be known as the Cohn algebras, and as such we have come to use the notation
CK(1,n) for these. It is clear that for each n ∈N we have CK(Rn)∼=CK(1,n). Thus the algebras CK(1,n)∼=
CK(Rn) stand in relation to the more general Cohn path algebras in precisely the same way that the Leavitt
algebras LK(1,n)∼= LK(Rn) stand in relation to the more general Leavitt path algebras.

Remark 1.5.3. As with Leavitt path algebras, we can define analogously the Cohn path ring CR(E) for any
unital ring R and graph E.
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Example 1.5.4. The algebra investigated by Jacobson which was presented in Proposition 1.3.7 is the
quintessential example of a Cohn path algebra. Specifically, the free associative K-algebra K〈U,V 〉modulo
the single relation UV = 1 is precisely the Cohn path algebra CK(R1), where R1 is as usual the graph with
one vertex and one loop.

The following result follows directly from the definition of the indicated algebras.
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Proposition 1.5.5. Let E be an arbitrary graph and K any field. Let I be the ideal of the Cohn path algebra
CK(E) generated by the set

{v− ∑
e∈s−1(v)

ee∗ | v ∈ Reg(E)}.

Then
LK(E)∼=CK(E)/I

as K-algebras.

Unlike the situation in the Leavitt path algebras, inside the Cohn path algebras every element can be
expressed in a unique way as a linear combination of the terms λν∗, with λ and ν paths in E for which
r(λ ) = r(ν).
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}

Proposition 1.5.6. Let E be an arbitrary graph and K any field. Then

B = {λν
∗ | λ ,ν ∈ Path(E),r(λ ) = r(ν)}

is a K-basis of CK(E).



12 1 The basics of Leavitt path algebras: motivations, definitions and examples

Proof. Let A be the K-vector space with basis B. We define a bilinear product on A by the formula

(λ1ν
∗
1 )(λ2ν

∗
2 ) =


λ1λ ′2ν∗2 if λ2 = ν1λ ′2 for some λ ′2 ∈ Path(E)
λ1(ν

′
1)
∗ν∗2 if ν1 = λ2ν ′1 for some ν ′1 ∈ Path(E)

0 otherwise.

To see that this gives the structure of an associative K-algebra on A we only need to check that x = y, where
x = (λ1ν∗1 )((λ2ν∗2 )(λ3ν∗3 )) and y = ((λ1ν∗1 )(λ2ν∗2 ))(λ3ν∗3 ). A tedious computation shows that

x = y =



λ1λ ′2λ ′3ν∗3 if λ3 = ν2λ ′3 and λ2 = ν1λ ′2
λ1λ ′3ν∗3 if λ3 = ν2λ ′′3 λ ′3 and ν1 = λ2λ ′′3
λ1(ν

′
1)
∗ν∗3 if λ3 = ν2λ ′3 and ν1 = λ2λ ′3ν ′1

λ1λ ′2(ν
′
2)
∗ν∗3 if ν2 = λ3ν ′2 and λ2 = ν1λ ′2

λ1(ν
′
1)
∗(ν ′2)

∗ν∗3 if ν2 = λ3ν ′2 and ν1 = λ2ν ′1
0 otherwise.

as desired. This clearly yields the result. ut
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Corollary 1.5.7. Let E be an arbitrary graph and K any field. The restriction of the canonical projection
KÊ →CK(E) is injective on the subspace generated by the paths in E and the paths in E∗. In particular
the maps KE→CK(E) and KE∗→CK(E) are injective.

Now we construct certain natural quotient algebras of Cohn path algebras. For v ∈ Reg(E), consider the
following element qv of CK(E):

qv = v− ∑
e∈s−1(v)

ee∗.

{i
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Proposition 1.5.8. The elements qv are idempotents of CK(E). Moreover, qvCK(E)qw = δv,wqvK for each
pair v,w ∈ Reg(E).

Proof. A simple computation shows that {qv | v ∈ Reg(E)} is a family of pairwise orthogonal idempotents
in CK(E). Now let v ∈ E0 and f ∈ E1. If f 6∈ s−1(v) then e∗ f = 0 for all e ∈ s−1(v). On the other hand, if
f ∈ s−1(v) then ee∗ f = 0 for e 6= f , while f f ∗ f = f . Thus we see that ∑e∈s−1(v) ee∗ f = v f , and in a similar
way that ∑e∈s−1(v) f ∗ee∗ = f ∗v, for all f ∈ E1. So

f ∗qv = 0 = qv f (1.5){e
q:
qv
-a
nn
ih

}

for all f ∈ E1 and v ∈ Reg(E). This yields that qvCK(E)qw = Kqvqw = δv,wqvK, as desired. ut
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Definition 1.5.9. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). We denote
by IX the K-algebra ideal of CK(E) generated by the idempotents {qv | v ∈ X}. The Cohn path algebra of
E relative to X , denoted CX

K (E), is defined to be the quotient K-algebra

CK(E)/IX .

Clearly this notion of the relative Cohn path algebra links the Cohn and Leavitt path algebra construc-
tions, as we see immediately that

CK(E) =C /0(E) and LK(E) =CReg(E)
K (E).

Generalizing the Universal Property for Leavitt path algebras (Remark 1.2.5), we have the following.
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Remark 1.5.10. Suppose E is a graph, X is a subset of Reg(E), and A is a K-algebra which contains a set
of pairwise orthogonal idempotents {av | v ∈ E0}, and two sets {ae | e ∈ E1}, {be | e ∈ E1} for which

(1) as(e)ae = aear(e) = ae and ar(e)be = beas(e) = be for all e ∈ E1,



1.5 The Cohn path algebras and connections to Leavitt path algebras 13

(2) b f ae = δe, f ar(e) for all e, f ∈ E1, and
(3) av = ∑{e∈E1|s(e)=v} aebe for every vertex v ∈ X .

By the relations defining the relative Cohn path algebra, there exists a unique K-algebra homomorphism
ϕ : CX

K (E)→ A such that ϕ(v) = av, ϕ(e) = ae, and ϕ(e∗) = be for all v ∈ E0 and e ∈ E1. We will often
refer to this as the Universal Property of CX

K (E).

{b
as
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E}

Proposition 1.5.11. Let E be an arbitrary graph and K any field. Let X be a subset of Reg(E). Then a
K-basis of IX is given by the family λqvµ∗, where v ∈ X and λ ,µ ∈ Path(E) with r(λ ) = r(µ) = v. For
v ∈ X let {ev

1, . . . ,e
v
nv} be an enumeration of the elements of s−1(v). Then a K-basis of CX

K (E) is given by
the family

B′′ = B \{λev
nv(e

v
nv)
∗
ν
∗ | r(λ ) = r(ν) = v},

where B = {λν∗ | r(λ ) = r(ν)} is the canonical basis of CK(E) given in Proposition 1.5.6.

Proof. By the displayed equation (1.5), we have that the elements λqvµ∗, for v ∈ X and λ ,µ ∈ Path(E)
with r(λ ) = v = r(µ), generate IX . To show that they are linearly independent, assume that there is an
equation

∑kγ,µ γqvµ
∗ = 0

with kγ,µ ∈K. Expressing the left hand side as a linear combination of monomials λν∗, and using the linear
independence of these monomials (Proposition 1.5.6), we immediately get kγ,µ = 0 for all γ,µ .

Let B′ be the basis of IX just constructed. To show the second part of the proposition, it is enough to
prove that B′∪B′′ is a basis of CK(E). Clearly every element λν∗ of the basis B of CK(E) can be written
as a linear combination of the elements in B′∪B′′. On the other hand, any nonzero linear combination of
elements in B′ must involve (with a nonzero coefficient) a monomial of the form λev

nv(e
v
nv)
∗ν∗, and so it

cannot be a linear combination of elements in B′′. This shows that B′∪B′′ is a basis of CK(E). ut

As LK(E) =CReg(E)
K (E), Proposition 1.5.11 immediately yields the following.
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Corollary 1.5.12. Let E be an arbitrary graph and K any field. Let B = {λν∗ | r(λ ) = r(ν)} be the
canonical basis of CK(E) given in Proposition 1.5.6. For each vertex v ∈ Reg(E), let {ev

1, . . . ,e
v
nv} be an

enumeration of the elements of s−1(v). Then a basis of LK(E) is given by the family

B′′ = B \{λev
nv(e

v
nv)
∗
ν
∗ | r(λ ) = r(ν) = v ∈ Reg(E)}.

Proposition 1.5.11 easily yields the following three consequences as well.

{i
nj
KE

}

Corollary 1.5.13. Let E be an arbitrary graph and K any field. The restriction of the canonical projection
KÊ → LK(E) is injective on the subspace generated by the paths in E and the paths in E∗. In particular
the maps KE→ LK(E) and KE∗→ LK(E) are injective.

{t
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Corollary 1.5.14. Let R and S be unital rings, with R commutative, and suppose there exists a unital ring
homomorphism R→ Z(S) (where Z(S) denotes the center of S). Let E be an arbitrary graph, and suppose
X ⊆ Reg(E). Then there are ring isomorphisms

CX
R (E)⊗R S∼=CX

S (E)∼= S⊗R CX
R (E).

In particular,
LR(E)⊗R S∼= LS(E)∼= S⊗R LR(E).

Proof. We see that the computations made in Propositions 1.5.6 and 1.5.11 are independent of the coeffi-
cient ring, so that we have, for instance, CX

R (E)⊗R S = (
⊕

b∈B′′ bR)⊗R S∼=
⊕

b∈B′′ bS =CX
S (E). ut
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Corollary 1.5.15. Let E be an arbitrary graph and K any field. Then any set of distinct elements of Path(E)
is linearly independent in the Cohn path algebra CK(E), as well as in the Leavitt path algebra LK(E).

One of the nice things about Cohn path algebras is that they turn out, perhaps unexpectedly, to be Leavitt
path algebras. In fact, we will show that any relative Cohn path algebra CX

K (E) is isomorphic to the Leavitt
path algebra of a graph E(X) which is obtained by adding various new vertices and edges to E.
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Definition 1.5.16. Let E be an arbitrary graph and K any field. Let X be a subset of Reg(E), and define
Y := Reg(E)\X . Let Y ′ = {v′ | v ∈ Y} be a disjoint copy of Y . For v ∈ Y and for each edge e ∈ r−1

E (v), we
consider a new symbol e′. We define the graph E(X), as follows:

E(X)0 = E0tY ′ and E(X)1 = E1t{e′ | rE(e) ∈ Y}.

For e ∈ E1 we define rE(X)(e) = rE(e) and sE(X)(e) = sE(e), and define sE(X)(e′) = sE(e) and rE(X)(e′) =
rE(e)′ for the new symbols e′.

Less formally, the graph E(X) is built from E and X by adding a new vertex to E corresponding to each
element of Y = Reg(E) \X , and then including new edges to each of these new vertices as appropriate.
Observe in particular that each of the new vertices v′ ∈ Y ′ is a sink in E(X), so that Reg(E) = Reg(E(X)).
In case X = Reg(E), then E = E(X).
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Example 1.5.17. Let E be the following graph:

•v f // •u eff

Take X = /0, so that Y = Reg(E) = {u,v}. Then the graph E(X) is the following:

•v f //

f ′

  

•u eff

e′
��

•v′ •u′

For any ring R, if f and g are idempotents of R then it is standard in the literature to write f ≤ g in
case f g = g f = f . (We note, however, that this notation is not consistent with the notation v≤ w used in a
situation where v,w ∈ E0 and v,w are viewed as idempotent elements of LK(E); however, used in context,
this should not cause confusion.)

As noted previously, every Leavitt path algebra arises (easily) as a relative Cohn path algebra, to wit,
LK(E) = CReg(E)

K (E). Perhaps more surprising is the following (very useful) result, which shows the con-
verse.
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Theorem 1.5.18. Let E be an arbitrary graph and K any field. Let X any subset of Reg(E), and let E(X)
be the graph constructed in Definition 1.5.16. Then

CX
K (E)∼= LK(E(X)).

Proof. We define a K-algebra homomorphism φ : CX
K (E)→ LK(E(X)) as follows. Write Y = Reg(E)\X .

For a vertex v of E define φ(v) = v+ v′ if v ∈ Y , and φ(v) = v otherwise. Moreover, for e ∈ E1, define
φ(e) = e if rE(e) /∈ Y and φ(e) = e+ e′ if rE(e) ∈ Y , and define φ(e∗) = φ(e)∗. Clearly relation (V) is
preserved by φ . To show that relation (E1) is preserved by φ , we consider first the case where rE(e) /∈ Y .
Then φ(e) = e, φ(rE(e)) = rE(e) and sE(X)(e) = sE(e)≤ φ(sE(e)), so

φ(sE(e))φ(e) = sE(e)e = e = erE(e) = φ(e)φ(rE(e)).

If v := rE(e) ∈ Y then φ(e) = e+ e′ and φ(v) = v+ v′, and sE(X)(e) = sE(X)(e′)≤ φ(sE(e)), so that

φ(sE(e))φ(e) = sE(e)(e+ e′) = e+ e′ = φ(e) = (e+ e′)(v+ v′) = φ(e)φ(rE(e)),

as desired. Relations (E2) follow by applying ∗ to the above. Now we consider relation (CK1). If e 6= f
then clearly φ(e)∗φ( f ) = 0. If rE(e) /∈ Y then φ(e)∗φ(e) = e∗e = rE(e) = φ(rE(e)). If rE(e) ∈ Y then

φ(e)∗φ(e) = (e∗+(e′)∗)(e+ e′) = rE(e)+ rE(e)∗ = φ(rE(e)).
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We must check that the (CK2) relation holds for the vertices in X . If v ∈ X then φ(v) = v and s−1
E(X)

(v) =

s−1
E (v)t{e′ | sE(e) = v and rE(e) ∈ Y}, so that

φ(v)− ∑
e∈s−1

E (v)

φ(e)φ(e)∗ = v− ∑
rE (e)/∈Y

ee∗+ ∑
rE (e)∈Y

(e+ e′)(e∗+(e′)∗)

= v− ∑
sE (e)=v

ee∗− ∑
sE (e)=v,rE (e)∈Y

e′(e′)∗ = 0.

So we have shown that φ is a well-defined homomorphism.
Assume that v ∈ Y . Then a similar computation to the one presented above, using this time that φ(v) =

v+ v′, yields that φ(qv) = v′, where qv is defined prior to Proposition 1.5.8. It follows that v,v′ ∈ Im(φ).
Now we have, for e ∈ E1 such that rE(e) = v ∈ Y , that φ(e)v = (e+ e′)v = e and φ(e)v′ = e′, so that
e,e′ ∈ Im(φ). It follows that φ is surjective.

Now we build the inverse homomorphism ψ : LK(E(X))→CX
K (E). This is dictated by the above com-

putations, so that we necessarily must set ψ(v) = v if v /∈ Y , and ψ(v) = v− qv, ψ(v′) = qv if v ∈ Y . For
e ∈ E1, set ψ(e) = e if rE(e) /∈ Y , and set ψ(e) = e(v−qv), ψ(e′) = eqv if rE(e) = v ∈ Y . It is straightfor-
ward to show that all the defining relations of LK(E(X)) are preserved by ψ , so that we get a well-defined
homomorphism from LK(E(X)) to CX

K (E). We check here the preservation of the (CK2) relation, and leave
the others to the reader. Since Reg(E(X)) = Reg(E) we need to consider only the regular vertices of E. Let
v ∈ Reg(E). Relation (CK2) in LK(E(X)) may be presented as

v = ∑
sE (e)=v,rE (e)/∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

e′(e′)∗.

If v ∈ X then

∑
sE (e)=v,rE (e)/∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e′)ψ(e′)∗

= ∑
sE (e)=v,rE (e)/∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

e(rE(e)−qrE (e))e
∗+ ∑

sE (e)=v,rE (e)∈Y
eqrE (e)e

∗

= ∑
sE (e)=v

ee∗ = v = ψ(v).

On the other hand, if v ∈ Y then the same computation as above gives

∑
sE (e)=v,rE (e)/∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e′)ψ(e′)∗ = v−qv = ψ(v),

as desired.
It is now straightforward to show that both compositions ψ ◦φ and φ ◦ψ give the identity on the gener-

ators of the corresponding algebras, thus these maps are the identity on their respective domains. It follows
that φ is an isomorphism. ut

Here are two specific consequences of Theorem 1.5.18.
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Example 1.5.19. Consider the graphs

E = •v f // •u eff and F = •v f //

f ′

  

•u eff

e′
��

•v′ •u′

Then CK(E) ∼= LK(F) since CK(E) = C /0
K(E) (this is true for any graph E), and, as observed in Example

1.5.17, F = E(X) for X = /0.



16 1 The basics of Leavitt path algebras: motivations, definitions and examples

As with the Leavitt path algebras, the “rose with n petals” graphs Rn play an important role in the context
of Cohn path algebras as well. We demonstrate now what the graph Rn(X) looks like for X = /0. This in
particular will demonstrate how the Toeplitz algebra arises naturally from the Cohn path algebra point of
view.
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Example 1.5.20. If

Rn = •v e1ff

e2

rr

e3

��

en

QQ

and X = /0, then it is easy to show that

Rn(X) = •v′ •v e1ff

e2

rr

e3

��

en

QQ(n)
oo .

In particular, for E = R1 = •v eff , we get R1(X) = •v′ •v eff
oo = ET , the graph of Example

1.3.6. Specifically, Proposition 1.3.7 together with Theorem 1.5.18 give K-isomorphisms

K〈U,V | UV = 1〉 ∼= CK(R1) ∼= LK(ET ) = TK .

We finish the section by making some easily checked, eventually useful observations about the relation-
ship between the graphs E and E(X) for any X ⊆ Reg(E).
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Proposition 1.5.21. Let E be any graph, and X any subset of Reg(E). Let Y denote Reg(E)\X.

(i) E is acyclic if and only if E(X) is acyclic.
(ii) E is finite if and only if E(X) is finite.

(iii) E is row-finite if and only if E(X) is row-finite.
(iv) The sinks of E(X) are precisely the sinks of E together with the vertices {v′|v ∈ Y}.
(v) If v is a source in E, then v is also a source in E(X). If moreover v ∈ Y , then v′ is an isolated vertex

in E(X). Any isolated vertex of E is also isolated in E(X).

1.6 Direct limits in the context of Leavitt path algebras
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The Leavitt path algebras of finite graphs not only play an historically important role in the theory, they
also quite often provide key information regarding the structure of Leavitt path algebras corresponding
to arbitrary graphs. We show in this section how the Leavitt path algebra LK(E) of any graph E may be
viewed as the direct limit of certain subalgebras of LK(E), where each of these subalgebras is isomorphic
to the Leavitt path algebra of some finite graph.

We start by offering the following cautionary note. It may be tempting to think that if F is a subgraph of
E, then, using the obvious identification, we should have LK(F) is a subalgebra of LK(E). However, this is
not true in general, as a moment’s reflection reveals that the (CK2) relation at a vertex v viewed in LK(F)
need not be compatible with the (CK2) relation at that same vertex v when viewed as an element of LK(E).
For example, the obvious graph embedding of R2 into R3 does not extend to an algebra homomorphism
from LK(R2) to LK(R3). However, in certain situations a subgraph F embeds in E in a way compatible with
the (CK2) relations, or, more generally, with the (CK2) relations imposed at a given subset Y ⊆ Reg(F).
This is the motivating idea behind the main concepts of this section. We start by reminding the reader of a
basic idea in graphs, one which we will need to modify and expand upon in order to make it useful in our
context.
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Definition 1.6.1. A graph homomorphism ϕ : F = (F0,F1,rF ,sF)→ E = (E0,E1,rE ,sE) is a pair of maps
ϕ0 : F0 → E0 and ϕ1 : F1 → E1 such that rE(ϕ

1(e)) = ϕ0(rF(e)) and sE(ϕ
1(e)) = ϕ0(sF(e)) for every

e ∈ F1.

As the observation made above about the embedding of R2 into R3 demonstrates, a graph homomor-
phism from F to E need not induce a homomorphism of algebras LK(F)→ LK(E). However, the following
additional conditions on a graph homomorphism will allow such an extension to the algebra level.
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Definition 1.6.2. We consider the category G , defined as follows. The objects of G are pairs (E,X), where
E is a graph and X ⊆Reg(E). If (F,Y ),(E,X)∈Ob(G ), then ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism
in G in case

(1) ψ : F → E is a graph homomorphism for which ψ0 : F0→ E0 and ψ1 : F1→ E1 are injective,
(2) ψ0(Y )⊆ X , and
(3) for all v ∈ Y , ψ1 restricts to a bijection ψ1 : s−1

F (v)→ s−1
E (ψ0(v)).

We note that a morphism ψ : (F,Y )→ (E,X) in G depends not only on the underlying graphs F and E,
but on the distinguished sets of vertices Y and X as well.
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Lemma 1.6.3. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism in G . Then there exists a homomor-
phism of K-algebras ψ : CY

K(F)→CX
K (E).

Proof. We define ψ : CY
K(F)→CX

K (E) as the extension of ψ on F0 and F1. We define ψ( f ∗) = ψ( f )∗ for
all f ∈ F1. As F0, F1, and (F1)∗ generate CY

K(F) as an algebra, this will yield a K-algebra homomorphism
with domain CY

K(F), once we show that the defining relations on CY
K(F) are preserved.

The idempotent and orthogonality properties of relation (V) are preserved by ψ because ψ0 is injective.
(Note that if v 6= w in F0 then ψ(vw) = ψ(0), while ψ(v)ψ(w) = 0 using injectivity.) That relations (E1)
and (E2) are preserved by ψ follows from the hypothesis that ψ is a graph homomorphism. That (CK1)
is preserved by ψ follows because ψ1 is injective (using an argument similar to the one given for relation
(V)). Finally, the condition that ψ1 restricts to a bijection from s−1

F (v) onto s−1
E (ψ0(v)) for every v ∈ Y

yields the preservation of (CK2) under ψ at the elements of Y . Thus, we get the desired extension of ψ to
an algebra homomorphism ψ : CY

K(F)→CX
K (E). ut
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Proposition 1.6.4. The category G has arbitrary direct limits. Moreover, for any field K, the assignment
(E,X) 7→ CX

K (E) extends to a continuous functor from the category G to the category K-alg of not-
necessarily-unital K-algebras.

Proof. We first show that G admits direct limits. Let I be an upward directed partially ordered set, and
let {(Ei,Xi)i∈I ,(ϕ ji)i, j∈I, j≥i} be a directed system in G . (So for each j ≥ i in I, ϕ ji : (Ei,Xi)→ (E j,X j)
is a morphism in G .) For s = 0,1, set Es =

⊔
i∈I Es

i / ∼, where ∼ is the equivalence relation on
⊔

i∈I Es
i

given by the following: For α ∈ Es
i and β ∈ Es

j , set α ∼ β if and only if there is an index k ∈ I such that
i≤ k and j ≤ k and ϕs

ki(α) = ϕs
k j(β ). Observe that E = (E0,E1) is a graph in a natural way, and there are

injective graph homomorphisms ψi = (ψ0
i ,ψ

1
i ) : Ei→ E such that Es =

⋃
i∈I ψs

i (E
s
i ), s = 0,1. Note that Es

is the direct limit of (Es
i ,ϕ

s
ji) in the category of sets. Now set X =

⋃
i∈I ψ0

i (Xi). We see that ψi defines a
graph homomorphism from Ei to E for all i ∈ I, such that ψi = ψ j ◦ϕ ji for all j ≥ i. Clearly ψi satisfies
conditions (1) and (2) in Definition 1.6.2. To check condition (3), take any vertex v in Xi, for i ∈ I. Then
s−1

E (ψ0
i (v)) =

⋃
j≥i ψ1

j (s
−1
E j
(ϕ0

ji(v))). But since for j≥ i the map ϕ1
ji induces a bijection between s−1

Ei
(v) and

s−1
E j
(ϕ0

ji(v)), and ψ1
i = ψ1

j ◦ϕ1
ji, it follows that

ψ
1
j (s
−1
E j
(ϕ0

ji(v))) = ψ
1
j (ϕ

1
ji(s
−1
Ei
(v))) = ψ

1
i (s
−1
Ei
(v)) ,

so that ψ1
i induces a bijection from s−1

Ei
(v) onto s−1

E (ψ0
i (v)). This gives (3) of Definition 1.6.2, and shows

that each ψi is a morphism in the category G .
We now check that ((E,X),ψi) is the direct limit of the directed system ((Ei,Xi),ϕ ji). Let {γi : (Ei,Xi)→

(G,Z) | i ∈ I} be a compatible family of morphisms in G . Define γ : E→ G by the rule
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γ
s(ψi(α)) = γ

s
i (α) ,

for α ∈ Es
i , s = 0,1. It is obvious that γ is the unique graph homomorphism from E to G such that

γi = γ ◦ψi for all i ∈ I. Since, for v ∈ E0
i , ψ1

i induces a bijection from s−1
Ei
(v) onto s−1

E (ψ0
i (v)), and γ1

i

induces a bijection from s−1
Ei
(v) onto s−1

G (γ0
i (v)), it follows that γ1 induces a bijection from s−1

E (ψ0
i (v))

onto s−1
G (γ0

i (v)) = s−1
G (γ0(ψ0

i (v))). This shows that γ defines a morphism in the category G , and clearly γ

is the unique object in the category G such that γi = γ ◦ψi for all i ∈ I, showing that (E,X) is the direct
limit of ((Ei,Xi),ϕ ji).

If ψ : (F,Y ) → (E,X) is a morphism in G , then there is an induced K-algebra homomorphism
ψ : CY

K(F)→CX
K (E) by Lemma 1.6.3, and clearly the assignment ψ 7→ ψ is functorial. Let

((Ei,Xi)i∈I ,(ϕ ji)i, j∈I, j≥i)

be a directed system in G . Let ((E,X),ψi) be the direct limit in G of the directed system ((Ei,Xi),ϕ ji). We
have to check that (CX

K (E),ψi) is the direct limit of the directed system (CXi
K (Ei),ϕ ji). Let γi : CXi

K (Ei)→ A
be a compatible family of K-algebra homomorphisms, where A is a K-algebra. Define γ : CX

K (E)→ A by
the rule

γ(ψs
i (α)) = γi(α) , γ(ψs

i (α)∗) = γi(α
∗) ,

for α ∈Es
i , i∈ I, s= 0,1. We have to check that relations (V), (E1), (E2), (CK1) are preserved by γ , and that

relation (CK2) at all the vertices in X is also preserved by γ . It is straightforward to check (using appropriate
injectivity hypotheses) that relations (V), (E1), (E2) and (CK1) are satisfied. Let w∈X . Then there is v∈Xi,
for some i ∈ I, such that w = ψ0

i (v). Since ψ1
i induces a bijection from s−1

Ei
(v) onto s−1

E (ψ0
i (v)) = s−1

E (w),
we get

γ(w) = γ(ψ0
i (v)) = γi(v) = ∑

e∈s−1
Ei

(v)

γi(e)γi(e∗) = ∑
e∈s−1

Ei
(v)

γ(ψ1
i (e))γ(ψ

1
i (e)

∗) = ∑
f∈s−1

E (w)

γ( f )γ( f ∗) .

This shows that relation (CK2) at w ∈ X is preserved by γ . It follows that γ is a well-defined K-algebra
homomorphism. For i ∈ I, the maps γi and γ ◦ψi agree on the generators E0

i ∪E1
i ∪ (E1

i )
∗ of CXi

K (Ei), so
we get γi = γ ◦ψi. This shows that (CX

K (E),ψi) is the direct limit of the directed system (CXi
K (Ei),ϕ ji), as

desired. ut

Although morphisms in G give rise to algebra homomorphisms between the associated relative Cohn
path algebras as per the previous result, and although the morphisms in G are injective maps by definition,
the induced algebra homomorphisms need not be injective. For instance, the identity map gives rise to a
morphism ι : (Rn, /0)→ (Rn,{v}) in G , where v is the unique vertex of the rose with n petals graph Rn.
However, the corresponding induced map is the canonical surjection CK(1,n)→ LK(1,n), which is not
injective (as the nonzero element v−∑

n
i=1 eie∗i of CK(1,n) is mapped to zero in LK(1,n)).

However, by adding an additional condition to morphisms in G , we can ensure that the induced algebra
homomorphisms are injective.
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Definition 1.6.5. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism in G . We say that ψ is complete
in case, for every v ∈ F0,

if ψ
0(v) ∈ X and s−1

F (v) 6= /0, then v ∈ Y.

That is, ψ is complete in case each of the vertices in X which are in Im(ψ0), and which come from a non-
sink in F , in fact come from Y . Note that a morphism ψ is complete if and only if Y = (ψ0)−1(X)∩Reg(F).

We note that a complete morphism ϕ : (F,Reg(F))→ (E,Reg(E)) is not in general the same as a CK-
morphism as defined in [79], but the two ideas coincide when E is row-finite.
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Lemma 1.6.6. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a complete morphism in G . Then the induced
homomorphism ψ : CY

K(F)→CX
K (E) described in Lemma 1.6.3 is a monomorphism of K-algebras.

Proof. Using Corollary 1.5.12 and the notation there, for every regular vertex v ∈ F0, if {ev
1, . . . ,e

v
nv} is an

enumeration of the elements of s−1(v), then a basis for CY
K(F) is
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B′′(F,Y ) = B \{λev
nv(e

v
nv)
∗
ν
∗|r(λ ) = r(ν) = v ∈ Y}.

If v ∈ Y , then the map ψ1 induces a bijection from s−1
F (v) = {ev

1, . . . ,e
v
nv} onto s−1

E (ψ0(v)), so that
s−1

E (ψ0(v)) = {ψ1(ev
1), . . . ,ψ

1(ev
nv)}. We take a corresponding basis B′′(E,X) of CX

K (E) such that, for

v ∈ Y , the enumeration {eψ0(v)
1 , . . . ,eψ0(v)

nv } of the edges in s−1
E (ψ0(v)) is given by eψ0(v)

i = ψ1(ev
i ), for

i = 1, . . . ,nv.
The injectivity conditions on ψ0 and ψ1 give that ψ extends to an injective map from Path(F̂) to

Path(Ê). It is now clear that ψ restricts to an injective map from the basis B′′(F,Y ) of CY
K(F) into a

subset of the basis B′′(E,X) of CX
K (E). Indeed, the role here of the completeness condition is in assuring

that the images of the basis elements λev
i (e

v
i )
∗
ν∗, i = 1, . . . ,nv, for v a regular vertex in F such that v /∈ Y ,

belong to the basis B′′(E,X) of CX
K (E) associated to (E,X). This is so because if v ∈ Reg(F) \Y , then

ψ0(v) /∈ X by completeness of ψ , and so the elements ψ(λev
i (e

v
i )
∗
ν∗) belong to the basis B′′(E,X).

Therefore ψ is injective, as desired. ut
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Definition 1.6.7. We say that a subgraph F of a graph E is complete in case the inclusion map

(F,Reg(F)∩Reg(E))→ (E,Reg(E))

is a (complete) morphism in the category G . Less formally, F is a complete subgraph of E in case for each
v ∈ F0, whenever s−1

F (v) 6= /0 and 0 < |s−1
E (v)| < ∞, then s−1

F (v) = s−1
E (v). In words, a subgraph F of a

graph E is complete in case, whenever v is a vertex in F which emits at least one edge in F and finitely
many in E (and so also finitely many in F , because F is a subgraph of E), then the edges emitted at v in the
subgraph F are precisely all of the edges emitted at v in the full graph E.

By Lemma 1.6.6, if F is a complete subgraph of E then we get an embedding

CReg(F)∩Reg(E)
K (F) ↪→ LK(E) =CReg(E)

K (E).

In case Reg(F)∩Reg(E) = Reg(F) (for instance, in case E is row-finite), then a complete subgraph F of
E yields that the canonical inclusion map F ↪→ E gives rise to an embedding of LK(F) ↪→ LK(E).

In the example given above, R2 is not a complete subgraph of R3. This is because Reg(R3) = {v} =
Reg(R2), so that Reg(R2)∩Reg(R3) = {v}; and the inclusion map from s−1

R2
(v)→ s−1

R3
(v) is not a bijection.

In contrast, the inclusion morphism (R2, /0) ↪→ (R3, /0) is a complete morphism in G . On the other hand,
consider the infinite rose graph R∞, and let Rn be any finite subgraph of R∞. Then Rn is a complete subgraph
of R∞, since Reg(Rn)∩Reg(R∞) = {v}∩ /0 = /0, and the morphism (Rn, /0) ↪→ (R∞, /0) is complete.

The following definition generalizes Definition 1.6.7, and it will be useful later on.
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Definition 1.6.8. Let E be a graph and let S be a subset of Reg(E). We say that a subgraph F of a graph E
is S-complete in case the inclusion map

(F,Reg(F)∩S)→ (E,S)

is a (complete) morphism in the category G . Thus, F is an S-complete subgraph of E in case for each v ∈ S,
we have s−1

F (v) = s−1
E (v) whenever s−1

F (v) 6= /0.

We note that the literature contains alternate definitions of the notion of a complete subgraph of a graph,
see e.g. [14]. However, the notion of completeness is identical across all definitions whenever the given
graph is row-finite.

The notion of a complete morphism in G , and the attendant notion of a complete subgraph, will allow us
to produce homomorphisms from various relative Cohn path algebras over appropriately chosen subgraphs
F of E to the Leavitt path algebra LK(E). This will in turn, by an application of Theorem 1.5.18, allow us
to realize any Leavitt path algebra LK(E) as a direct limit of algebras, each of which is itself the Leavitt
path algebra of a finite graph built from E.
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Lemma 1.6.9. Every object (E,X) of G is a direct limit in the category G of a directed system of the form
{(Fi,Xi) | i ∈ I}, for which each Fi is a finite graph and all the maps (Fi,Xi)→ (E,X) are complete
morphisms in G .
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Proof. Clearly, E is the set theoretic union of its finite subgraphs. Let G be a finite subgraph of E. Define
a finite subgraph F of E as follows:

F0 = G0∪{rE(e) | e ∈ E1 and sE(e) ∈ G0∩X}

and
F1 = {e ∈ E1 | sE(e) ∈ G0∩X}.

Now notice that the set of vertices in F0∩X that emit edges in F is precisely the set G0∩X , and if v is one
of these vertices, then s−1

E (v) = s−1
F (v). This shows that the inclusion map (F,Reg(F)∩X) ↪→ (E,X) is a

complete morphism in G . In particular, any finite subgraph G of E gives rise to a finite complete subobject
(F,Reg(F)∩X) of (E,X).

Since the union of a finite number of finite complete subobjects of (E,X) is again a finite complete
subobject of (E,X), it follows that (E,X) is the direct limit in the category G of the directed family of its
finite complete subobjects (F,Reg(F)∩X). ut

Now applying Lemma 1.6.9, Proposition 1.6.4 and Lemma 1.6.6, we have established the following
useful result.
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Theorem 1.6.10. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). Then as
objects in the category K-alg, we have

CX
K (E) = lim−→

F
{CReg(F)∩X

K (F)},

where (F,Reg(F)∩ X) ranges over all finite complete subobjects of (E,X) (i.e., F ranges over all X-
complete subgraphs of E). Moreover, each of the homomorphisms CReg(F)∩X

K (F)→CX
K (E) is injective. In

particular,
LK(E) = lim−→

F
{CReg(F)∩Reg(E)

K (F)},

where F ranges over all finite complete subgraphs of E, with all homomorphisms CReg(F)∩Reg(E)
K (F)→

LK(E) being injective.

We are now in position to establish the aforementioned result regarding direct limits.
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Corollary 1.6.11. Let E be any graph and K any field. Let X be any subset of Reg(E). Then CX
K (E) is the

direct limit in K-alg of subalgebras, each of which is isomorphic to the Leavitt path algebra of a finite
graph. In particular, LK(E) is the direct limit of unital subalgebras (with not-necessarily-unital transition
homomorphisms), each of which is isomorphic to the Leavitt path algebra of a finite graph.

Proof. This follows directly from Theorems 1.6.10 and 1.5.18. ut

To clarify the ideas of the previous two results, we present the following examples.
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Example 1.6.12. Let CN be the infinite clock graph pictured here

•u1 •u2

•v

e1

OO
e2

==

e3 //

e4

!!
��

. . .

��

•u3

•u4

In this example, we have LK(CN)∼= lim−→n∈NCK(Cn), where CK(Cn) =C /0
K(Cn)∼= LK(Cn( /0)) is the Cohn path

algebra of the n-edges clock Cn.
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Example 1.6.13. We let RN denote the rose with N petals graph having one vertex and N loops:

RN = •v e3ff

e2

rr

e1

��

In this example, we have LK(RN)∼= lim−→n∈NCK(Rn), where CK(Rn) =C /0
K(Rn)∼= LK(Rn( /0)) is the Cohn

path algebra of the n-edges rose.
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Example 1.6.14. Let AN be the infinite line graph

AN = •v1
e1 // •v2

e2 // •v3

Here we have LK(AN)∼= lim−→n∈NLK(An), because the graph AN is row-finite (see Corollary 1.6.16 below). In
this situation the transition homomorphisms LK(An)→ LK(An+1) can be identified with the maps Mn(K)→
Mn+1(K) (cf. Proposition 1.3.5) sending x to x⊕0. This yields that LK(AN)∼=MN(K), the K-algebra ofN×
N matrices consisting of those matrices having at most finitely many nonzero entries. (This isomorphism
will also follow from Theorem 2.6.14 below.)

As a consequence of the results in this section which will prove to be quite useful later, we offer the
following.
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Proposition 1.6.15. Let E be any acyclic graph. Then LK(E) is the direct limit, with injective transition
homomorphisms, of algebras {LK(Fi) | i ∈ I}, where each Fi is a finite acyclic graph.

Proof. As subgraphs of E, the graphs F which arise in Theorem 1.6.10 are necessarily acyclic. But
CReg(F)∩Reg(E)

K (F) ∼= LK(F(Reg(F)∩Reg(E))) by Theorem 1.5.18, and F(Reg(F)∩Reg(E)) is acyclic
by Proposition 1.5.21(1). ut

We conclude this section by noting that the above direct limit construction may be streamlined in the
row-finite case, for in that situation the regular vertices of E are precisely the non-sinks, and the set inter-
sections Reg(F)∩Reg(E) are precisely the sets Reg(F). So by Theorem 1.6.10 we get
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Corollary 1.6.16. Let E be any row-finite graph. Then LK(E) is the directed union of unital subalgebras
(with not-necessarily-unital transition homomorphisms), each of which is isomorphic to the Leavitt path
algebra of a finite complete subgraph of E.

1.7 A brief restrospective on the history of Leavitt path algebras
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A brief retrospective on the subject’s genesis is in order here. (A much fuller account may be found in
[2].) The accomplishments achieved during the initial investigation by Leavitt in the late 1950’s and early
1960’s into the structure of non-IBN rings were followed up by P.M. Cohn’s work (see e.g. [60]) in the
mid 1960’s on the algebras U1,n (herein denoted CK(1,n)), and by Bergman’s work in the mid 1970’s on
the V -monoid question. The algebras LK(1,n) and CK(1,n) were not again the subject of intense interest
until more than a quarter century later, when they were dusted off and studied anew in [33], [24], and [29].
(Perhaps this hiatus of interest was due to Cohn’s remark in [60] that these algebras “ ... may be regarded
as pathological rings”?) As noted previously, the algebras CK(1,n)∼=CK(Rn) stand in relation to the more
general Cohn path algebras in precisely the same way that the Leavitt algebras LK(1,n)∼= LK(Rn) stand in
relation to the more general Leavitt path algebras.

Working in a different corner of the mathematical universe, Cuntz in the late 1970’s investigated a class
of C∗-algebras arising from a natural question in physics, the now-so-called Cuntz algebras On (see [63]).
Subsequently, Cuntz and Krieger in [64] realized that the Cuntz algebras are specific cases of a more general
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C∗-algebra structure which could be associated with any finite 0/1 matrix, the now-so-called Cuntz-Krieger
C∗-algebras. (The names Cuntz and Krieger give rise to the letters which comprise the notation (CK1) and
(CK2); this notation is now standard in both the algebraic and analytic literature to describe the appropriate
conditions on the algebras.) Subsequently, it was realized that the Cuntz-Krieger algebras were themselves
specific cases of an even more general C∗-algebra structure, the graph C∗-algebras defined in [141] and
then initially investigated in depth in [94].

Using the 20/20 vision provided by the passage of a few years’ time, it is fair to say that there were two
seminal papers which wound up serving as the launching pad for the study of Leavitt path algebras: [7] and
[35]. The work for both of these articles was initiated in 2004, but the two groups of authors did not become
aware of the others’ efforts until Spring 2005, at which time it was immediately clear that the algebras under
study in these two articles were identical. It is interesting to note that although the topic discussed in both
[7] and [35] is the then-newly-described notion of Leavitt path algebras, the results in the two articles
are in fact completely disjoint. Indeed, the former contains results for Leavitt path algebras which mimic
some of the corresponding graph C∗-algebra results (e.g., regarding simplicity of the algebras). In fact,
the construction given in [7] was motivated directly by interpreting the C∗-algebra equations displayed
in Definitions 1.4.4 from a purely algebraic point of view. (The analogous interpretation relating LC(1,n)
and On had already been noted in [33].) On the other hand, [35] contains results describing Bergman’s
construction in the specific setting of graph monoids, as well as theretofore unknown information about the
V -monoid of the graph C∗-algebras. The common, historically appropriate name “Leavitt path algebras”
which now describes these structures was then agreed upon by the two groups of authors while [7] and [35]
were in press.

The results presented in this opening chapter are meant to give the reader both an historical overview
of the subject and a foundation for results which will be presented in subsequent chapters. The results
described in Sections 1.1 through 1.4 have by now resided in the literature for a number of years, and are
for the most part well-known. On the other hand, the main ideas of Sections 1.5 and 1.6 are contributions
to the theory which either make their first appearance in the literature here, or made their appearance in
literature motivated in part by pre-publication versions of this book.

Again donning our historical 20/20 lenses, it seems clear now that Cohn’s aforementioned “pathological
rings” observation rather significantly missed the mark. As we hope will become apparent to the reader
throughout this book, in fact these rings are quite natural, structurally quite interesting, and really quite
beautiful.



Chapter 2
Two-sided ideals
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ABSTRACT: In this chapter we investigate the ideal structure of Leavitt path algebras. We start by de-
scribing the natural Z-grading on LK(E). We then present the Reduction Theorem; this result describes
how elements of LK(E) may be transformed in some specified way to either a vertex or a cycle without
exits. Numerous consequences are discussed, including the Uniqueness Theorems. We then establish in
the Structure Theorem for Graded Ideals a precise relationship between graded ideals and explicit sets of
idempotents (arising from hereditary and saturated subsets of vertices, together with breaking vertices).
With this description of the graded ideals having been achieved, we focus in the remainder of the chapter
on the structure of all ideals. We achieve in the Structure Theorem for Ideals an explicit description of the
entire ideal structure of LK(E) (including both the graded and non-graded ideals) for an arbitrary graph E
and field K. This result utilizes the Structure Theorem for Graded Ideals together with the analysis of the
ideal generated by vertices which lie on cycles having no exits. A number of ring-theoretic results follow
almost immediately from the Structure Theorem for Ideals, including the Simplicity Theorem. Along the
way, we describe the socle of a Leavitt path algebra, and we achieve a description of the finite dimensional
Leavitt path algebras.

In this chapter we investigate the ideal structure of Leavitt path algebras. In the introductory paragraphs
we present many of the graph-theoretic ideas which will be useful throughout the subject. There is a natural
Z-grading on LK(E), which we discuss in Section 2.1. With this grading so noted, we will see in subsequent
sections that the graded ideals with respect to this grading play a fundamental structural role. In Section
2.2 we consider the Reduction Theorem. Important consequences of this result include the two Uniqueness
Theorems (also presented in Section 2.2), as well as various structural results about Leavitt path algebras
(which comprise Section 2.3). In Section 2.4 we show that the quotient of a Leavitt path algebra by a graded
ideal is itself isomorphic to a Leavitt path algebra. In Section 2.5 we show that the graded ideals of a Leavitt
path algebra arise as ideals generated from data given by prescribed subsets of the graph E. Specifically,
in the Structure Theorem for Graded Ideals (Theorem 2.5.8), we establish a precise relationship between
graded ideals and explicit sets of idempotents. In the row-finite case, these sets of idempotents consist of
hereditary saturated sets of vertices, while in the more general case additional sets of idempotents (arising
from breaking vertices) are necessary. As well, we show that a graded ideal viewed as an algebra in its own
right is isomorphic to a Leavitt path algebra.

With a description of the graded ideals having been achieved, we focus in the remainder of the chapter
on the structure of all ideals. We start in Section 2.6 by considering the socle of a Leavitt path algebra.
Along the way, we achieve a description of the finite dimensional Leavitt path algebras. In Section 2.7
we identify the ideal generated by the set of those vertices which connect to a cycle having no exits. The
denouement of Chapter 2 occurs in Section 2.8, in which we present the Structure Theorem for Ideals
(Theorem 2.8.10), an explicit description of the entire ideal lattice of LK(E) (including both the graded
and non-graded ideals) for an arbitrary graph E and field K. This key result weaves the Structure Theorem
for Graded Ideals together with the analysis of the ideal investigated in the previous section. A number

23
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of ring-theoretic results follow almost immediately from the Structure Theorem for Ideals, including the
Simplicity Theorem; we present those in Section 2.9.
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Notation 2.0.1. For a ring or algebra R and subset X ⊆ R, denote by I(X) the ideal of R generated by X .

While only very basic graph-theoretic ideas and terminology were needed to define the Leavitt path alge-
bras, additional graph-theoretic concepts will play a huge role in analyzing the structure of these algebras.
We collect many of those in the following.
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Definitions 2.0.2. Let E = (E0,E1,r,s) be an arbitrary graph.

(i) Let µ = e1e2 · · ·en ∈ Path(E). If n = `(µ)≥ 1, and if v = s(µ) = r(µ), then µ is called a closed path
based at v.

(ii) A closed simple path based at v is a closed path µ = e1e2 · · ·en based at v, such that s(e j) 6= v for
every j > 1. We denote by CSP(v) the set of all such paths.

(iii) If µ = e1e2 · · ·en is a closed path based at v and s(ei) 6= s(e j) for every i 6= j, then µ is called a cycle
based at v. Note that a cycle is a closed simple path based at any of its vertices, but not every closed
simple path based at v is a cycle, because a closed simple path may visit some of its vertices (other
than v) more than once.

(iv) Suppose µ = e1e2 · · ·en is a cycle based at the vertex v. Then for each 1 ≤ i ≤ n, the path µi =
eiei+1 · · ·ene1 · · ·ei−1 is a cycle based at the vertex s(ei). (In particular, µ1 = µ .) The cycle of µ is the
collection of cycles {µi} based at s(ei).

(v) A cycle c is a set of paths consisting of the cycle of µ for µ some cycle based at a vertex v.
(vi) The length of a cycle c is the length of any of the paths in c. In particular, a cycle of length 1 is called

a loop. (We note that the definition of the word cycle is somewhat non-standard, but will serve our
purposes well here.)

(vii) A (directed) graph E is said to be acyclic in case it does not have any closed paths based at any vertex
of E, equivalently if it does not have any cycles based at any vertex of E.
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Definition 2.0.3. A graph E satisfies Condition (K) if for each v ∈ E0 which lies on a closed simple path,
there exist at least two distinct closed simple paths α,β based at v.
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Definition 2.0.4. Let E = (E0,E1,r,s) be a graph. We define a preorder ≤ on E0 given by:

w≤ v in case there is a path µ ∈ Path(E) such that s(µ) = v and r(µ) = w.

(We will sometimes equivalently write v≥ w in this situation.) If v ∈ E0 then the tree of v, denoted T (v), is
the set {w | w∈ E0,v≥w}. (This notation is standard in the context of Leavitt path algebras; note, however,
that T (v) need not be a “tree” in the sense of undirected graphs, as T (v) may indeed contain closed paths.)
If X ⊆ E0, we define T (X) :=

⋃
v∈X T (v). Note that T (X) is the smallest hereditary subset of E0 containing

X .
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Definitions 2.0.5. Let E be a graph, and H ⊆ E0.

(i) We say H is hereditary if whenever v ∈ H and w ∈ E0 for which v≥ w, then w ∈ H.
(ii) We say H is saturated if whenever v∈Reg(E) has the property that {r(e) | s(e) = v}⊆H, then v∈H.

(In other words, H is saturated if, for any non-sink vertex v which emits a finite number of edges in
E, if all of the range vertices r(e) for those edges e having s(e) = v are in H, then v must be in H as
well.)

We denote by HE (or simply by H when the graph E is clear) the set of those subsets of E0 which are
both hereditary and saturated.

We refer back to the graph E given in Example 1.2.8. We see that the set S1 = {v3} is hereditary
(trivially), but not saturated, since the vertex v2 emits all of its edges (there is only one) into S2, but v2 itself
is not in S2. However, the set S2 = {v2,v3} is both hereditary and saturated: while v1 emits edges into S2,
not all of the edges emitted from v1 have ranges in S2.
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Definition 2.0.6. If X is a subset of E0, then the hereditary saturated closure of X , denoted X , is the
smallest hereditary and saturated subset of E0 containing X . (Since the intersection of hereditary (resp.,
saturated) subsets of E0 is again hereditary (resp., saturated), X is well defined.)

We denote by S(X) the set of all vertices obtained by applying the saturated condition among the ele-
ments of X , that is,

S(X) := {v ∈ Reg(E) | {r(e) | s(e) = v} ⊆ X}∪X .

For X ⊆ E0, the hereditary saturated closure of X may be inductively constructed as follows.
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Lemma 2.0.7. Let X be a nonempty subset of vertices of a graph E. We define X0 := T (X) , and for n≥ 0
we define inductively Xn+1 := S(Xn). Then X =

⋃
n≥0 Xn.

Proof. It is immediate to see that every hereditary and saturated subset of E0 containing X must contain⋃
n≥0 Xn. Note that every Xn is hereditary (it is easy to show that if Y ⊆ E0 is hereditary, then so is S(Y )),

which implies that
⋃

n≥0 Xn is hereditary as well. We now show that
⋃

n≥0 Xn is saturated. Take v ∈ Reg(E)
such that r(s−1(v)) ⊆

⋃
n≥0 Xn; since Xn ⊆ Xn+1 and r(s−1(v)) is a finite subset, there exists N ∈ N such

that r(s−1(v))⊆ XN , hence v ∈ XN+1 as required. ut

We finish the introduction to this chapter by describing how the path algebra KÊ of K over the extended
graph Ê can be endowed with an involution, as follows.
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Lemma 2.0.8. Let E be an arbitrary graph and K any field. Let − : K→ K be an involution on K. Then the
following map can be extended to a unique involution ∗ : KÊ→ KÊ:

(1) (kv)∗ = kv for every k ∈ K and v ∈ E0.
(2) (kγ)∗ = kγ∗ for every k ∈ K and γ ∈ Path(E).
(3) (kγ∗)∗ = kγ for every k ∈ K and γ ∈ Path(E).

In particular, (KE)∗ = KE∗.

Proof. Define the map ρ : E0 ∪E1 ∪ (E1)∗ → (KÊ)op by setting ρ(v) = v, ρ(e) = e∗, and ρ(e∗) = e for
v ∈ E0 and e ∈ E1. It is easy to see that ρ is compatible with the relations (V), (E1) and (E2) in KÊ,
and hence ρ can be extended in a unique way to a homomorphism of K-algebras ρ : KÊ → (KÊ)op. This
homomorphism ρ is precisely the involution in the statement. ut
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Corollary 2.0.9. Let E be an arbitrary graph, let X ⊆ Reg(E), and let K be any field. Let − : K → K be
an involution on K. Then there is a unique involution ∗ : CX

K (E)→CX
K (E) satisfying the three properties of

Lemma 2.0.8.
Consequently, taking the involution to be the identity map, we have that CX

K (E) is isomorphic to its
opposite ring CX

K (E)
op. In particular, LK(E)∼= LK(E)op.

2.1 The Z-grading
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One of the most important properties of the class of Leavitt path algebras is that each LK(E) is a Z-graded
K-algebra. As we shall see, this grading provides the key ingredient which allows us to achieve many
structural results about Leavitt path algebras, as well as to streamline proofs of additional results.

In this section we will explore the natural Z-grading on LK(E) (the one induced by the length of paths).
Of particular importance will be the structure of the zero component of any Leavitt path algebra relative to
this grading.

Definitions 2.1.1 . Let G be a group and A an algebra over a field K. We say that A is G-graded if there
exists a family {Aσ}σ∈G of K-subspaces of A such that

A =
⊕
σ∈G

Aσ as K-spaces, and Aσ ·Aτ ⊆ Aστ for each σ ,τ ∈ G.
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An element x of Aσ is called a homogeneous element σ . An ideal I of a G-graded K-algebra A is said to be
a graded ideal if I ⊆ ∑σ∈G(I∩Aσ ), or, equivalently, if

y = ∑σ∈G yσ ∈ I implies yσ ∈ I for every σ ∈ G.
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Remark 2.1.2. Let e denote the identity element of the group G. It is straightforward to show that if A is a
G-graded ring, and X is a subset of Ae, then the ideal I(X) of A generated by X is a graded ideal.

It is easy to prove that the quotient of a G-graded algebra A = ∑σ∈G Aσ by a graded ideal I is a G-graded
algebra, with the natural grading induced by that of A. Specifically, consider the projection map A →
A/I via a 7→ a, and denote A/I by A. Then, using the graded property of I, for any σ ∈ G the homogenous
component Aσ of A of degree σ is Aσ := Aσ . Hence

A =
⊕
σ∈G

Aσ .

In general, not every ideal in a Leavitt path algebra is graded (see, e.g., Examples 2.1.7). It will be shown in
Section 2.4 that graded ideals can be obtained from specified subsets of vertices. Concretely, Leavitt path
algebras whose ideals are all graded will be shown to coincide with the exchange Leavitt path algebras;
equivalently, to coincide with those Leavitt path algebras whose associated graph satisfies Condition (K).

We recall here that for an arbitrary graph E and field K the Leavitt path algebra LK(E) can be obtained
as a quotient of the Cohn path algebra CK(E) by the ideal I generated by {v−∑e∈s−1(v) ee∗ | v ∈ Reg(E)}
(Proposition 1.5.5). We establish that the Cohn path algebra has a natural Z-grading given by the length
of the monomials, which thereby will induce a Z-grading on LK(E). (Although we derive the grading on
LK(E) from the grading on CK(E), a more direct proof may also be produced.)
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Definition 2.1.3. Let E be an arbitrary graph and K any field. For any v∈ E0 and e∈ E1, define deg(v) = 0,
deg(e) = 1 and deg(e∗) = −1. For any monomial kx1 · · ·xm, with k ∈ K and xi ∈ E0 ∪ (E1∪E1)

∗, define
deg(kx1 · · ·xm) = ∑

m
i=1 deg(xi). Finally, for any n ∈ Z define

An := spanK({x1 · · ·xm | xi ∈ E0∪E1∪ (E1)
∗

with deg(x1 · · ·xm) = n}).
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Proposition 2.1.4. With the notation of Definition 2.1.3, KÊ =
⊕

n∈ZAn as K-subspaces, and this decom-
position defines a Z-grading on the path algebra KÊ.

Proof. By Remark 2.1.2, the ideal I generated by the relations (V), (E1) and (E2) is graded, hence KÊ,
which is isomorphic to K〈{E0∪E1∪ (E1)∗}〉/I, is graded as in the indicated decomposition. ut

Corollary 2.1.5. Let E be an arbitrary graph and K any field.

(i) For any subset X of Reg(E), the Cohn path algebra CX
K (E) of E relative to X is a Z-graded K-algebra

with the grading induced by the length of paths.{g
ra
di
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}

(ii) CK(E) =
⊕

n∈ZCn, where

Cn := spanK({γλ
∗ | γ,λ ∈ Path(E) and `(γ)− `(λ ) = n}),

defines a Z-grading on the Cohn path algebra CK(E).
(iii) LK(E) =

⊕
n∈ZLn , where

Ln := spanK({γλ
∗ | γ,λ ∈ Path(E) and `(γ)− `(λ ) = n}),

defines a Z-grading on the Leavitt path algebra LK(E).

Proof. Items (ii) and (iii) are particular cases of (i), hence we will prove only this case. By definition
(see Definition 1.5.9), the relative Cohn path algebra CX

K (E) = KÊ/I, where I is the K-algebra ideal of
KÊ generated by relations of the forms (V), (E1), (E2), (CK1) and by the idempotents {qv | v ∈ X},
where qv = v−∑e∈s−1(v) ee∗. Proposition 2.1.4 establishes that the path algebra KÊ is Z-graded. But I is
generated by homogeneous elements of degree 0, hence it is a graded ideal by Remark 2.1.2; consequently,
the quotient KÊ/I gives a Z-graded algebra. ut
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Remark 2.1.6. This remark will turn out to be quite useful in understanding the ideal structure of general
Leavitt path algebras. There is a natural Z-grading on the Laurent polynomial algebra A = K[x,x−1], given
by setting Ai = Kxi for all i ∈ Z. Furthermore, it is well-known (and easy to prove) that the set of units in
K[x,x−1] consists of the set {kxi | k ∈ K×, i ∈ Z}. Consequently, the only graded ideals of K[x,x−1] are the
two ideals {0} and K[x,x−1] itself.

Moreover, there are infinitely many non-graded ideals in K[x,x−1], since every nontrivial ideal of
K[x,x−1] is generated by a unique element of the form 1+ k1x+ · · ·+ knxn with kn 6= 0.

Consider a field K and a group G. Given two G-graded K-algebras A =⊕σ∈GAσ and B =⊕σ∈GBσ , a K-
algebra homomorphism f from A into B is said to be a graded homomorphism if f (Aσ )⊆ Bσ for every σ ∈
G. It is easy to show that Ker( f ) is a graded ideal of A in this case. If there exists a K-algebra isomorphism
f : A→ B for which both f and f−1 are graded homomorphisms, then we say that A and B are graded
isomorphic.
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Examples 2.1.7. We demonstrate how the Z-grading on LK(E) manifests in two fundamental cases.
First, let An be the oriented n-line graph • // • • // • of Notation 1.3.1. In Proposition

1.3.5 we established that LK(An) ∼= Mn(K), by writing down an explicit isomorphism ϕ between these
two algebras. For each integer t with −(n−1) ≤ t ≤ n−1 we consider the K-subspace At of A = Mn(K)
consisting of those elements (ai, j) for which ai, j = 0 for each pair i, j having i− j 6= t. (Less formally, At
consists of the elements of the tth-superdiagonal of A.) For |t| ≥ n we set At = {0}. Then it is easy to see
(and well-known) that ⊕t∈ZAt is a Z-grading of Mn(K). Furthermore, ϕ : LK(An)→Mn(K) is a graded
isomorphism with respect to this grading.

Now let R1 be the graph •v e
xx

, also of Notation 1.3.1. In Proposition 1.3.4 we showed that LK(R1)∼=
K[x,x−1], via an isomorphism which takes v to 1 and e to x. With the usual grading on K[x,x−1] (described
in Remark 2.1.6), this isomorphism is clearly graded. This immediately implies that there are infinitely
many non-graded ideals in LK(R1), to wit, any ideal generated by a non-monomial expression in e and/or
e∗. For instance, I(v+ e) is such an ideal. The only graded ideals of LK(R1) are LK(R1) itself, and {0}.

We showed in Chapter 1 that the path K-algebra KE over a graph E and the path K-algebra KE∗ over the
graph E∗ can be seen as subalgebras of the Cohn path algebra CK(E) (Corollary 1.5.7) and of the Leavitt
path algebra LK(E) (Corollary 1.5.13). In fact, both KE and KE∗ are graded subalgebras of both CK(E)
and LK(E).
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Lemma 2.1.8. Let E be an arbitrary graph and K any field.

(i) The canonical map KÊ → CK(E) is a Z-graded algebra homomorphism. The restrictions KE →
CK(E) and KE∗→CK(E) are Z-graded algebra monomorphisms.

(ii) The canonical map KÊ → LK(E) is a Z-graded algebra homomorphism. The restrictions KE →
LK(E) and KE∗→ LK(E) are Z-graded algebra monomorphisms.

Proof. The canonical projections given in Corollary 1.5.7 and in Corollary 1.5.13 are K-algebra monomor-
phisms sending homogeneous elements of degree n into elements of the same degree. ut

The proof of the following result is easy, so we omit it.
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Lemma 2.1.9. Let E be an arbitrary graph and K any field. Let I be the ideal of the Cohn path algebra
generated by the set {v−∑e∈s−1(v) ee∗ | v ∈ Reg(E)}. Then LK(E) and CK(E)/I are Z-graded isomorphic
K-algebras.

Lemma 2.1.9 is a particular case of
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Proposition 2.1.10. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(X). Then
CX

K (E) and LK(E(X)) are Z-graded isomorphic K-algebras.

Proof. By reconsidering the proof of Theorem 1.5.18, it is clear that the given isomorphism indeed respects
the grading. ut
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For the remainder of this section we will focus on the structure of the zero components (CK(E))0 of
CK(E) and (LK(E))0 of LK(E) with respect to the grading described above. As we shall see, these subrings
will play important roles in the sequel. Let S be a subset of Reg(E). Given k ∈ Z+, let X be a finite set of
paths of E of length ≤ k. For 0≤ i≤ k, let Xi be the set of initial paths of elements of X of length i, and let
Yi be the set of edges which appear in position i in a path of an element of X . That is,

Xi = {λ ∈ Path(E) | |λ |= i and there exists λ
′ such that λλ

′ ∈ X}, and

Yi = {e ∈ E1 | there exists λ ,γ ∈ Path(E) such that |λ |= i−1, and λeγ ∈ X}.

Note that X0 is the set of source vertices of paths in X . For a path λ of length ≥ i, denote by λi the initial
segment of λ of length i, so that λ = λiλ

′, with |λi|= i.
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Definitions 2.1.11. Let S, X , Xi, Yi, and k be as above. We say that X is an S-complete subset of Path(E) if
the following conditions are satisfied:

(i) All the paths in X of length < k end in a sink.
(ii) For every λ ∈ X , every i < |λ | such that r(λi) ∈ S and every e ∈ s−1(r(λi)), we have that λie = γi+1

for some γ ∈ X .
(iii) For any λ ∈ Xi (1≤ i < k) and any e ∈ Yi+1 such that r(λ ) = s(e), we have λe ∈ Xi+1.

Recall that we defined the notion of an S-complete subgraph in Chapter 1 (see Definition 1.6.8). This
notion should not be confused with the just defined concept of S-complete subset of paths of a graph.

There is a natural way to build S-complete finite subsets of Path(E) from S-complete finite subgraphs of
E, as follows. The goal is to extend the paths in the S-complete finite subgraph to either paths of length k,
or to paths of length less than k which end in a sink, in a specifically described way.
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Proposition 2.1.12. Let F be a finite S-complete subgraph of E and k≥ 1. Then there exists an S-complete
subset of Path(E) of paths of length ≤ k which contains all the paths of length k of F, as well as all the
paths of length < k of F which end in a sink of E. More precisely, there is a finite S-complete subgraph F ′

of E containing F such that X is the set of all paths of F ′ of length k starting at a vertex of F together with
the set of all paths of F ′ of length < k starting at a vertex of F and ending in a sink of E.

Proof. For a vertex v of E with v ∈ (E0 \ (Sink(E)∪S))∩ (Sink(F)∪ (E0 \F0)), we choose and fix some
ev ∈ s−1

E (v).
For each v ∈ E0 and each t ≥ 1, we denote by Γ (v, t) the set of all paths of length ≤ t which satisfy the

following conditions:

1. All paths in Γ (v, t) start at v.
2. The paths in Γ (v, t) either have length t, or have length < t and end in a sink of E.
3. If α1α2 · · ·αs ∈ Path(E) (where αi ∈ E1) belongs to Γ (v, t), then for each i such that s(αi) ∈ (E0 \S)∩

(Sink(F)∪ (E0 \F0)) we have αi = es(αi). Moreover, for each i such that s(αi) ∈ F0 \ Sink(F), we
have αi ∈ F1.

The idea here is that we extend paths of length less than k arbitrarily in vertices of S, by using edges in
F whenever we can; while we extend such paths by a predetermined edge if the vertex does not belong to
S, is not a sink in E, and we cannot extend it by using edges in F . Observe that Γ (v, t) is finite. Now note
the following:

(a) Every path λ in Γ (v,s), with s < t, can be extended to a path τ in Γ (v, t), i.e., there is a path λ ′ such
that λλ ′ ∈ Γ (v, t).

(b) If γ ∈ Γ (v, t) and γ ′ is an initial segment of γ of positive length s, then γ ′ ∈ Γ (v,s).
(c) If γ ∈ Γ (v, t) and γ ′ is a final segment of γ of positive length s, then γ ′ ∈ Γ (s(γ ′),s).

Let Γ (1) denote the set of paths of F of length k together with the paths of F of length < k which end in
a sink of E.

Let Γ (2) denote the set of paths of length ≤ k consisting of all paths of the form λ µ , where λ is a path
of F of length < k which ends in a sink of F which is not a sink in E, and µ ∈ Γ (r(λ ),k−|λ |).
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Let X be the (disjoint) union of Γ (1) and Γ (2). To complete the proof, we need to check that X is an
S-complete subset of Path(E).

Observe that

X =
⋃

v∈F0

Γ (v,k).

Condition (i) in the definition of S-complete subset is obviously satisfied. For condition (ii), let λ ∈ X ,
i< |λ | such that r(λi)∈ S, and e∈ s−1(r(λi)). Note that λie∈Γ (s(λie), i+1), so by (a) λie can be extended
to a path in γ ∈ Γ (s(λ ),k). If γ is a path of F then γ ∈ Γ (1). Otherwise we have γ ∈ Γ (2).

Finally we check (iii). Let λ ∈ X , 1 ≤ i < k, and e ∈ Yi+1 such that r(λi) = s(e). Then λi ∈ Γ (s(λ ), i),
and eµ ∈ Γ (s(e),k− i) for a certain path µ (because e ∈ Yi+1). Therefore λieµ ∈ X , so that λie ∈ Xi+1, as
desired.

The last statement is shown as follows. Let v be a vertex of E which appears as a non-final vertex of
a path from X . If v ∈ F0 \Sink(F), then we set s−1

F ′ (v) = s−1
F (v). If v ∈ S, then we set s−1

F ′ (v) = s−1
E (v). If

v ∈ (E0 \ (Sink(E)∪S))∩ (Sink(F)∪ (E0 \F0)), then we set s−1
F ′ (v) = {ev}. The graph F ′ is the smallest

subgraph of E containing F and all these edges. ut
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Definition 2.1.13. A matricial K-algebra is a finite direct product of full matrix algebras (of finite size)
over a field K.

Let S be a subset of Reg(E), and let X be an S-complete finite subset of Path(E) consisting of paths of
length ≤ k. We define

G (X) = spanK(λ µ
∗ | λ ,µ ∈ X , |λ |= |µ|).
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Proposition 2.1.14. Let E be an arbitrary graph and K any field. Let S be a subset of Reg(E). Let X be
an S-complete finite subset of Path(E) consisting of paths of length ≤ k. For 1 ≤ i ≤ k, we consider the
following K-subspaces Fi(X) of CS

K(E):

Fi(X) is the K− linear span in CS
K(E) of the elements λ (v− ∑

e∈Yi,s(e)=v
ee∗)µ∗,

where λ ,µ ∈ Xi−1, r(λ ) = r(µ) = v /∈ S, and Yi∩ s−1(v) 6= /0. We set

F (X) = G (X)+
k

∑
i=1

Fi(X).

Then F (X) is a matricial K-algebra. Moreover, (CS
K(E))0 is the direct limit of the different subalgebras

F (X), where X ranges over all the S-complete finite subsets of Path(E).

Proof. We will show:
(1) for every 1≤ i≤ k, Fi(X) is a matricial K-algebra, and
(2) for i 6= j we have Fi(X) ·F j(X) = 0. In particular, the sum F (X) = ∑

k
i=1 Fi(X) is a direct sum.

To establish these two statements, write an element λ (v−∑e∈Yi,s(e)=v ee∗)µ∗ in F (X) as λτi(v)µ∗, where
τi(v) = v−∑e∈Yi,s(e)=v ee∗. To show (1) for 1 ≤ i ≤ k, observe that if λτi(v)µ∗ and γτi(w)η∗ belong to
Fi(X), and v 6= w then we have

λτi(v)µ∗ · γτi(w)η∗ = 0.

If v = w then
λτi(v)µ∗ · γτi(v)η∗ = δµ,γ λτi(v)η∗.

It follows that Fi(X) =
⊕

v Fi,v(X), where Fi,v(X) is the linear span of the set of elements of the form
λτi(v)µ∗. Moreover Fi,v(X) is a matrix algebra over K of size |Xi−1|. This shows (1).

Now assume that i 6= j and that α = λτi(v)µ∗ and β = γτ j(w)η∗ belong to Fi(X) and F j(X) respec-
tively. Assume for convenience that j > i. Then αβ = 0 unless γ = µγ ′, with |γ ′| = j− i > 0, in which
case
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α ·β = λτi(v)γ ′τ j(w)η∗.

Write γ ′ = f γ ′′. Then f ∈ Yi and s( f ) = r(µ) = v and thus

τi(v)γ ′ = (v− ∑
e∈Yi,s(e)=v

ee∗) f γ
′′ = ( f − f )γ ′′ = 0.

It follows that αβ = 0. This shows that ∑
k
i=1 Fi(X) is a direct sum.

The space G (X) is also a matricial K-algebra, indeed

G (X) =
[ k−1⊕

i=0

⊕
v∈Sink(E)

Gi,v(X)
]⊕[⊕

v∈E0

Gk,v(X)
]
,

where Gi,v(X) is the K-linear span of the set of elements of the form λ µ∗, where λ ,µ ∈ X , |λ |= |µ|= i and
r(λ ) = r(µ) = v. (This property relies on condition (i) in the definition of an S-complete subset of Path(E).)
It is easy to show that the above sum is direct and also that each Gi,v(X) is a finite matrix K-algebra of size
the number of elements of X with the prescribed conditions on length and range.

The proof that G (X) ·Fi(X) = 0 for all i is similar to the above. Hence we get the direct sum

F (X) = G (X)
⊕

(
k⊕

i=1

Fi(X)).

We now describe the transition homomorphisms F (X)→F (X ′), for appropriate pairs of S-complete
finite subsets X ,X ′ of Path(E). Suppose that X is an S-complete finite subset of paths of length≤ k and that
X ′ is an S-complete finite subset of paths of length ≤ `. Then we write X ≤ X ′ in case k≤ ` and every path
in X can be extended to a path in X ′, that is, for each λ in X there is a path λ ′ such that λλ ′ belongs to X ′.
Observe that only paths of length k can be properly extended. The condition X ≤ X ′ implies that Xi ⊆ X ′i
for 1≤ i≤ k. Also X < X ′ implies k < `.

To describe the transition homomorphism F (X) → F (X ′) for X < X ′, we need to specify a rule
that allows us eventually to write any of the generators of F (X) as a linear combination of the gen-
erators in F (X ′). Let us write τi(v) and τ ′i (v) for the corresponding elements v−∑e∈Yi,s(e)=v ee∗ and
v−∑e∈Y ′i ,s(e)=v ee∗ respectively.

We first describe the map on G (X). Let v be a vertex in E, and suppose that λ ,µ ∈ Xi and r(λ ) = r(µ) =
v. If v is a sink then λ µ∗ belongs to F`(X ′), so the map is the identity in this case. If v ∈ S then i = k and

λ µ
∗ = λ ( ∑

e∈s−1(v)

ee∗)µ∗ = ∑
e∈s−1(v)

(λe)(µe)∗.

Note that, for e ∈ s−1(v), λe and µe can be enlarged to a path in X ′ by S-completeness of X ′ (condition
(ii)). If v /∈ S then

λ µ
∗ = λ ( ∑

e∈Y ′k+1

ee∗)µ∗+λτ
′
k+1(v)µ

∗.

Note that λτ ′k+1(v)µ
∗ ∈Fk+1(X ′) and that the paths λe,µe, with e ∈ Y ′k+1, can be enlarged to paths in X ′,

again by S-completeness of X ′ (condition (iii)). In this way, an inductive procedure gives the description of
the transition mapping G (X)→F (X ′).

Now let λτi(v)µ∗ be a generating element of Fi(X), for 1≤ i≤ k. Then

λτi(v)µ∗ = λτ
′
i (v)µ

∗+ ∑
f∈Y ′i \Yi

(λ f )(µ f )∗,

and λτ ′i (v)µ
∗ ∈ Fi(X ′), whilst λ f ,µ f can be enlarged to paths in X ′ for all f ∈ Y ′i \Yi so that we can

proceed as above in order to obtain the image of λ f f ∗µ∗ in F (X ′). This allows us to describe the transition
homomorphism Fi(X)→F (X ′).
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Finally, let a = ∑λ ,µ∈T,|λ |=|µ| kλ ,µ λ µ∗ be an arbitrary element in (CS
K(E))0, where T is a finite set of

paths in E. There is a finite S-complete subgraph F of E such that all the paths in T have all their edges
in F . Let k be an upper bound for the length of the paths in T . By using Proposition 2.1.12, we can find
an S-complete finite subset of Path(E) consisting of paths of length ≤ k such that all paths in T can be
enlarged to paths in X . Now the above procedure enables us to write a as an element of F (X). This shows
that (CS

K(E))0 is the direct limit of the different subalgebras F (X), where X ranges over all the S-complete
finite subsets of Path(E), and completes the proof. ut

A foundational reference for the material in the remainder of this section is [81, Section 2.3]. Every
injective K-algebra homomorphism

φ : A = Mn1(K)×·· ·×Mnr(K)−→ B = Mm1(K)×·· ·×Mms(K)

is conjugate to a block diagonal one, and so it is completely determined by its multiplicity matrix M =
(m ji) ∈ Ms×r(Z+), which has the property that ∑

r
i=1 m jini ≤ m j for j = 1, . . . ,s. If φ is unital, then the

above inequality is an equality. Note that the injectivity hypothesis is equivalent to the statement that there
is no zero column in the matrix M. For i ∈ {1, . . . ,r}, the numbers m ji can be computed as follows. Take a
minimal idempotent ei in the component Mni(K) of A. Then φ(ei) can be written as φ(ei)=∑

s
j=1 ∑

m ji
m=1 g(i)j,m,

where, for each j, {g(i)j,1, . . . ,g
(i)
j,m ji
} are pairwise orthogonal minimal idempotents in the factor Mm j(K) of

B.
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Definition 2.1.15. Let E be a finite graph and denote by AE = (ai, j) ∈ME0×E0(Z+) the incidence or adja-
cency matrix of E, where av,w = |{e ∈ E1 | s(e) = v,r(e) = w}| . We let Ans denote the matrix A with the
zero-rows removed; that is, Ans is the (not necessarily square) matrix gotten from A by removing the rows
corresponding to the sinks of E.

We are now in position to give an explicit description of the zero component of the Leavitt path algebra
of a finite graph.
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Corollary 2.1.16. Let E be a finite graph and K any field. For each n ∈ Z+ let L0,n ⊆ LK(E) denote the
K-linear span of elements of the form γη∗ where γ,η ∈ Path(E) for which |γ|= |η |= n and r(γ) = r(η),
together with elements of the form γη∗ where γ,η ∈ Path(E) for which |γ|= |η |< n and r(γ) = r(η) is a
sink in E. Then we have

(LK(E))0 =
∞⋃

n=0

L0,n.

For each v in E0, and each n ∈ Z+, we denote by P(n,v) the set of paths γ in E such that |γ| = n and
r(γ) = v. Then

L0,n ∼=
[ n−1

∏
m=0

(
∏

v∈Sink(E)
M|P(m,v)|(K)

)]
×
[

∏
v∈E0

M|P(n,v)|(K)
]
.

The transition homomorphism L0,n→ L0,n+1 is the identity on the factors ∏v∈Sink(E) M|P(m,v)|(K), for 0 ≤
m ≤ n− 1, and also on the factor ∏v∈Sink(E) M|P(n,v)|(K) of the last term of the displayed formula. The
transition homomorphism

∏
v∈E0\Sink(E)

M|P(n,v)|(K)→ ∏
v∈E0

M|P(n+1,v)|(K)

has multiplicity matrix equal to At
ns.

Proof. All these facts follow directly from the proof of Proposition 2.1.14. For instance, observe that for
v ∈ E0 \Sink(E) and λ ∈ P(n,v), we have that λλ ∗ is a minimal idempotent in the factor M|P(n,v)|(K) of
L0,n and that by the (CK2) relation

λλ
∗ = ∑

e∈s−1(v)

(λe)(λe)∗ ,
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so that, for w ∈ E0, the multiplicity mw,v of the inclusion map

∏
v∈E0\Sink(E)

M|P(n,v)|(K)→ ∏
v∈E0

M|P(n+1,v)|(K)

is precisely av,w, which shows that M = At
ns. ut

We note that the K-subspaces L0,n described in the previous result form a filtration of (LK(E))0, given
by the K-linear span of the paths γν∗ such that |γ|= |ν | ≤ n and r(γ) = r(ν).
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Example 2.1.17. Let E = R2, with vertex v and edges e, f . Then for each n ∈ Z+ we have |P(n,v)| = 2n.
There are no sinks in E, so that At

ns = A = (2). Thus L0,n ∼= M2n(K) for each n ∈ Z+, and the transition
homomorphism from L0,n to L0,n+1 takes an element (mi, j) of M2n(K) to the element (mi, jI2) of M2n+1(K),
where I2 is the 2×2 identity matrix. Thus (LK(R2))0 ∼= lim−→n∈Z+ M2n(K). (See also [3, Section 2] for further
analysis of this direct limit.)
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Example 2.1.18. Let ET be the Toeplitz graph of Example 1.3.6, and let T denote the algebraic Toeplitz K-
algebra LK(ET ). Then easily we see that |P(n,u)|= |P(n,v)|= 1 for all n∈Z+. In particular T0,0 ∼= K×K.
By Corollary 2.1.16 we have that

T0,n ∼= [
n−1

∏
m=0

K]× [K×K]∼= Kn+2

for each n ∈ N. The transition homomorphism from T0,n to T0,n+1 takes (r0, . . . ,rn−1,rn,rn+1) ∈ Kn+2 to
(r0, . . . ,rn−1,rn,rn+1,rn+1) ∈ Kn+3. Thus T0 is isomorphic to the subring of the direct product ∏

∞
m=0 K

consisting of those elements which are eventually constant.

2.2 The Reduction Theorem and the Uniqueness Theorems
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The name of this section derives in part from the name given to Theorem 2.2.11, a result which will prove
to be an extremely useful tool in a variety of contexts. For instance, we will see how it yields both Theorems
2.2.15 and 2.2.16 with only a modicum of additional effort. The Reduction Theorem 2.2.11 will also be
key to establishing various ring-theoretic properties of an arbitrary Leavitt path algebra, among other uses.
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Notation 2.2.1. For a cycle c based at the vertex v, we will use the following notation:

c0 := v, and c−n := (c∗)n for all n ∈ N.
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Definitions 2.2.2. Let E be a graph, let µ = e1e2 · · ·en be a path in E, and let e ∈ E1.

(i) We say that e is an exit for µ if there exists i (1≤ i≤ n) such that s(e) = s(ei) and e 6= ei.
(ii) We say that E satisfies Condition (L) if every cycle in E has an exit.
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Examples 2.2.3. Here is how Condition (L) manifests in the fundamental graphs of the theory.

(i) Let E be the graph Rn (n≥ 2), with edges {e1,e2, . . . ,en}. Each ei is a path of length 1 in E, and each
e j ( j 6= i) is an exit for ei (since s(ei) = s(e j) for all i, j). In particular, E satisfies Condition (L).

(ii) On the other hand, the path e consisting of the unique loop in the graph E = R1 has no exit (and thus
R1 does not satisfy Condition (L)).

(iii) In the oriented n-line graph An, no element of Path(An) has an exit. However, An does satisfy Condtion
(L) vacuously, as An is acyclic.

(iv) In the Toeplitz graph ET of Example 1.3.6, the edge f is an exit for the loop e (which is the unique
cycle in ET ). So ET satisfies Condition (L).
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Notation 2.2.4. Let E be an arbitrary graph. We denote by Pc(E) the set of all vertices v of E which are in
cycles without exits; i.e., v ∈ c0 for some cycle c having no exits.
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Remark 2.2.5. If e is an edge of a path without exits, then s−1(s(e)) is a singleton (necessarily e itself), so
that the (CK2) relation at s(e) reduces to the equation s(e) = ee∗.

We start by exploring the structure of a corner of a Leavitt path algebra at a vertex which lies in a cycle
without exits.
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Definition 2.2.6. Let E be an arbitrary graph and K any field. For every cycle c based at a vertex v in E,
and every polynomial p(x) = ∑

n
i=m kixi ∈ K[x,x−1] (m≤ n; m,n ∈ Z), we denote by p(c) the element

p(c) :=
n

∑
i=m

kici ∈ LK(E)

(using Notation 2.2.1).
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Lemma 2.2.7. Let E be an arbitrary graph and K any field. If c is a cycle without exits based at a vertex v,
then

vLK(E)v =

{
n

∑
i=m

kici | ki ∈ K, m≤ n,m,n ∈ Z

}
∼= K[x,x−1],

via an isomorphism that sends v to 1, c to x and c∗ to x−1.

Proof. Write c = e1 · · ·en, where ei ∈ E1. We establish first that any γ ∈ Path(E) such that s(γ) = v is
of the form cmτq, where m ∈ Z+, τq = e1 · · ·eq for 1 ≤ q < n, τ0 = v, and deg(γ) = mn+ q. We proceed
by induction on deg(γ). If deg(γ) = 1 and s(γ) = s(e1) then γ = e1. Suppose now that the result holds
for any λ ∈ Path(E) with s(λ ) = v, deg(λ ) ≤ sn+ t, and consider any γ ∈ Path(E) with s(γ) = v and
deg(γ) = sn+ t + 1. We can write γ = γ ′ f with γ ′ ∈ Path(E), s(γ ′) = v , f ∈ E1 and deg(γ ′) = sn+ t, so
by the induction hypothesis γ ′ = cse1 · · ·et . Since c has no exits, s( f ) = r(et) = s(et+1) implies f = et+1.
Thus γ = γ ′et+1 = cse1 · · ·et+1.

Now let γλ ∗ be such that γ,λ ∈ Path(E), s(γ) = s(λ ) = v. If deg(γ) = deg(λ ) and γλ ∗ 6= 0, we have
γλ ∗ = cpe1 · · ·eke∗k · · ·e∗1c−p = v (using the result of the previous paragraph together with Remark 2.2.5).
On the other hand deg(γ) > deg(λ ) and γλ ∗ 6= 0 imply γλ ∗ = cd+qe1 · · ·eke∗k · · ·e∗1c−q = cd , d ∈ N. In a
similar way, from deg(γ)< deg(λ ) and γλ ∗ 6= 0 follows γλ ∗ = cqe1 · · ·eke∗k · · ·e∗1c−q−d = c−d , d ∈ N.

For any α ∈ vLK(E)v, write α = ∑
p
i=1 kiγiβ

∗
i + kv, with ki,k ∈ K and γi,βi ∈ Path(E) such that s(γ) =

s(λ ) = v. Then, using what has been established in the previous paragraphs, we get α = ∑
p
i=0 kicmi , where

deg(γiβ
∗
i ) = min for some mi ∈ Z.

Define ϕ : K[x,x−1]→ LK(E) by ϕ(1) = v, ϕ(x) = c and ϕ(x−1) = c∗. It is a straightforward routine to
check that ϕ is a monomorphism of K-algebras with image vLK(E)v, so that vLK(E)v is isomorphic to the
K-algebra K[x,x−1]. ut

We note that the isomorphism ϕ of the previous result is a graded isomorphism precisely when the cycle
c is a loop. Also, we note that Lemma 2.2.7 allows us to easily reestablish Proposition 1.3.4, namely, that
LK(R1) is isomorphic to K[x,x−1].

The following result provides a significant portion of the Reduction Theorem; effectively, it will allow
us to “reduce” various elements of LK(E) to a nonzero scalar multiple of a vertex.
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Lemma 2.2.8. Let E be an arbitrary graph and K any field. Suppose that v is a vertex of E for which
T (v)∩Pc(E) = /0; in other words, for every w ∈ E0 for which v≥ w, w does not lie on a cycle without exits.
Let α := kv+∑

n
i=1 kiτi ∈ KE, where n ∈ N, k,ki ∈ K× and τi ∈ Path(E) \ {v} with s(τi) = r(τi) = v, for

which τi 6= τ j. Then there exists γ ∈ Path(E), with s(γ) = v, such that γ∗αγ = kr(γ).

Proof. We may suppose that 0 < deg(τ1) ≤ . . . ≤ deg(τn). Since the τi’s are paths starting and ending at
v, and T (v)∩Pc(E) = /0, there exists γ ∈ Path(E) such that τ1 = γτ ′ (with τ ′ ∈ Path(E)), s(γ) = v and
|s−1(r(γ))| > 1. For those values of i for which there exists τ ′i such that τi = γτ ′i we have γ∗τiγ = τ ′i γ;
otherwise γ∗τiγ = 0. After reordering the subindices we get γ∗αγ = kr(γ)+∑

m
i=1 kiτ

′
i γ , with m ≤ n. Let e

be the initial edge of τ ′1γ . Observe that s(τ ′1) = r(γ), and |s−1(r(γ))|> 1. So there exists f ∈ s−1(r(γ)) such
that f 6= e. We have
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f ∗γ∗αγ f = kr( f )+
m

∑
i=2

ki f ∗τ ′i γ f ,

and f ∗τ ′i γ f is either a path in real edges, or zero. Moreover, T (r( f ))∩Pc(E) = /0 as r( f ) ≤ v and T (v)∩
Pc(E) = /0. Hence we have reached the same initial conditions, but using fewer summands. So continuing
in this way we eventually produce a nonzero multiple of a vertex. ut

{g
de
g}

Definitions 2.2.9 . A monomial e1 · · ·em f ∗1 · · · f ∗n in a path algebra KÊ over an extended graph Ê, where
ei, f j ∈ E1 and m,n ∈ Z+, is said to have degree in ghost edges (or simply ghost degree) equal to n.
Monomials in KE are said to have degree in ghost edges equal to 0. The degree in ghost edges of an
expression of the form ∑

n
i=1 kiγiλ

∗
i , with ki ∈K×, denoted gdeg(∑n

i=1 kiγiλ
∗
i ), is defined to be the maximum

of the degree in ghost edges of the monomials γiλ
∗
i .

Because the representation of an element α ∈ LK(E) as an element of the form ∑
n
i=1 kiγiλ

∗
i is not

uniquely determined, the direct extension of the notion of “degree in ghost edges” to elements of LK(E)
is not well-defined. However, we define the degree in ghost edges of an element α ∈ LK(E), also denoted
greg(α), to be the minimum of the degrees in ghost edges among all the representations of α as an expres-
sion ∑

n
i=1 kiγiλ

∗
i in LK(E) as above.
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Lemma 2.2.10. Let E be an arbitrary graph and K any field. Let α be an element of LK(E) with positive
degree in ghost edges and let e ∈ E1. Then gdeg(αe)< gdeg(α).

Proof. Let α = ∑
n
i=1 kiγiλ

∗
i , ki ∈ K×, be an expression of α with smallest degree in ghost edges. Note that

if the degree in ghost edges of a monomial γ jλ
∗
j is positive, then gdeg(γ jλ

∗
j e) < gdeg(γ jλ

∗
j ). The result

follows. ut

We now come to the key result of this section. Roughly speaking, this theorem says that any nonzero
element of a Leavitt path algebra may be “reduced”, via multiplication on the left and right by appropriate
paths, to either a vertex or to a cycle without exits (or perhaps both).
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Theorem 2.2.11. (Reduction Theorem) Let E be an arbitrary graph and K any field. For any nonzero
element α ∈ LK(E) there exist µ,η ∈ Path(E) such that either:
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(1) 0 6= µ∗αη = kv, for some k ∈ K× and v ∈ E0, or{3
.1
cy
cl
e}

(2) 0 6= µ∗αη = p(c), where c is a cycle without exits and p(x) is a nonzero polynomial in K[x,x−1].

Proof. The first step will be to show that for 0 6= α ∈ LK(E) there exists η ∈ Path(E) such that 0 6= αη ∈
KE. Let v∈E0 be such that αv 6= 0 (such a vertex v exists by Lemma 1.2.12(v)). Write αv=∑

r
i=1 αie∗i +α ′,

where αi ∈ LK(E)r(ei), α ′ ∈ (KE)v, ei ∈ E1, ei 6= e j for every i 6= j, and s(ei) = v for all 1≤ i≤ r.
Note that if gdeg(αv) = 0, then we are done.
Suppose otherwise that gdeg(αv) > 0. If αve j = 0 for every j ∈ {1, . . . ,r}, then multiplying the

equation αv = ∑
r
i=1 αie∗i + α ′ on the right by e j gives 0 = αve j = α j + α ′e j, so α j = −α ′e j, and

αv = ∑
r
i=1 (−α ′eie∗i )+α ′ = α ′((∑r

i=1 −eie∗i )+v) 6= 0. In particular, 0 6= (∑r
i=1 −eie∗i )+v and α ′ 6= 0. So

by (CK2) there exists f ∈ s−1(v)\{e1, . . . ,er}. Now, by the structure of KE, αv f = α ′ f ∈ KE \{0}, and
we have finished the proof of the first step.

On the other hand, suppose that there exists j ∈ {1, . . . ,r} such that αve j 6= 0. There is no loss of
generality if we consider j = 1. Then 0 6= αve1 = α1+α ′e1 = (α1+α ′e1)r(e1), where gdeg(α1+α ′e1)<
gdeg(αv) by Lemma 2.2.10. Repeating this argument a finite number of times, we reach η ∈ Path(E) with
αη ∈ KE \{0}.

Now pick 0 6= α ∈ LK(E). By the previous paragraph, we know that there exists η ∈ Path(E) such that
β := αη ∈ KE \{0}. Write β = ∑

s
i=1 kiγi, with ki ∈ K×, γi ∈ Path(E), and with r(γi) = r(η) =: v for every

i. We will prove the result by induction on s.
Suppose s = 1. If deg(γ1) = 0, then there is nothing to prove. If deg(γ1) > 0, then γ∗1 αη = γ∗1 β =

k1γ∗1 γ1 = k1r(γ1) 6= 0.
Now suppose the result is true for any element having at most s−1 summands. Write again β =∑

s
i=1 kiγi,

where ki ∈ K×, γi ∈ Path(E), γi 6= γ j if i 6= j and deg(γi) ≤ deg(γi+1) for every i ∈ {1, . . . ,s− 1}. Then
0 6= γ∗1 β = k1v+∑

s
i=2 kiγ

∗
1 γi.
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If γ∗1 γi = 0 for some i ∈ {2, . . . ,s}, then apply the induction hypothesis to get the result. Otherwise,
0 6= µ := γ∗1 β = k1v+∑

s
i=2 kiµi, where the µi are paths starting and ending at v and satisfying 0< deg(µ2)≤

. . .≤ deg(µs). If T (v)∩Pc(E) = /0, then by Lemma 2.2.8 there exists a path τ such that τ∗γ∗1 αητ = τ∗µτ =
k1r(τ), and we are done. If T (v)∩Pc(E) 6= /0, then there is a path ρ starting at v such that w := r(ρ) is a
vertex in a cycle c without exits. In this case, 0 6= ρ∗γ∗1 αηρ = ρ∗µρ ∈ wLK(E)w, and by Lemma 2.2.7 the
proof is complete. ut

We note that both cases in The Reduction Theorem 2.2.11 can occur simultaneously: for instance, in
LK(R1) we have e∗e = v, which is simultaneously a vertex as well as the base of a cycle without exits.

The conclusion we obtained in the first step of the proof of the Reduction Theorem, and a consequence
of it, will be of great use later on, so we note them in the following two results.
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Corollary 2.2.12. Let E be an arbitrary graph and K any field. Let α be a nonzero element in LK(E).
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(i) There exists η ∈ Path(E) such that 0 6= αη ∈ KE. {p
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}

(ii) If α is a homogeneous element of LK(E), then there exists η ∈ Path(E) such that 0 6= αη is a homo-
geneous element of KE.
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Corollary 2.2.13. Let E be an arbitrary graph and K any field. Let α be a nonzero homogeneous element
of LK(E). Then there exist µ,η ∈ Path(E), k ∈ K×, and v ∈ E0 such that 0 6= µ∗αη = kv.

In particular, every nonzero graded ideal of LK(E) contains a vertex.

Proof. By Corollary 2.2.12(ii) there exists η ∈ Path(E) for which 0 6= αη is a homogeneous element in
KE. So we may write αη = ∑

n
i=1 kiβi where the βi are distinct paths in E, and the lengths of the βi are

equal. But then β ∗1 β1 = r(β1), while β ∗1 βi = 0 for all 2≤ i≤ n by Lemma 1.2.12(i). Thus β ∗1 αη = k1r(β1),
as desired.

The particular statement follows immediately. ut

We noted in Examples 2.1.7 that the Leavitt path algebra LK(R1) contains infinitely many nontrivial
non-graded ideals. Since the single vertex of R1 acts as the identity element of LK(R1), none of these ideals
contains a vertex. The following result shows that the existence of ideals in LK(R1) which do not contain
any vertices is a consequence of the fact that the graph R1 contains a cycle without exits.
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Proposition 2.2.14. Let E be a graph satisfying Condition (L) and K any field. Then every nonzero ideal
of LK(E) contains a vertex.

Proof. Let I be a nonzero ideal of LK(E), and let α be a nonzero element in I. Since E satisfies Condition
(L) then by the Reduction Theorem there exist µ,η ∈ Path(E) such that 0 6= µ∗αη = kv with v ∈ E0 and
k ∈ K×. This implies 0 6= v = k−1µ∗αη ∈ LK(E)ILK(E)⊆ I. ut

The converse of Proposition 2.2.14 is also true, as will be proved in Proposition 2.9.13.
Two results of fundamental importance which are direct consequences of the Reduction Theorem are

the following Uniqueness Theorems. These results can be considered as the analogs of the Gauge-Invariant
Uniqueness Theorem ([117, Theorem 2.2]) and the Cuntz-Krieger Uniqueness Theorem ([117, Theorem
2.4]) for graph C*-algebras.
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Theorem 2.2.15. (Graded Uniqueness Theorem) Let E be an arbitrary graph and K any field. If A is a
Z-graded ring, and π : LK(E)→ A is a graded ring homomorphism with π(v) 6= 0 for every vertex v ∈ E0,
then π is injective.
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Theorem 2.2.16. (Cuntz-Krieger Uniqueness Theorem) Let E be an arbitrary graph which satisfies Con-
dition (L), let K be any field, and let A be any K-algebra. If π : LK(E)→ A is a ring homomorphism with
π(v) 6= 0 for every vertex v ∈ E0, then π is injective.
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Proof of Theorems 2.2.15 and 2.2.16. We use the basic fact that the kernel of any ring homomorphism
is an ideal of the domain. For the Graded Uniqueness Theorem, as π is a graded homomorphism we have
that Ker(π) is a graded ideal of LK(E). Thus Ker(π) is either {0} or contains a vertex, by Corollary 2.2.13.
For the Cuntz-Krieger Uniqueness Theorem, we use Proposition 2.2.14 to conclude that Ker(π) is either
{0} or contains a vertex in this situation as well. Since the hypotheses of both statements presumes that π

sends vertices to nonzero elements, the only option is Ker(π) = 0 in both cases. 2

The next result is similar in flavor to the two Uniqueness Theorems.
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Proposition 2.2.17. Let E be an arbitrary graph and K any field. Let A be a Z-graded K-algebra and let
π : LK(E)→ A be a (not necessarily graded) K-algebra homomorphism for which π(v) 6= 0 for every vertex
v ∈ E0, and for which π maps each cycle without exits in E to a nonzero homogeneous element of nonzero
degree in A. Then π is injective.

Proof. By hypothesis, Ker(π) is an algebra ideal of LK(E) which does not contain vertices. If Ker(π)
is nonzero, then by the Reduction Theorem Ker(π) contains a nonzero element p(c), where p(x) =
∑

n
i=−m kixi ∈ K[x,x−1] and c is a cycle without exits. Let q(x) = xm p(x) ∈ K[x]; then q(c) = cm p(c) =

∑
n+m
i=0 ki−mci ∈ Ker(π). So 0 = π(q(c)) = q(π(c)) = ∑

n+m
i=0 ki−mπ(c)i. But this is impossible since π(c) is a

nonzero homogeneous element of nonzero degree in A. ut

We finish out the section by giving a direct application of the Graded Uniqueness Theorem, in which
we demonstrate an embedding of Leavitt path algebras corresponding to naturally arising subgraphs F of
a given graph E.

Definition 2.2.18. (The restriction graph) Let E be an arbitrary graph, and let H be a hereditary subset of
E0. We denote by EH the restriction graph:

E0
H := H, E1

H := {e ∈ E1 | s(e) ∈ H},

and the source and range functions in EH are simply the source and range functions in E, restricted to H.
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Proposition 2.2.19. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0.{r
es
tr
un
o}

(i) Consider the assignment
v 7→ v, e 7→ e, and e∗ 7→ e∗

(for v ∈ E0
H and e ∈ E1

H ), which maps elements of LK(EH) to elements of LK(E). Then this assignment
extends to a Z-graded monomorphism of Leavitt path algebras ϕ : LK(EH)→ LK(E).{r

es
tr
do
s}

(ii) If H is finite, then ϕ(LK(EH)) = pHLK(E)pH , where pH = ∑v∈H v ∈ LK(E).

Proof. (i) Consider these elements of LK(E): av = v, ae = e, and be = e∗ for v ∈ E0
H ,e ∈ E1

H . Then by
definition we have that the set {av,ae,be} is an EH -family in LK(E), so the indicated assignment extends to
a K-algebra homomorphism ϕ : LK(EH)→ LK(E) by the Universal Property 1.2.5. That ϕ is a graded ho-
momorphism is clear from the definition of the grading on LK(EH) and LK(E). That ϕ is a monomorphism
then follows from an application of the Graded Uniqueness Theorem 2.2.15.

(ii) We show that (ii) follows from (i). Since every element in LK(E) is a K-linear combination of
elements of the form γλ ∗ with γ,λ ∈ Path(E), then every element in pHLK(E)pH is a K-linear combination
of elements γλ ∗, with γ,λ ∈ Path(E) having s(γ),s(λ )∈H. Thus γλ ∗ ∈ Im(ϕ). The containment Im(ϕ)⊆
pHLK(E)pH is immediate using that pH is the multiplicative identity of LK(EH). ut

2.3 Additional consequences of the Reduction Theorem
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As part of the power of the Reduction Theorem 2.2.11 we will see that every Leavitt path algebra is
semiprime, semiprimitive, and nonsingular. Numerous additional applications of the Reduction Theorem
will be presented throughout the sequel.

Recall that a ring R is said to be semiprime if, for every ideal I of R, I2 = 0 implies I = 0. A ring R is
said to be semiprimitive in case the Jacobson radical J(R) of R is zero.
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Proposition 2.3.1. Let E be an arbitrary graph and K any field. Then the Leavitt path algebra LK(E) is
semiprime.

Proof. Let I be a nonzero ideal of LK(E), and consider a nonzero element α ∈ I. By the Reduction Theorem
2.2.11, there exist γ,λ ∈ Path(E) such that γ∗αλ = kv or γ∗αλ = p(c) ∈ wLK(E)w, where k ∈ K×, v,w ∈
E0, c ∈ Pc(E) and w ∈ c0. Then kv ∈ I or p(c) ∈ I. Observe that since (kv)2 = k2v 6= 0 and (p(c))2 6= 0 (use
that wLK(E)w has no nonzero zero divisors, by Lemma 2.2.7), I2 6= 0 and hence LK(E) is semiprime. ut
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Proposition 2.3.2. Let E be an arbitrary graph and K any field. Then the Leavitt path algebra LK(E) is
semiprimitive.

Proof. Denote by J the Jacobson radical of LK(E), and suppose there is a nonzero element α ∈ J. By
the Reduction Theorem 2.2.11, there exist µ,η ∈ Path(E) such that 0 6= µ∗αη = kv or µ∗αη = p(c) ∈
wLK(E)w, where k ∈ K×, v,w ∈ E0, c ∈ Pc(E) and w ∈ c0. In the first case we would have v ∈ J, but this is
not possible, as the Jacobson radical contains no nonzero idempotents. In the second case, let u denote s(c).
Then µ∗αη is a nonzero element in J∩ uLK(E)u, which coincides with the Jacobson radical of uLK(E)u
by [89, §III.7, Proposition 1]. But by Lemma 2.2.7 uLK(E)u∼= K[x, x−1] which has zero Jacobson radical.
In both cases we get a contradiction, hence J = 0. ut

We note that Proposition 2.3.2 indeed directly implies Proposition 2.3.1, as it is well known that any
semiprimitive ring is semiprime. We have included Proposition 2.3.1 simply to provide an additional ex-
ample of the power of the Reduction Theorem.

We present here a second approach to establishing that every Leavitt path algebra is semiprimitive. This
approach makes use of an extension of an unpublished result of Bergman about the Jacobson radical of
unital Z-graded rings; this extension (Lemma 2.3.3) may be of interest in its own right.
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Lemma 2.3.3. Let R be a Z-graded ring that contains a set of local units consisting of homogeneous
elements. Then the Jacobson radical J(R) of R is a graded ideal of R.

Proof. Given x ∈ J(R), decompose x into its homogeneous components: x = x−n + · · ·+ x−1 + x0 + x1 +
· · ·+ xn, where n ∈ N (and xi can be zero). By Lemma 1.2.12(v) there exists a sum of distinct vertices
u ∈ LK(E) for which x = uxu. Since u is a homogeneous element of degree 0, and we get that

x = uxu = ux−nu+ · · ·+ux−1u+ux0u+ux1u+ · · ·+uxnu

is also a decomposition of x into its homogeneous components inside the unital ring uRu, so that xi = uxiu
for every i ∈ {−n, . . . ,−1,0,1, . . .n}. As the corner uRu is also a Z-graded ring, and as J(uRu) = uJ(R)u,
the displayed equation yields a decomposition of the element x in the Jacobson radical of uRu, which is a
graded ideal of the Z-graded unital ring uRu (see [108, 2.9.3 Corollary], or the aforementioned unpublished
result of Bergman). Therefore every xi is in J(uRu), and, consequently, in J(R). ut

A second proof of Proposition 2.3.2. By Lemma 2.3.3 and Corollary 2.2.13, if the Jacobson radical of
LK(E) were nonzero, then it would contain a vertex, hence a nonzero idempotent, which is impossible. 2
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Definitions 2.3.4 . Let R be a ring and x ∈ R. The left annihilator of x in R, denoted by lanR(x) (or more
simply by lan(x) if the ring R is understood), is the set {r ∈ R | rx = 0}. A left ideal I of R is said to be
essential if I∩ I′ 6= 0 for every nonzero left ideal I′ of R. In this situation we write I /l

e R. The set

Zl(R) = {x ∈ R | lan(x) /l
e R},

which is an ideal of R (see [96, Corollary 7.4]), is called the left singular ideal of R. The ring R is called left
nonsingular if Zl(R) = {0}. Right nonsingular rings are defined similarly, while nonsingular means that R
is both left and right nonsingular.

A very useful tool to overcome the lack of a unit element in a ring or algebra, and to translate problems
from a nonunital context to a unital one, are local rings at elements. This notion was first introduced in the
context of associative algebras in [72]. We refer the reader to [76] for a fuller account of the transfer of
various properties between rings and their local rings at elements.
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Definition 2.3.5. Let R be a ring and let a ∈ R. The local ring of R at a is defined as Ra = aRa, with sum
inherited from R, and product given by axa �aya = axaya.

Notice that if e is an idempotent in the ring R, then the local ring of R at e is just the corner eRe. The
following result can be found in [76].
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Lemma 2.3.6. Let R be a semiprime ring. Then:

{l
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1}

(i) If a ∈ Zl(R), then Zl(Ra) = Ra.{l
oc
2d

}

(ii) Zl(Ra)⊆ Zl(R).{l
oc
3}

(iii) R is left nonsingular if and only if Ra is left nonsingular for every a ∈ R.
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Proposition 2.3.7. Let E be an arbitrary graph and K any field. Then LK(E) is nonsingular.

Proof. Suppose that the left singular ideal Zl(LK(E)) contains a nonzero element α . By the Reduction
Theorem there exist γ,µ ∈ Path(E) such that 0 6= γ∗αµ ∈ Kv for some vertex v ∈ E0, or 0 6= γ∗αµ ∈
uLK(E)u∼= K[x,x−1] (by Lemma 2.2.7), where u is a vertex in a cycle without exits. Since, for any ring R,
Zl(R) is an ideal of R and does not contain nonzero idempotents, the first case cannot happen.

In the second case, denote by β the nonzero element γ∗αµ ∈ Zl(LK(E)), and for notational convenience
denote the Leavitt path algebra LK(E) by L. Then, by Lemma 2.3.6(i) (which can be applied due to Propo-
sition 2.3.1), Zl(Lβ ) = Lβ . It is not difficult to see that Lβ = (Lu)β

, and therefore, Zl((Lu)β
) = (Lu)β

. Note
that Lu ∼=K[x, x−1], which is a nonsingular ring. This implies, by Lemma 2.3.6 (iii), that every local algebra
of Lu at an element is left nonsingular; in particular, Lβ = Zl(Lβ ) = 0. Now the semiprimeness of L yields
β = 0, a contradiction.

The right nonsingularity of LK(E) follows from Corollary 2.0.9. ut

2.4 Graded ideals: basic properties and quotient graphs
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In this section we present a description of the graded ideals of a Leavitt path algebra. The main goal here
(Theorem 2.4.8) is to show that every graded ideal can be constructed from a hereditary saturated subset of
E0, possibly augmented by a set of breaking vertices (cf. Definition 2.4.4). With this information in hand,
we then proceed to analyze the quotient algebra LK(E)/I for a graded ideal I. Specifically, we show in
Theorem 2.4.15 that there exists a graph F for which LK(E)/I ∼= LK(F) as Z-graded K-algebras.

This introductory analysis of the graded ideal structure will provide a foundation for the remaining
results of Chapter 2. Looking forward, we will use the ideas of this section to explicitly describe the lattice
of graded ideals of LK(E) in terms of graph-theoretic properties; to show how graded ideals of LK(E) are
themselves Leavitt path algebras in their own right; and how the graded ideals, together with various sets of
cycles in E and polynomials in K[x], provide complete information about the lattice of all ideals of LK(E).

We start by presenting a description of the elements in the ideal generated by a hereditary subset of
vertices.
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Lemma 2.4.1. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0. Then the
ideal I(H) of LK(E) consists of elements of LK(E) of the form

I(H) =

{
n

∑
i=1

kiγiλ
∗
i | n≥ 1, ki ∈ K×, γi,λi ∈ Path(E) such that r(γi) = r(λi) ∈ H

}
.

Moreover, if H denotes the saturated closure of H, then I(H) = I(H).

Proof. Let J denote the set presented in the display. To see that J is an ideal of LK(E) we need to show
that for every element of the form αβ ∗, where r(α) = r(β ) = u ∈ H, and for every a,b ∈ LK(E), we
have aαuβ ∗b ∈ J. Taking into account statements (i) and (iii) of Lemma 1.2.12, it is enough to prove that
γλ ∗uµη∗ ∈ J for every γ,λ ,µ,η ∈ Path(E) and u ∈ H.
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If γλ ∗uµη∗ = 0 we are done. Suppose otherwise that γλ ∗uµη∗ 6= 0. By Lemma 1.2.12(i), γλ ∗uµη∗ =
γµ ′η∗ if µ = λ µ ′, or γλ ∗uµη∗ = γ(λ ′)∗η∗ if λ = µλ ′. Note that u = s(µ) and H hereditary imply r(µ) ∈
H, therefore, r(µ ′) = r(µ) ∈ H in the first case, and r(λ ′) = r(µ) ∈ H in the second case, which imply
γλ ∗uµη∗ ∈ J in both cases. This shows that J is an ideal of LK(E); as it contains H and must be contained
in every ideal containing H, it must coincide with I(H).

Now we prove I(H)= I(H). Clearly I(H)⊆ I(H). Conversely, we will show by induction that Hn⊆ I(H)
for every n ∈ Z+ (where the notation Hn is as in Lemma 2.0.7). For n = 0 there is nothing to prove,
as H0 = T (H) = H ⊆ I(H). Suppose Hn−1 ⊆ I(H) and take u ∈ Hn. Then s−1(u) = {e1, . . . ,em}, and so
{r(ei)|1≤ i≤m}= r(s−1(u))⊆Hn−1, which is contained in I(H) by the induction hypothesis. This means
u = ∑

m
i=1 eie∗i = ∑

m
i=1 eir(ei)e∗i ∈ I(H) and the proof is complete. ut
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Corollary 2.4.2. Let E be an arbitrary graph and K any field. Let H be a nonempty hereditary subset of
E0. Then for every nonzero homogeneous x ∈ I(H) there exist α,β ∈ Path(E) such that α∗xβ = ku for
some k ∈ K× and u ∈ H.

Proof. Given the nonzero homogeneous element x∈ I(H), apply Corollary 2.2.13 to choose λ ,µ ∈ Path(E)
such that k−1λ ∗xµ = v for some k ∈ K× and v ∈ E0. Since x ∈ I(H) this equation gives that v ∈ I(H). So
by Lemma 2.4.1 we may write v = ∑

m
i=1 k′iλiµ

∗
i with k′i ∈ K× and λi,µi ∈ Path(E) with r(λi) = r(µi) ∈ H.

Then 0 6= r(µ1) = µ∗1 µ1 = µ∗1 vµ1 = k−1µ∗1 λ ∗xµµ1 ∈H, so that r(µ1) = u, µ∗1 λ ∗ = α∗ and µµ1 = β satisfy
the assertion. ut

The following result demonstrates the natural, fundamental connection between the (CK1) and (CK2)
condition on the elements of LK(E) on the one hand, and the ideal structure of LK(E) on the other. Recall
the definition of the set HE of hereditary saturated subsets of E given in Definitions 2.0.5.
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Lemma 2.4.3. Let E be an arbitrary graph and K any field. Let I be an ideal of LK(E), Then I∩E0 ∈HE .

Proof. Let v,w ∈ E0 be such that v ≥ w, and v ∈ I. So there exists a path p ∈ Path(E) with v = s(p) and
w = r(p). Then Lemma 1.2.12(i) implies that w = p∗p = p∗vp ∈ I. This shows that I∩E0 is hereditary.

Now let u ∈ Reg(E), and suppose r(e) ∈ I for every e ∈ s−1(u). By (CK2), u = ∑e∈s−1(u) ee∗ =
∑e∈s−1(u) er(e)e∗ ∈ I. Thus I∩E0 is saturated. ut

One eventual goal in our study of the graded ideals in a Leavitt path algebra is the Structure Theorem for
Graded Ideals, Theorem 2.5.8. The idea is to associate with each graded ideal of LK(E) some data inherent
in the underlying graph. The previous lemma establishes a first connection of this type. The following
graph-theoretic idea will provide a key ingredient in this association.
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Definitions 2.4.4. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0, and let
v ∈ E0. We say that v is a breaking vertex of H if v belongs to the set

BH := {v ∈ E0 \H | v ∈ Inf(E) and 0 < |s−1(v)∩ r−1(E0 \H)|< ∞}.

In words, BH consists of those vertices of E which are infinite emitters, which do not belong to H, and
for which the ranges of the edges they emit are all, except for a finite (but nonzero) number, inside H. For
v ∈ BH , we define the element vH of LK(E) by setting

vH := v− ∑
e∈s−1(v)∩r−1(E0\H)

ee∗.

We note that any such vH is homogeneous of degree 0 in the standard Z-grading on LK(E). For any subset
S⊆ BH , we define SH ⊆ LK(E) by setting SH = {vH | v ∈ S}.

Of course a row-finite graph contains no breaking vertices, so that this concept does not play a role in
the study of the Leavitt path algebras arising from such graphs.
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Remark 2.4.5. Let E be an arbitrary graph. It is easy to show both that B /0 = /0, and that BE0 = /0. The latter
is trivial, while the former follows by noting that |s−1(v)∩ r−1(E0 \ /0)|= ∞ for any v ∈ Inf(E).
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The clarify the concept of a breaking vertex, we revisit the infinite clock graph CN of Example 1.6.12.

•u1 •u2

•v

e1

OO
e2

==

e3 //

e4

!!
��

. . .

��

•u3

•u4

Let U denote the set {ui | i ∈ N} = C0
N \ {v}. Let H be a subset of U . Since the elements of H are sinks

in E, H is clearly hereditary. If U \H is infinite, or if H =U , then BH = /0. On the other hand, if U \H is
finite, then BH = {v}, and in this situation, vH = v−∑{i | r(ei)∈U\H} eie∗i .

For any hereditary subset H of a graph E, and for any S ⊆ BH , the ideal I(H ∪SH) of LK(E) is graded,
as it is generated by elements of LK(E) of degree zero (see Remark 2.1.2). We describe more explicitly this
ideal in the following result.
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Lemma 2.4.6. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of vertices of E,
and S a subset of BH . Then

I(H ∪SH) = spanK({γλ
∗ | γ,λ ∈ Path(E) such that r(γ) = r(λ ) ∈ H})

+ spanK({αvH
β
∗ | α,β ∈ Path(E) and v ∈ S}).

Moreover, the first summand equals I(H), while the second summand (call it J) is a subalgebra of LK(E)
for which I(SH)⊆ I(H)+ J.

Proof. Clearly I(H ∪SH) = I(H)+ I(SH). Moreover, by virtue of Lemma 2.4.1, the first summand in the
displayed formula of the statement coincides with I(H). Now we study I(SH). Take v ∈ S, and denote
the set s−1(v)∩ r−1(E0 \H) by { f1, . . . , fn}, where n ∈ N. For any e ∈ E1, compute e∗vH and vHe. If
s(e) 6= v, then e∗vH = vHe = 0. Otherwise, if s(e) = v, we distinguish two cases. If e = f j for some j,
then e∗vH = e∗(v−∑

n
i=1 fi f ∗i ) = f ∗j v− f ∗j f j f ∗j = f ∗j − f ∗j = 0, and, as well, vHe = (v−∑

n
i=1 fi f ∗i )e =

v f j− f j f ∗j f j = f j− f j = 0. If on the other hand e 6∈ { f1, . . . , fm}, then e∈ s−1(v)∩r−1(H), so that r(e)∈H,
and e∗vH = e∗ = r(e)e∗ ∈ I(H). Similarly, vHe = e = er(e) ∈ I(H). This means that for α,β ∈ Path(E) we
have α∗vH = 0, or α∗vH = α∗ ∈ I(H); similarly, vHβ = 0 or vHβ = β ∈ I(H). In either case the resulting
product is in I(H), and so I(SH) ⊆ I(H)+ J. To see that J is a subalgebra, apply the previous calculation
and use that HvH = vHH = 0 for every v∈ S. This finishes our proof because I(H)+J ⊆ I(H)+ I(SH). ut

Here is a useful application of Lemma 2.4.6.
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Proposition 2.4.7. Let E be an arbitrary graph and K any field. Let {Hi}i∈Λ be a family of hereditary
pairwise disjoint subsets of a graph E. Then

I
(
t

i∈Λ
Hi

)
= I
(
t

i∈Λ
Hi

)
= ⊕

i∈Λ

I(Hi) = ⊕
i∈Λ

I
(
Hi
)
.

Proof. The final equality follows from Lemma 2.4.1. It is easy to see that the union of any family of
hereditary subsets is again hereditary, hence H := ∪

i∈Λ
Hi is a hereditary subset of E0. Thus the first equality

also follows from Lemma 2.4.1.
By Lemma 2.4.1 every element x in I(H) can be written as x = ∑

n
l=1 klαlβ

∗
l , where kl ∈ K×, αl ,βl ∈

Path(E) and r(αl) = r(βl) ∈ H. Separate the vertices appearing as ranges of the αl’s depending on the
Hi’s they belong to, and apply again Lemma 2.4.1. This gives x ∈ ∑

i∈Λ

I(Hi), so that I(H) ⊆ ∑
i∈Λ

I(Hi). The

containment ∑
i∈Λ

I(Hi)⊆ I(H) is clear.

So all that remains is to show that the sum ∑
i∈Λ

I(Hi) is direct. If this is not the case, there exists j ∈ Λ

such that I(H j)∩ ∑
j 6=i∈Λ

I(Hi) 6= 0. Since for every l, I(Hl) is a graded ideal, we get that I(H j)∩ ∑
j 6=i∈Λ

I(Hi) is
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a graded ideal as well, so there exists a nonzero homogeneous element y∈ I(H j)∩ ∑
j 6=i∈Λ

I(Hi). By Corollary

2.4.2 there exist α,β ∈ Path(E) and k ∈ K× such that 0 6= k−1α∗yβ = w ∈H j. Observe that w also belongs
to I( ∪

j 6=i∈Λ
Hi). Write w = ∑

n
l=1 klαlβ

∗
l , with kl ∈ K×, αl ,βl ∈ Path(E), and r(αl) = r(βl) ∈ ∪

j 6=i∈Λ
Hi. Then

0 6= r(β1) = β ∗1 β1 = β ∗1 wβ1 ∈ ∪
j 6=i∈Λ

Hi. On the other hand, s(α1) = w ∈H j implies (since H j is a hereditary

set) r(α1) ∈ H j; therefore, r(α1) = r(β1) ∈ H j ∩
(
∪

j 6=i∈Λ
Hi

)
, a contradiction. ut

We now deepen the connection between graded ideals of LK(E) and various subsets of E0.
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Theorem 2.4.8. Let E be an arbitrary graph and K any field. Then every graded ideal I of the Leavitt path
algebra LK(E) is generated by H ∪SH , where H = I∩E0 ∈HE , and S = {v ∈ BH | vH ∈ I}.

In particular, every graded ideal of LK(E) is generated by a set of homogeneous idempotents.

Proof. It is immediate to see that I(H ∪SH)⊆ I. Now we show I ⊆ I(H ∪SH). As I is a graded ideal, it is
enough to consider nonzero homogeneous elements of the form α = αv of I, where v ∈ E0.

We will prove αv ∈ I(H ∪SH) by induction on the degree in ghost edges of the elements in I. Suppose
first gdeg(α) = 0. Then, α = ∑

m
i=1 kiγi, with ki ∈ K×, m ∈ N, and γi ∈ Path(E) with r(γi) = v. As α is

a homogeneous element, we may consider those γi’s having the same degree (i.e., length) as that of α .
Moreover, we may suppose all the γi’s are distinct, hence γ∗i γ j = 0 for i 6= j by Lemma 1.2.12(i). Then
for every j, k−1

j γ∗j αv = k−1
j γ∗j (∑

m
i=1 kiγi) = k−1

j k jγ
∗
j γ j = r(γ j) = v ∈ I∩E0 = H. This means αv ∈ I(H)⊆

I(H ∪SH).
We now suppose the result is true for appropriate elements of LK(E) having degree in ghost edges

strictly less than n∈N, and prove the result for gdeg(αv) = n. Write αv = ∑
m
i=1 µie∗i +λ , with µi ∈ LK(E),

ei ∈ E1 and λ ∈ KE, in such a way that this is a representation of αv of minimal degree in ghost edges.
If λ = 0 then for every i we have αvei = µi, which is in I(H ∪SH) by the induction hypothesis, and we

have finished. Hence, we may assume that λ 6= 0.
As α is homogeneous, we may choose µi and λ to be homogeneous as well. Write λ = ∑

n
l=1 klλl for

some kl ∈ K× and λl distinct paths of the same length. We first observe that v cannot be a sink because
e∗i = e∗i v implies v = s(ei) for every i; in particular, s−1(v) 6= /0. Choose f ∈ s−1(v). If e∗i f = 0 for every i,
then αv f = λ f , which is in I(H ∪ SH) by the previous case. Otherwise, suppose e∗j f 6= 0 for some j. By
(CK1) this happens precisely when f = e j, and hence αv f = (∑m

i=1 µie∗i +λ ) f = µ je∗j f +λ f = µ j +λ f ,
which lies in I(H ∪ SH) by the induction hypothesis. (Note that the induction hypothesis can be applied
because gdeg(µ j+λ f )< gdeg(αv).) In any case, αv f ∈ I(H∪SH). Now, if v is not an infinite emitter then
αv=α ∑ f∈s−1(v) f f ∗ ∈ I(H∪SH). If v is an infinite emitter, then either v∈H, in which case αv∈ I(H∪SH),
or v /∈H, in which case v ∈ BH , as follows. For any f ∈ s−1(v)∩ r−1(E0 \H), observe that f must coincide
with some ei because otherwise α f = ∑

m
i=1 µie∗i f +λ f = λ f ∈ I would imply r( f ) = f ∗ f = f ∗k−1

1 λ ∗1 λ f ∈
I∩E0 = H, a contradiction. Thus s−1(v)∩ r−1(E0 \H)⊆ {ei | 1≤ i≤ m}, and so v ∈ BH .

Now write αv = αvH +α ∑{ f∈s−1(v)∩r−1(E0\H)} f f ∗. Since α f ∈ I(H∪SH) for all f ∈ s−1(v)∩r−1(E0 \
H), to show that αv ∈ I(H ∪SH), it is enough to show that v ∈ S. We compute

e∗i vH = e∗i (v− ∑
f∈s−1(v)∩r−1(E0\H)

f f ∗) =

{
0 if ei ∈ s−1(v)∩ r−1(E0 \H)

e∗i v if ei ∈ s−1(v)∩ r−1(H).

In the second of these two cases, s(e∗i ) = r(ei) ∈ H. In either case e∗i vH ∈ I(H).
But αvH ∈ I and e∗i vH ∈ I imply λvH ∈ I, hence k1vH = λ ∗1 (λvH) ∈ I, therefore vH ∈ I and so v ∈ S as

desired. ut

Proposition 2.4.9 is an immediate consequence of Theorem 2.4.8.
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Proposition 2.4.9. Let E be a row-finite graph and K any field. Then every graded ideal I of LK(E) is
generated by a hereditary and saturated subset of E0, specifically, I = I(I∩E0).
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Let (A,∗) be an algebra with involution. An ideal I of A is said to be self adjoint if y∗ ∈ I whenever
y ∈ I. Not every ideal in a Leavitt path algebra is self-adjoint. For instance, consider an arbitrary field K
and let E be the graph R1. Then the ideal I of LK(E) generated by v+ e+ e3 is not self-adjoint, as follows.
Identify LK(R1) and K[x,x−1] via the isomorphism given in Proposition 1.3.4. Our statement rephrased
says that I(1+x+x3) is not a self-adjoint ideal, which is clear as otherwise we would have 1+x−1+x−3 ∈
I(1+ x+ x3), which is impossible by an observation made in Remark 2.1.6.

By observing that any ideal in an arbitrary graded ring with involution which is generated by a set of
self-adjoint elements is necessarily self-adjoint, we record this consequence of Theorem 2.4.8.
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Corollary 2.4.10. Let E be an arbitrary graph and K any field. If I is a graded ideal of LK(E), then
I = I(X) for some set X of homogeneous self-adjoint idempotents in LK(E). Specifically, every graded
ideal of a Leavitt path algebra is self adjoint.

The converse to Corollary 2.4.10 does not hold. For instance, the ideal I = I(v+ e) of LK(R1) is self
adjoint, as v + e∗ = e∗(v + e) ∈ I. However, I is not graded, as noted in Examples 2.1.7. Indeed, this
same behavior is exhibited by any ideal of LK(R1) of the form I(p(e)), where p(x) ∈ K[x,x−1] is not
homogeneous and has the property that p(x)∗ = xn p(x) for some integer n.

In the next section we will strengthen Theorem 2.4.8 to show that in fact there is a bijection between the
graded ideals of LK(E) and pairs of the form (H,SH). In order to establish that distinct pairs of this form
correspond to distinct graded ideals, we analyze the K-algebras which arise as quotients of a Leavitt path
algebra by graded ideals. As we shall see, such quotients turn out to be Leavitt path algebras in their own
right.
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Definition 2.4.11. (The quotient graph by a hereditary subset) Let E be an arbitrary graph, and let H be
a hereditary subset of E0. We denote by E/H the quotient graph of E by H, defined as follows:

(E/H)0 = E0 \H, and (E/H)1 = {e ∈ E1 | r(e) 6∈ H}.

The range and source functions for E/H are defined by restricting the range and source functions of E to
(E/H)1.

We anticipate the following result with a brief discussion. We will show that the quotient algebra
LK(E)/I(H ∪ SH) is isomorphic to a relative Cohn path algebra for the quotient graph E/H (with respect
to an appropriate subset of vertices), and then subsequently apply Proposition 2.1.10. The intuitive idea
underlying Theorem 2.4.12 is as follows. Let H be a hereditary saturated subset of E0. Then the break-
ing vertices BH of H are precisely the infinite emitters in E which become regular vertices in E/H. If
S ⊆ BH , and we consider the ideal I(H ∪ SH) of LK(E), then we are only imposing relation (CK2) on the
vertices corresponding to S in the quotient ring LK(E)/I(H∪SH). So it is natural to expect that the quotient
LK(E)/I(H ∪SH) will be a relative Cohn path algebra with respect to the set X = (Reg(E)\H)∪S.
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Theorem 2.4.12. Let E be an arbitrary graph and K any field. Let H ∈HE , S ⊆ BH , and X = (Reg(E)\
H)∪S. Then there exists a Z-graded isomorphism of K-algebras

Ψ : LK(E)/I(H ∪SH)→CX
K (E/H).

Proof. We consider the assignment (which we denote by Ψ ) of elements of the set E0 ∪E1 ∪ (E1)∗ with
specific elements of CX

K (E/H) given as follows: for each v ∈ E0 and e ∈ E1,

Ψ(v) =

{
v if v /∈ H
0 otherwise,

Ψ(e) =

{
e if r(e) /∈ H
0 otherwise,

and Ψ(e∗) =

{
e∗ if s(e∗) /∈ H
0 otherwise.

Using this assignment, a set of straightforward computations yields that the collection

{Ψ(v),Ψ(e),Ψ(e∗) | v ∈ E0,e ∈ E1}

is an E-family in CX
K (E/H). So by the Universal Property of LK(E) (Remark 1.2.5) there is a unique

extension of Ψ to a K-algebra homomorphism
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Ψ : LK(E)→CX
K (E/H).

We note that Ψ is indeed a Z-graded homomorphism, as clearly Ψ preserves the grading of each of the
generators of LK(E). By the definition of E/H, it is immediate that Ψ is surjective. As well, Ψ is clearly 0
on I(H). But we also have that Ψ(vH) = 0 for v ∈ S, because S⊆ X . Consequently, there is an induced map

Ψ : LK(E)/I(H ∪SH)→CX
K (E/H).

We now define an inverse map for Ψ . The map Φ is defined as follows: for v ∈ (E/H)0 and e ∈ (E/H)1,
set

Φ(v) = v+ I(H ∪SH), Φ(e) = e+ I(H ∪SH), and Φ(e∗) = e∗+ I(H ∪SH).

By the Universal Property of CX
K (E/H) (Remark 1.5.10), Φ extends to a K-algebra homomorphism Φ :

CX
K (E/H)→ LK(E)/I(H ∪SH). It is then straightforward to verify that the compositions Φ ◦Ψ and Ψ ◦Φ

give the identity on the canonical generators, and therefore give the identity on the corresponding algebras.
ut

Here are two specific consequences of Theorem 2.4.12.
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Corollary 2.4.13. Let K be any field.

(i) Suppose E is a row-finite graph, and H ∈ HE . Then LK(E)/I(H) ∼= LK(E/H) as Z-graded K-
algebras.

(ii) If E is an arbitrary graph, H ∈HE , and S = BH , then

LK(E)/I(H ∪BH
H)
∼= CReg(E/H)

K (E/H) = LK(E/H).

Proof. (i) In this case S = /0, so that X = Reg(E)\H, and thus CX
K (E/H) = LK(E/H). Now apply Theorem

2.4.12.
(ii) In a similar manner, we have in the more general case that X = (Reg(E) \H))∪BH = Reg(E/H),

so that we may again apply Theorem 2.4.12. ut

Theorem 2.4.12 gives a description of the quotient of a Leavitt path algebra by a graded ideal as a relative
Cohn path algebra. But by defining a new type of quotient graph, we can in fact describe the quotient of a
Leavitt path algebra by a graded ideal as the Leavitt path algebra over this new graph.
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Definition 2.4.14. (The quotient graph incorporating breaking vertices) Let E be an arbitrary graph,
H ∈HE , and S⊆ BH . We denote by E/(H,S) the quotient graph of E by (H,S), defined as follows:

(E/(H,S))0 = (E0 \H)∪{v′ | v ∈ BH \S},

(E/(H,S))1 = {e ∈ E1 | r(e) /∈ H}∪{e′ | e ∈ E1 and r(e) ∈ BH \S},

and range and source maps in E/(H,S) are defined by extending the range and source maps in E when
appropriate, and by in addition setting s(e′) = s(e) and r(e′) = r(e)′.

We note that the quotient graph E/H given in Definition 2.4.11 is precisely the graph E/(H,BH) in the
context of this broader definition. (In particular, we point out that E/H is not the same E/(H, /0).)

With this definition, and using Theorem 2.4.12 and Theorem 1.5.18, we get the following.
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Theorem 2.4.15. Let E be an arbitrary graph and K any field. Then the quotient of LK(E) by a graded
ideal of LK(E) is Z-graded isomorphic to a Leavitt path algebra. Specifically, there is a Z-graded K-
algebra isomorphism

Ψ : LK(E)/I(H ∪SH) → LK(E/(H,S)),

where Ψ is defined as in Theorem 2.4.12.

Proof. By Theorem 2.4.12, we have LK(E)/I(H ∪ SH) ∼= CX
K (E/H), where X = (Reg(E) \H)∪ S. But

then Reg(E/H) \X = BH \ S. Therefore, the graph (E/H)(X) from Definition 1.5.16 coincides with the
quotient graph E/(H,S), and Theorem 1.5.18 gives that CX

K (E/H)∼= LK(E/(H,S)) naturally, thus yielding
the result. ut
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We close this section with another consequence of Theorem 2.4.12.
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Corollary 2.4.16. Let E be an arbitrary graph and K any field. Suppose H ∈HE and let S⊆ BH .

(i) I(H ∪SH)∩E0 = H. In particular, I(H)∩E0 = H.
(ii) S = {v ∈ BH | vH ∈ I(H ∪SH)}.

Proof. (i). The containment H ⊆ I(H ∪SH) is clear. Conversely, for v ∈ E0 \H, we observe that Ψ(v) is a
nonzero element in CX

K (E/H), where Ψ is the isomorphism given in Theorem 2.4.12. Thus v /∈ I(H ∪SH).
(ii). The containment S⊆ {v ∈ BH | vH ∈ I(H ∪SH)} is clear. For the reverse containment, observe that

in a manner analogous to that used in the proof of (i) we have Ψ(vH) 6= 0 for any v ∈ BH \ S. This shows
that vH /∈ I(H ∪SH), as required. ut

2.5 The Structure Theorem for Graded Ideals, and the internal structure of graded
ideals
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In the previous section we have developed much of the machinery which will allow us to achieve the
main goal of the current section, the Structure Theorem for Graded Ideals (Theorem 2.5.8), which gives a
complete description of the lattice of graded ideals of a Leavitt path algebra in terms of specified subsets
of E0.
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Definition 2.5.1. Let E be an arbitrary graph and K any field. Denote by Lgr(LK(E)) the lattice of graded
ideals of LK(E), with order given by inclusion, and supremum and infimum given by the usual operations
of ideal sum and intersection.
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Remark 2.5.2. Let E be an arbitrary graph. We define in HE a partial order by setting H ≤ H ′ in case
H ⊆ H ′. Using this ordering, HE is a complete lattice, with supremum ∨ and infimum ∧ in HE given by
setting ∨i∈Γ Hi := ∪i∈Γ Hi and ∧i∈Γ Hi := ∩i∈Γ Hi respectively.
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Definition 2.5.3. Let E be an arbitrary graph. We set

S =
⋃

H∈HE

P(BH),

where P(BH) denotes the set of all subsets of BH . We denote by TE the subset of HE ×S consisting of
pairs of the form (H,S), where S ∈P(BH). We define in TE the following relation:

(H1,S1)≤ (H2,S2) if and only if H1 ⊆ H2 and S1 ⊆ H2∪S2.

The following comments, which explain why the order in TE has been defined as in the previous display,
will help clarify the proof of the upcoming proposition. For a graph E, a hereditary saturated subset H of
E0, and a breaking vertex v ∈ BH , define

A(v,H) := s−1(v)∩ r−1(E0 \H).

Note that A(v,H) is a finite nonempty subset of E1.
Now suppose that H1 and H2 are hereditary saturated subsets of vertices in E, with H1⊆H2. Let v∈BH1 .

Since H1 ⊆ H2 then v ∈ BH2 , unless it happens to be the case that r(s−1(v)) ⊆ H2 (since by definition a
breaking vertex for a set must emit at least one edge whose range is outside the set). If v ∈ BH2 , then write

A(v,H1) = A(v,H2)tB,

where B = {e ∈ A(v,H1) | r(e) ∈ H2}. In this case we have
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vH1 = vH2 −∑
e∈B

ee∗. (2.1){e
qD
es
c}
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Proposition 2.5.4. Let E be an arbitrary graph. For (H1,S1),(H2,S2) ∈TE , we have

(H1,S1)≤ (H2,S2) ⇐⇒ I(H1∪S1
H1)⊆ I(H2∪SH2

2 ).

In particular, ≤ is a partial order on TE .

Proof. For notational convenience, set I(Hi,Si) := I(Hi∪SHi
i ) for i = 1,2.

Suppose that I(H1,S1)⊆ I(H2,S2). Then H1 ⊆H2 by Corollary 2.4.16(i). Now let v ∈ S1. We will show
that v ∈ H2∪S2. If on the one hand r(s−1(v))⊆ H2 then we have

v = vH1 + ∑
e∈A(v,H1)

ee∗ ∈ I(H1,S1)+ I(H2)⊆ I(H2,S2),

so that v ∈ H2 (by again invoking Corollary 2.4.16(i)). If on the other hand there is some e ∈ s−1(v) such
that r(e) /∈ H2, then necessarily v /∈ H2 (since H2 is hereditary). So, since we already know that H1 ⊆ H2,
we see that v ∈ BH2 . Moreover, we have, by (2.1),

vH2 = vH1 + ∑
e∈B

ee∗ ∈ I(H1,S1)+ I(H2)⊆ I(H2,S2).

Hence v ∈ S2 by Corollary 2.4.16(ii). So we have shown S1 ⊆H2∪S2, which yields (H1,S1)≤ (H2,S2) by
definition.

Conversely, suppose that (H1,S1) ≤ (H2,S2). This gives in particular that I(H1) ⊆ I(H2), so we only
need to check that vH1 ∈ I(H2,S2) for v ∈ S1. So let v ∈ S1. If on the one hand r(s−1(v))⊆ H2, then v ∈ H2
because S1 ⊆ H2 ∪ S2 and v /∈ S2 (since v /∈ BH2 ). If on the other hand there is some e ∈ s−1(v) such that
r(e) /∈ H2, then v ∈ BH2 and, by (2.1) we have

vH1 = vH2 −∑
e∈B

ee∗ ∈ I(H2,S2)+ I(H2)⊆ I(H2,S2),

showing that vH1 ∈ I(H2,S2). Thus we obtain that I(H1,S1)⊆ I(H2,S2). ut

For the proof of Proposition 2.5.6 we need to introduce a refinement of the definition of saturation which
allows us to consider breaking vertices.
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Definition 2.5.5. Let E be an arbitrary graph. Let H be a hereditary subset of E0, and consider a subset
S ⊆ H ∪BH . The S-saturation of H is defined as the smallest hereditary subset H ′ of E0 satisfying the
following properties:

(i) H ⊆ H ′.
(ii) H ′ is saturated.

(iii) If v ∈ S and r(s−1(v))⊆ H ′, then v ∈ H ′.

We denote by HS the S-saturation of H.
To build the S-saturation of H we proceed as in Lemma 2.0.7. Concretely, for every n ∈ Z+ we define

inductively the hereditary subsets Λ S
n (H) as follows. Let Λ S

0 (H) := H. For n≥ 1, we put

Λ
S
n (H) = Λ

S
n−1(H)∪{v ∈ E0 \Λ

S
n−1(H) | v ∈ Reg(E)∪S and r(s−1(v))⊆Λ

S
n−1(H)}.

It can be easily shown that HS
= ∪n≥0Λ S

n (H).
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Proposition 2.5.6. Let E be an arbitrary graph. Then with the partial order ≤ on TE given in Definition
2.5.3, (TE , ≤) is a complete lattice, with supremum ∨ and infimum ∧ in TE given by:
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(H1,S1)∨ (H2,S2) = (H1∪H2
S1∪S2 , (S1∪S2)\H1∪H2

S1∪S2) and

(H1,S1)∧ (H2,S2) = (H1∩H2, (S1∩S2)∪ ((S1∪S2)∩ (H1∪H2))).

Proof. The fact that ≤ is a partial order is established in Proposition 2.5.4.
We first verify the displayed formula for the supremum. Observe that (H1∪H2

S1∪S2 , (S1 ∪ S2) \
H1∪H2

S1∪S2) ∈TE , and that it contains (Hi,Si) for i = 1,2.
To show minimality, let (H,S) ∈ TE be such that (Hi,Si) ≤ (H,S) for i = 1,2. In order to show that

H1∪H2
S1∪S2 ⊆H, it suffices, by Definition 2.5.5, to prove, inductively, that Λ

S1∪S2
n (H1∪H2)⊆H. For n= 0

this is clear by assumption. Now, assume n≥ 1 and that Λ
S1∪S2
n−1 (H1∪H2)⊆ H. Pick v ∈Λ

S1∪S2
n (H1∪H2).

If v ∈ Reg(E), then v belongs to H because H is saturated. Now suppose v ∈ S1∪S2. By definition and the
induction hypothesis, we have

r(s−1(v))⊆Λ
S1∪S2
n−1 (H1∪H2)⊆ H.

In particular, this implies v /∈ S. Since v∈ S1∪S2⊆H∪S, we conclude that v∈H, completing the induction
step. The inclusion (S1∪S2)\H1∪H2

S1∪S2 ⊆ H ∪S is immediate.
Now we verify the indicated expression for the infimum, i.e., we will show that (H1 ∩H2, (S1 ∩ S2)∪

((S1 ∪ S2)∩ (H1 ∪H2))) is a lower bound for the pair (H1,S1),(H2,S2), and is the maximal such. First,
note that (H1∩H2, S1∩S2∪ ((S1∪S2)∩ (H1∪H2)))≤ (Hi,Si) for i = 1,2; to see this, use Hi∩Si = /0 for
i = 1,2, so that

(S1∩S2)∪ ((S1∪S2)∩ (H1∪H2)) = (S1∩S2)∪ (S1∩H2)∪ (S2∩H1).

Now, suppose (H,S)≤ (Hi,Si). Then H ⊆ H1∩H2 and S⊆ Hi∪Si and so

S⊆ (H1∪S1)∩ (H2∪S2) = (H1∩H2)∪ (S1∩S2)∪ (S1∩H2)∪ (S2∩H1),

which by the formula above shows (H,S)≤ (H1∩H2, (S1∩S2)∪ ((S1∪S2)∩ (H1∪H2))). ut

The following example shows the need of considering the notion of S-saturation.
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Examples 2.5.7 (1) Let E be the following graph:

v1•

��

(∞) // v2•

v3

Let H1 = {v2}, S1 = {v1}; H2 = {v3}, S2 = /0. Note that H1∪H2 does not contain the vertex v1, which is
not a breaking vertex for H1∪H2 as r(s−1(v1))⊆H1∪H2. This is the reason why we have to consider
the S-saturation, which is:

Λ
S1
1 (H1∪H2) = {v1,v2,v3}

and, consequently, the formula in Proposition 2.5.6 gives that (H1,S1)∨ (H2,S2) = (E0, /0).

(2) Let G be the following graph:

v1•

��

(∞) // v2•

v3• w2•oo •w1

(∞)
aa

oo

Let H1 = {v2}, S1 = {v1}; H2 = {v3}, S2 = /0. Then

Λ
S1
1 (H1∪H2) = {v1,v2,v3,w2}

and



2.5 The Structure Theorem for Graded Ideals, and the internal structure of graded ideals 47

Λ
S1
2 (H1∪H2) = {v1,v2,v3,w2,w1}.

In this case, again the formula in Proposition 2.5.6 gives that (H1,S1)∨ (H2,S2) = (G0, /0).

We now have all the pieces in place to achieve our previously stated goal, in which we give a precise
description of the graded ideals of LK(E) in terms of specified subsets of E0.

Theorem 2.5.8. (Structure Theorem for Graded Ideals) Let E be an arbitrary graph and K any field. {G
ra
dI
dg
en

}

Then the map ϕ given here provides a lattice isomorphism:

ϕ : Lgr(LK(E))→TE via I 7→ (I∩E0,S)

where S = {v ∈ BH | vH ∈ I} for H = I∩E0 . The inverse ϕ ′ of ϕ is given by:

ϕ
′ : TE →Lgr(LK(E)) via (H,S) 7→ I(H ∪SH).

Proof. By Lemma 2.4.3 and the definition of S, the map ϕ is well defined. The map ϕ ′ is clearly well
defined. By Theorem 2.4.8 we get that ϕ ′ϕ = IdLgr(LK(E)). On the other hand, Corollary 2.4.16 yields that
ϕϕ ′ = IdTE .

Now we prove that ϕ ′ preserves the order. Suppose that (H1,S1),(H2,S2) ∈TE are such that (H1,S1)≤
(H2,S2). Then H1 ⊆ H2 and S1 ⊆ H2 ∪ S2. It is easy to see that H1 ⊆ I(H2 ∪ SH2). Now we prove SH1 ⊆
I(H2 ∪ SH2). Take vH1 ∈ SH1 . Then vH1 = v−∑s(e)=v,r(e)/∈H1

ee∗ for some infinite emitter v ∈ E0. We must
distinguish two cases: first, if v ∈ H2, then vH1 ∈ I(H2)⊆ I(H2∪SH2), while second, if v ∈ S2, then

vH1 = vH2 − ∑
s(e)=v,r(e)∈H2\H1

ee∗ ∈ I(H2∪SH2).

The final step is to show that ϕ preserves the order. To this end, consider two graded ideals I1 and I2 such
that I1 ⊆ I2. Then H1 := I1∩E0 ⊆ H2 := I2∩E0. Now we show S1 ⊆ S2, where Si := {v ∈ BHi | vHi ∈ Ii},
for i = 1,2. Take v ∈ S1. We again must distinguish two cases. Suppose first that for every e ∈ E1 such that
s(e) = v we have r(e) ∈ H2. Then

v = vH1 + ∑
s(e)=v,r(e)∈H2\H1

ee∗ ∈ I1 + I2 = I2,

and thus v ∈ I2 ∩E0 = H2. On the other hand, suppose that there exists e ∈ E1 such that s(e) = v and
r(e) /∈ H2. Then v ∈ BH2 and

vH2 = vH1 + ∑
s(e)=v,r(e)∈H2\H1

ee∗ ∈ I1 + I2 = I2.

This implies v ∈ S2. We obtain that S1 ⊆ H2∪S2 and hence that (H1,S1)≤ (H2,S2). ut

We record the Structure Theorem for Graded Ideals in the situation where the graph is row-finite.

{G
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Theorem 2.5.9. Let E be a row-finite graph and K any field. The following map ϕ provides a lattice iso-
morphism:

ϕ : Lgr(LK(E))→HE via ϕ(I) = I∩E0,

with inverse given by
ϕ
′ : HE →Lgr(LK(E)) via ϕ

′(H) = I(H).
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Example 2.5.10. The following is a description of all graded ideals of the Leavitt path algebra of the infinite
clock graph CN of Example 1.6.12. Recall that U denotes the set {ui | i ∈ N} of all “non-center” vertices
of CN. It is clear that the hereditary saturated subsets of CN are /0, C0

N, and subsets H of U . (Note that if
v is in a hereditary subset H of CN, then necessarily H = C0

N.) For a subset H of U , there is a breaking
vertex (namely, v) for H precisely when U \H is nonempty and finite. With this information in hand, we
use Theorem 2.5.8 to conclude that a complete irredundant set of graded ideals of LK(CN) is:



48 2 Two-sided ideals

{0}, LK(CN), I(H) for H ⊆U, and I(H ∪{v− ∑
e∈r−1(U\H)

ee∗}) for H $U having U \H finite.

Of interest are the following consequences of the Structure Theorem for Graded Ideals.

{i
nt
er
se
ct
io
ne
qu
al
sp
ro
du
ct

}

Corollary 2.5.11. Let E be an arbitrary graph and K any field. Let J1 and J2 be graded ideals of LK(E).
Then J1 · J2 = J1∩ J2.

Proof. The containment J1 ·J2 ⊆ J1∩J2 holds for any two-sided ideals in any ring. For the reverse contain-
ment, we use Theorem 2.5.8 to guarantee that we can write the graded ideal J1∩ J2 as I(H ∪SH) for some
(H,S) ∈ TE . So it suffices to show that each of the elements in the generating set H ∪ SH of J1 ∩ J2 is in
J1 · J2. But this follows immediately, as each of these elements is idempotent. ut

Recall that a graded algebra A is said to be graded artinian (resp., graded noetherian) in case A satisfies
the descending chain condition (resp., ascending chain condition) on graded two-sided ideals. We need an
observation which will be used more than once in the sequel.
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Lemma 2.5.12. Let E be an arbitrary graph. Then the following are equivalent.

(1) The lattice TE satisfies the ascending (resp., descending) chain condition with respect to the partial
order given in Definition 2.5.3.

(2) The lattice HE satisfies the ascending (resp., descending) chain condition (under set inclusion), and,
for each H ∈HE , the corresponding set BH of breaking vertices is finite.

Proof. We prove the ascending chain condition statement; the proof for the descending chain condition
is essentially identical. So suppose the a.c.c. holds in TE . Let H1 ⊆ H2 ⊆ . . . be an ascending chain of
hereditary saturated subsets of vertices in E. Then we get an ascending chain (H1, /0)≤ (H2, /0)≤ . . . in TE .
By hypothesis, there is an integer n such that (Hn, /0) = (Hn+1, /0) = ... . This implies that Hn = Hn+1 = . . . ,
showing that the a.c.c holds in HE . Let H ∈HE . Then the corresponding set BH of breaking vertices of
H must be finite, since otherwise BH would contain an infinite ascending chain of subsets S1 $ S2 $ . . . ,
and this would then give rise to a proper ascending chain (H,S1)� (H,S2)� . . . in TE , contradicting the
hypothesis that a.c.c. holds in TE .

Conversely, suppose the a.c.c. holds in HE , and that BH is a finite set for each H ∈HE . Consider an
ascending chain (H1,S1) ≤ (H2,S2) ≤ . . . in TE . This gives rise to an ascending chain H1 ⊆ H2 ⊆ . . .
in HE , and so there is an integer n such that Hi = Hn = H for all i ≥ n. So from the nth term onwards,
the given chain in TE is of the form (H,Sn) ≤ (H,Sn+1) ≤ . . . , where Sn,Sn+1, . . . are subsets of BH .
Observe that since BH ∩H = /0, it follows from the definition of ≤ on TE that we have an ascending chain
Sn ⊆ Sn+1 ⊆ . . . . Since BH is a finite set, there is a positive integer m such that Sn+m = Sn+m+i for all i≥ 0.
This establishes the a.c.c. in TE . ut

Now combining the Structure Theorem for Graded Ideals with Lemma 2.5.12, we get
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Proposition 2.5.13. Let E be an arbitrary graph and K any field. Consider the standard Z-grading on
LK(E).

(i) LK(E) is graded artinian if and only if the set HE satisfies the descending chain condition with respect
to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

(ii) LK(E) is graded noetherian if and only if the set HE satisfies the ascending chain condition with
respect to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.
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Corollary 2.5.14. Let E be a finite graph and K any field. Then LK(E) is both graded artinian and graded
noetherian.

For another direct consequence of the Structure Theorem for Graded Ideals, recall that a graded algebra
A is said to be graded simple if A2 6= 0, and A has no graded ideals other than 0 and A. Since LK(E) is a
ring with local units for any graph E and field K, we have LK(E)2 6= 0. Thus Theorem 2.5.8 immediately
yields
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Corollary 2.5.15. Let E be an arbitrary graph and K any field. Then LK(E) is graded simple if and only if
the only hereditary and saturated subsets of E0 are /0 and E0.

We conclude our discussion of the graded ideals in a Leavitt path algebra by establishing that every
graded ideal in a Leavitt path algebra is itself, up to isomorphism, the Leavitt path algebra of an explicitly-
described graph. Since dealing with breaking vertices makes the proof of the result for arbitrary graded
ideals less “visual”, and because a number of our results in the sequel will rely only on this more specific
setting, we start our analysis by considering graded ideals of the form I(H) for H ∈HE .

Definition 2.5.16. (The hedgehog graph for a hereditary subset) Let E be an arbitrary graph. Let H be {d
ef
1.
3D
HS
z}

a nonempty hereditary subset of E0. We denote by FE(H) the set

FE(H)= {α ∈Path(E) | α = e1 · · ·en, with s(e1)∈E0\H, r(ei)∈E0\H for all 1≤ i< n, and r(en)∈H}.

We denote by FE(H) another copy of FE(H). If α ∈ FE(H), we will write α to refer to a copy of α in
FE(H). We define the graph HE = (HE0,HE1,s′,r′) as follows:

HE0 = H ∪FE(H), and HE1 = {e ∈ E1 | s(e) ∈ H}∪FE(H).

The source and range functions s′ and r′ are defined by setting s′(e) = s(e) and r′(e) = r(e) for every
e ∈ E1 such that s(e) ∈ H; and by setting s′(α) = α and r′(α) = r(α) for all α ∈ FE(H).

Intuitively, FE(H) can be viewed as H, together with a new vertex corresponding to each path in E
which ends at a vertex in H, but for which none of the previous edges in the path ends at a vertex in H. For
every such new vertex, a new edge is added going into H. So the net effect is that in FE(H), the only paths
entering the subgraph H have common length 1; pictorially, the situation evokes an image of the quills
(edges into H) on the body of a hedgehog or porcupine (H itself), whence the name.
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Remark 2.5.17. We note that, by construction, the cycles in the hedgehog graph HE are precisely the cycles
in H. In particular, as H is hereditary, every cycle without exits in HE arises from a cycle without exits in
H.
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Example 2.5.18. Let ET be the Toeplitz graph •ue 88
f // •v , and let H denote the hereditary subset

{v}. Then FET (H) = {en f | n ∈ Z+}, and HET is the graph

f
•

��

e f
•

��
•vBB. . .
OO •e2 foo

•
e3 f

__

If I is an ideal of a ring R, then I itself may be viewed as a ring in its own right. (Of course I need not be
unital, nor need it contain a set of local units, e.g., the ideal 2Z of Z.) Similarly, if I is an algebra ideal of a
K-algebra A, then I may be viewed as a K-algebra in its own right. We note in this regard that the K-ideal
I(1+x) of K[x,x−1] does not contain any nonzero idempotents, hence I(1+x) when viewed as a K-algebra
cannot contain a set of local units. Using the identification established between LK(R1) and K[x,x−1], this
implies in particular that the ideal I(v+ e) of LK(R1) cannot be isomorphic to the Leavitt path algebra of
any graph, as any Leavitt path algebra is an algebra with local units. These comments provide context for
the following result.
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Theorem 2.5.19. Let E be an arbitrary graph and K any field. Let H be a nonempty hereditary subset of
E. Then I(H), when viewed as a K-algebra, is K-algebra isomorphic to LK(HE).
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Proof. We define a map ϕ : {u | u ∈ HE0}∪{e | e ∈ HE1}∪{e∗ | e ∈ HE1}→ I(H) by the following rule:

ϕ(v)=

{
v if v ∈ H

αα
∗ if v = α ∈ FE(H),

ϕ(e)=

{
e if e ∈ E1

α if e = α ∈ FE(H),
and ϕ(e∗)=

{
e∗ if e ∈ E1

α
∗ if e = α ∈ FE(H).

Note that for α,β distinct elements in FE(H) we have α∗β = 0, so {ϕ(u) | u ∈ HE0} is a set of orthogonal
idempotents in I(H). Moreover, it is not difficult to establish that this set, jointly with {ϕ(e) | e ∈ HE1}
and {ϕ(e∗) | e ∈ HE1}, is an HE-family in I(H). So by the Universal Property, ϕ extends to a K-algebra
homomorphism from LK(HE) into I(H).

To see that ϕ is onto, by Lemma 2.4.1 it is enough to show that every vertex of H and every finite
path α of E with r(α) ∈ H are in the image of ϕ . For any v ∈ H, ϕ(v) = v, so that this case is clear.
Now, let α = α1 · · ·αn with αi ∈ E1. If s(α1) ∈ H, then α = ϕ(α1) · · ·ϕ(αn). Suppose that s(α1) ∈ E0 \H
and r(αn) ∈ H. Then, there exists 1 ≤ j ≤ n− 1 such that r(α j) ∈ E0 \H and r(α j+1) ∈ H. Thus, α =

α1 · · ·α j+1 ·α j+2 · · ·αn, where β = α1 · · ·α j+1 ∈ FE(H). Hence, α = ϕ(β )ϕ(α j+2) · · ·ϕ(αn).
To show injectivity, by Remark 2.5.17 we have that any cycle without exits in HE comes from a cycle

without exits in E, where the vertices of the cycle are in H. So every cycle without exits in HE is mapped to
a homogeneous nonzero element of nonzero degree in I(H). The injectivity thereby follows by Proposition
2.2.17. ut

In what follows, we will generalize Theorem 2.5.19 in Theorem 2.5.22 by showing that in fact every
graded ideal in a Leavitt path algebra is isomorphic to a Leavitt path algebra.

Definition 2.5.20. (The generalized hedgehog graph construction, incorporating breaking vertices){n
ew
gr
ap
h}

Let E be an arbitrary graph, H a nonempty hereditary subset of E, and S⊆ BH . We define:

F1(H,S) := {α ∈ Path(E) | α = e1 · · ·en, r(en) ∈ H and s(en) /∈ H ∪S}, and

F2(H,S) := {α ∈ Path(E) | |α| ≥ 1 and r(α) ∈ S}.

For i = 1,2 we denote a copy of Fi(H,S) by F i(H,S) . We define the graph (H,S)E as follows:

(H,S)E
0 := H ∪S∪F1(H,S)∪F2(H,S), and

(H,S)E
1 := {e ∈ E1 | s(e) ∈ H}∪{e ∈ E1 | s(e) ∈ S and r(e) ∈ H}∪F1(H,S)∪F2(H,S).

The range and source maps for (H,S)E are described by extending r and s to (H,S)E1, by defining r(α) = α

and s(α) = α for all α ∈ F1(H,S)∪F2(H,S).
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Remark 2.5.21. Here are some observations about the construction of the generalized hedgehog graph
(H,S)E.

(i) F1(H,S)∩F2(H,S) = /0.
(ii) Every cycle in E produces a cycle in (H,S)E; moreover, cycles in (H,S)E come from cycles in E. Thus

there is a bijection between the set of cycles in E and the set of cycles in (H,S)E.
(iii) In the particular case S = /0, we get:

F1(H, /0) = {α = e1 · · ·en ∈ Path(E) | r(en) ∈ H and s(en) /∈ H}; F2(H, /0) = /0; and (H, /0)E = HE.

Thus Definition 2.5.20 indeed generalizes the construction of the graph HE given in Definition 2.5.16.
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Theorem 2.5.22. Let E be an arbitrary graph and K any field. Suppose H ∈HE and S ⊆ BH . Then the
graded ideal I(H ∪SH) of the Leavitt path algebra LK(E) is isomorphic as K-algebras to the Leavitt path
algebra LK((H,S)E).

Proof. Let ϕ : {v | v ∈ (H,S)E0}∪{e | e ∈ (H,S)E1}∪{e∗ | e ∈ (H,S)E1}→ I(H ∪SH) be the map such that:
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ϕ(v) =


v if v ∈ H

vH if v ∈ S

αα
∗ if v = α ∈ F1(H,S)

αr(α)H
α
∗ if v = α ∈ F2(H,S) ,

ϕ(e) =


e if e ∈ E1

α if e = α ∈ F1(H,S) and

αr(α)H if e = α ∈ F2(H,S) ,

ϕ(e∗) =


e∗ if e ∈ E1

α
∗ if e = α ∈ F1(H,S)

r(α)H
α
∗ if e = α ∈ F2(H,S)

for every v ∈ (H,S)E0 and every e ∈ (H,S)E1. It is not difficult to see that each of the elements ϕ(v), ϕ(e),
and ϕ(e∗) is an element of I(H ∪ SH). In a manner similar to the proof of Theorem 2.5.19, one can show
that the set

{ϕ(v) | v ∈ (H,S)E
0}∪{ϕ(e) | e ∈ (H,S)E

1}∪{ϕ(e∗) | e ∈ (H,S)E
1}

is an (H,S)E-family in I(H∪SH). Consequently, by the Universal Property of LK((H,S)E), the map ϕ can be
uniquely extended to a K-algebra homomorphism from LK((H,S)E) to I(H ∪SH).

The injectivity of ϕ follows from Proposition 2.2.17. To show surjectivity, recall the description of the
generators of I(H ∪ SH) given in Lemma 2.4.6. Using this, the only two things we must show are that
α ∈ Im(ϕ) for every α ∈ Path(E) such that r(α) ∈ H, and that αvH ∈ Im(ϕ) for every α ∈ Path(E) such
that r(α) = v ∈ S.

To show the first statement, take α = e1 · · ·en as indicated. There are four cases to analyze. First, if
s(e1) ∈ H then s(ei) ∈ H for all i and ei ∈ (H,S)E1. Hence, ϕ(α) = ϕ(e1) · · ·ϕ(en) = e1 · · ·en = α , which
proves α ∈ Im(ϕ). Second, suppose α = f e1 · · ·en with r( f ) = s(e1) ∈ H and s( f ) ∈ S. Then f ∈ (H,S)E1,
s(ei) ∈ H and ei ∈ (H,S)E1 for all i. Therefore, ϕ(α) = ϕ( f )ϕ(e1) · · ·ϕ(en) = f e1 · · ·en = α and so α ∈
Im(ϕ). In the third case, if α = f1 · · · fme1 · · ·en with r( fm) = s(e1) ∈ H and s( fm) /∈ H ∪ S, then β :=
f1 · · · fm ∈F1(H,S) and ei ∈ (H,S)E1 for all i, so ϕ(βe1 · · ·en) =ϕ(β )ϕ(e1) · · ·ϕ(en) = βe1 · · ·en =α and so
α ∈ Im(ϕ). Finally, if α = f1 · · · fmge1 · · ·en with r(g) = s(e)∈H, s(g)∈ S and m≥ 1, then β := f1 · · · fm ∈
F2(H,S), g ∈ (H,S)E1 and ei ∈ (H,S)E1 for all i; therefore, ϕ(βge1 · · ·en) = ϕ(β )ϕ(g)ϕ(e1) · · ·ϕ(en) =
βgee · · ·en = α , which shows again α ∈ Im(ϕ).

Now we verify that αvH ∈ Im(ϕ) for every α ∈ Path(E) such that r(α) = v∈ S. If |α|= 0 then v := α is
a vertex in S and ϕ(v) = vH =αvH so that αvH ∈ Im(ϕ). If |α| ≥ 1 then α ∈ F2(H,S) and ϕ(α) =αr(α)H .
This shows αr(α)H ∈ Im(ϕ), and the proof is complete. ut
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Corollary 2.5.23. Let E be an arbitrary graph and K any field. Then every graded ideal of LK(E) is K-
algebra isomorphic to a Leavitt path algebra.

Proof. Apply the Structure Theorem for Graded Ideals with Theorem 2.5.22. ut
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Remark 2.5.24. We note that, except for the obvious trivial cases, the isomorphism established in Theorem
2.5.22 between the graded ideal I(H ∪ SH) of LK(E) and the Leavitt path algebra LK(E/(H,S)) is not a
graded isomorphism with respect to the induced grading on I(H∪SH) coming from LK(E). This is because
if α is a path in FE(H) having |α| ≥ 2, then the equation ϕ(α) = α reveals that ϕ does not preserve the
grading.

In summary, we have now shown that the graded ideals of LK(E) are “natural” in the context of Leavitt
path algebras: by Theorem 2.4.15 every quotient of a Leavitt path algebra by a graded ideal is again a
Leavitt path algebra, and by Theorem 2.5.22 every graded ideal of a Leavitt path algebra is itself a Leavitt
path algebra. In contrast, the quotient of a graded algebra by a non-graded ideal is not a graded algebra with
respect to an induced grading; see the comments subsequent to Remark 2.1.2. Moreover, once we develop
a description of the structure of all ideals in a Leavitt path algebra, we will be able to prove that non-graded
ideals are necessarily not isomorphic to Leavitt path algebras (see Corollary 2.9.11).

We close this section by establishing yet another consequence of the Structure Theorem for Graded
Ideals.
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Proposition 2.5.25. Let {Hi}i∈Λ be a family of hereditary subsets of an arbitrary graph E and K any field.
Then as ideals of LK(E) we have:

(i) I(∩i∈Λ Hi) = ∩i∈Λ I(Hi).
(ii) If Λ is finite, then I(∩i∈Λ Hi) = ∩i∈Λ I(Hi).

Proof. (i) The containment I(∩i∈Λ Hi)⊆∩i∈Λ I(Hi) is clear because I(Hi) = I
(
Hi
)
. Now we show the other

one. Observe first that since the intersection of graded ideals is a graded ideal, by the Structure Theorem for
Graded Ideals we get ∩i∈Λ I(Hi) = I(H∪SH), where H =

(
∩i∈Λ I(Hi)

)
∩E0 =∩i∈Λ

(
I(Hi)∩E0

)
=∩i∈Λ Hi.

Now, consider v ∈ BH ; we will see that vH /∈ ∩i∈Λ I(Hi). Since v /∈ H, there is an i ∈ Λ such that v /∈ Hi,
hence v ∈ BHi

.

Write ṽ to denote either vHi (in case v ∈ BHi
), or v (in case r(s−1(v))⊆ Hi). Then we may write

ṽ = vH − ∑
s(e)=v

r(e)∈Hi\H

ee∗.

Since ∑{s(e)=v,r(e)∈Hi\H} ee∗ ∈ I(Hi) and vH ∈ I(Hi), then ṽ ∈ I(Hi)∩E0 = Hi, a contradiction. This implies
S = /0, giving the desired result.

(ii) When Λ is finite, then ∩i∈Λ Hi = ∩i∈Λ Hi, and consequently

I(∩i∈Λ Hi) = I(∩i∈Λ Hi) = ∩i∈Λ I(Hi) = ∩i∈Λ I(Hi). ut

2.6 The socle
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Because of its importance in the general theory, we present now a description of the socle of a Leavitt path
algebra. Along the way, we will investigate various minimal left ideals of LK(E). This in turn will provide
us with, among other things, an explicit description of the finite dimensional Leavitt path algebras.

{l
in
ep
oi
nt
sd
ef
in
it
io
n}

Definitions 2.6.1. Let E be an arbitrary graph. Recall that for v ∈ E0, we say that there exists a cycle at v if
v is a vertex lying on some cycle in E. Also, recall that for v ∈ E0, T (v) denotes the set {w ∈ E0 | v≥ w}.

A vertex v ∈ E0 is called a bifurcation vertex (or it is said that there is a bifurcation at v) if s−1
E (v)

contains at least two edges of E.
A vertex u ∈ E0 is called a line point if there are neither bifurcations nor cycles at any vertex of T (u).
The set of line points of the graph E will be denoted by Pl(E).
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Remark 2.6.2. Vacuously, any sink in E is a line point. The set of line points Pl(E) is always a hereditary
subset of E0, although it is not necessarily saturated.

If u ∈ Pl(E), then T (u) is a sequence T (u) = {u1,u2,u3, . . .}, where u = u1, and where, for all i ∈
N, there exists a unique edge ei ∈ E1 with s(ei) = ui,r(ei) = ui+1. This sequence is finite precisely when
there exists a sink w of E in T (u), in which case w is the last element of the sequence. Intuitively, T (u) is
then essentially just a “directed line starting at u”, from which the name “line point” derives.

Consequently, for each pair ui,u j ∈ T (u) with i < j, there exists a unique path pi, j in E for which
s(pi, j) = ui and r(pi, j) = u j. In particular, the lack of bifurcations at any vertex in T (u) together with the
(CK2) relation yields that pi, j p∗i, j = ui for any pair ui,u j ∈ T (u) for which i≤ j.

A key role in the theory is played by rings of the following form.
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Notation 2.6.3. Let Γ be an infinite set, and let S be any unital ring. We denote by

MΓ (S)

the ring consisting of those square matrices M, with rows and columns indexed by Γ , with entries from S,
for which there are at most finitely many nonzero entries in M.
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Clearly any such ring MΓ (S) contains a set of enough idempotents, consisting of (finite) sums of distinct
matrix units ei,i.

A subset {εα,β | α,β ∈ Γ } of an ideal T of a K-algebra R is called a set of matrix units for T in case
εα,β εγ,κ = δβ ,γ εα,κ for all α,β ,γ,κ ∈ Γ , and T = spanK({εα,β}). In this case, T ∼= MΓ (K) as K-algebras,
via an isomorphism sending εα,β to the standard matrix element eα,β (which is 1K in row α , column β , and
0 elsewhere). The following result (which generalizes Proposition 1.3.5) allows us to explicitly describe
the structure of the ideal I(v) generated by a line point v. As a consequence of this description, we will be
able to describe the structure of the socle of any Leavitt path algebra.
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Lemma 2.6.4. Let E be an arbitrary graph and K any field. Let v be a line point in E. Let Λv denote the set
FE(T (v)); that is, Λv is the set of paths α ∈ Path(E) for which r(α) meets T (v) for the first time at r(α).
Then

I(v)∼= MΛv(K).

Proof. We construct a set of matrix units in I(v), indexed by Λv, as follows. Write T (v) = {v1,v2, . . .} as
in Remark 2.6.2. By Lemma 2.4.1 and the observations offered in Remark 2.6.2, each element in I(v) is a
K-linear combination of elements of the form αxi, jλ

∗, where α,λ ∈ FE(T (v)), and xi, j = pi, j if i ≤ j, or
xi, j = p∗j,i if j ≤ i. We denote such αxi, jλ

∗ by eα,λ .
Again using Remark 2.6.2, we see that the set {xi, j | i, j ∈ N} has the multiplicative property xi, jxk,` =

δ j,kxi,` for all i, j,k, ` ∈ N. Using this, it is then straightforward to establish that the set {eα,λ | α,λ ∈Λv}
is a set of matrix units for I(v). ut
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Corollary 2.6.5. Let E be an arbitrary graph and K any field. Let v be a sink in E. Then I(v) ∼= MΛv(K),
where Λv is the set of paths in E ending at v.
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Corollary 2.6.6. Let K be any field. For any set Λ let EΛ denote the graph with

E0
Λ = {v}∪{uλ | λ ∈Λ} and E1

Λ = { fλ | λ ∈Λ},

where s( fλ ) = uλ and r( fλ ) = v for all λ ∈ Λ . Then LK(EΛ ) ∼= MΛ (K). In particular, by taking disjoint
unions of graphs of this form, any direct sum of full matrix rings over K arises as the Leavitt path algebra
of a graph. (With Example 1.6.12 in mind, we sometimes refer to EN as the infinite co-clock graph.) We
note that EZ+ is precisely the graph arising in Example 2.5.18.
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Definitions 2.6.7. Let R be a ring. We say that a left ideal I of R is a minimal left ideal if I 6= 0 and I does
not contain any left ideals of R other than 0 and I. (This is equivalent to saying that RI is a simple left
R-module.) An idempotent e ∈ R is called left minimal in case Re is a minimal left ideal of R. The left socle
of R is defined to be the sum of all the minimal left ideals of R (or is defined to be {0} in case R contains no
minimal left ideals). The corresponding notions of right minimal and right socle are defined analogously.
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Remark 2.6.8. It is well known that for any ring R, both the left socle and the right socle of R are two-sided
ideals of R. For a semiprime ring R the left and right socles of R coincide; in this case, either of these is
called the socle of R, and is denoted by Soc(R). In particular, for E an arbitrary graph and K any field,
the two-sided ideal Soc(LK(E)) denotes the sum of the minimal left (or right) ideals of LK(E) (when such
exist), or denotes {0} (when LK(E) contains no minimal one-sided left ideals).

The following result is standard (see e.g. [97, Section 3.4]).
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Lemma 2.6.9. Let R be a semiprime ring, and e2 = e ∈ R. Then Re is a minimal left ideal of R if and only
if eRe is a division ring.

The structure of left ideals generated by vertices lies at the heart of the description of the socle of a
Leavitt path algebra. Here is a fundamental observation in that regard.
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Lemma 2.6.10. Let E be an arbitrary graph and K any field. Let w ∈ E0. If there exists a bifurcation at w
(i.e., if |s−1(w)| ≥ 2), then the left ideal LK(E)w is not minimal.
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Proof. Suppose e 6= f ∈ s−1(w). Then ee∗ and f f ∗ are nonzero elements of LK(E)w. Since ee∗ 6= 0,
LK(E)ee∗ is nonzero submodule of LK(E)w. But f f ∗ 6∈ LK(E)ee∗, since otherwise we would have
f f ∗ = ree∗ for some r ∈ LK(E), which upon multiplication on the right by f f ∗ and using (CK1) would
give f f ∗ = 0, a contradiction. ut
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Proposition 2.6.11. Let E be an arbitrary graph and K any field. A vertex v of E is a line point if and only
if LK(E)v is a minimal left ideal of LK(E).

Proof. Suppose first that v is a line point. Since LK(E) is semiprime (Proposition 2.3.1), in order to
show that LK(E)v is a minimal left ideal it suffices to show (by Lemma 2.6.9) that vLK(E)v is a divi-
sion ring. To that end, consider an arbitrary nonzero element a ∈ vLK(E)v. Then a will be of the form
a = v(∑n

i=1 kiλiµ
∗
i )v = ∑

n
i=1 ki(vλiµ

∗
i v), for λi,µi ∈ Path(E) such that s(λi) = r(µ∗i ) = v (so that s(µ) = v),

and r(λi) = s(µ∗i ) = v (so that r(µ) = v). But then necessarily λi = µi, because v is a line point and
λi and µi start and end at the same vertex. So we get λiµ

∗
i = λiλ

∗
i = v (using Remark 2.6.2), yielding

a = ∑
n
i=1 ki · v ∈ Kv. This shows that vLK(E)v = Kv∼= K.

Conversely, suppose LK(E)v is a minimal left ideal. We will see that no vertex in T (v) has bifurcations,
nor is any vertex in T (v) the base of a cycle. We start by noting the following. For any u ∈ T (v), let µ be a
path such that s(µ) = v and r(µ) = u. Then the map

ρµ : LK(E)v→ LK(E)u av 7→ avµ = aµ

is a nonzero epimorphism of left LK(E)-modules, as for βu ∈ LK(E)u we have β µ∗ ∈ LK(E)v, and
ρµ(β µ∗) = β µ∗µ = βu. The minimality of LK(E)v implies that ρu is an isomorphism, so that LK(E)u
must be minimal as well. In particular, by Lemma 2.6.9 uLK(E)u is a division ring.

With these observations, we conclude first (by Lemma 2.6.10) that there are no bifurcations at w for
every w ∈ T (v), and second (by Lemma 2.2.7) that w is not the base of a cycle without exits in E for every
w ∈ T (v). Thus v is a line point. ut
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Definition 2.6.12. For an arbitrary graph E and field K, we call a vertex w ∈ E0 a minimal vertex in case
LK(E)w is a minimal left ideal of LK(E).
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Lemma 2.6.13. Let E be an arbitrary graph and K any field. Then there exists a family {Hi}i∈Λ of hered-
itary subsets of E0 such that Pl(E) =

⊔
i∈Λ Hi, and I(Hi) = I(vi) as ideals of LK(E) for every vi ∈ Hi and

i ∈Λ .

Proof. Define on Pl(E) the following equivalence relation: for u,v∈ Pl(E), we say u≡ v if I(u) = I(v). Let
{Hi}i∈Λ be the set of all ≡ equivalence classes.

We claim that each Hi is a hereditary subset of E0. Indeed, suppose u ∈Hi and v ∈ E0 such that v = r(e)
for some e ∈ s−1(u). Then v ∈ Pl(E), as Pl(E) is hereditary, and by hypothesis, s−1(u) = {e}. This implies,
by (CK1) and (CK2), u = ee∗ = eve∗ ∈ I(v) and v = e∗e = e∗ue ∈ I(u), hence I(u) = I(v), and so v ∈ Hi.
The rest of the conditions in the statement are obviously fulfilled. ut

We are now in position to describe the socle of a Leavitt path algebra.
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Theorem 2.6.14. Let E be an arbitrary graph and K any field. Decompose Pl(E) =
⊔

i∈Γ Hi as in Lemma
2.6.13. Then

Soc(LK(E)) = I(Pl(E))∼=
⊕
i∈Γ

MΛvi
(K),

where for every i ∈ Γ , if vi is an arbitrary element of Hi then I(vi)∼= MΛvi
(K) (with notation as in Lemma

2.6.4).

Proof. We begin by showing I(Pl(E))=Soc(LK(E)). Proposition 2.6.11 gives that I(Pl(E))⊆Soc(LK(E)).
To establish the reverse inclusion note that, since Soc(LK(E)) is generated by the minimal left ideals of
LK(E), it suffices to show that a ∈ I(Pl(E)) for every a for which LK(E)a is a minimal left ideal of LK(E).

Use the Reduction Theorem 2.2.11 to find µ,η ∈ Path(E) such that either 0 6= µ∗aη = kv for some
k ∈ K× and v ∈ E0, or 0 6= µ∗aη ∈ wLK(E)w, where w is a vertex in a cycle without exits. The second
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option is not possible, since wLK(E)w is isomorphic as an algebra to K[x,x−1] by Lemma 2.2.7, and so if
the second option holds we have

{0} 6= wSoc(LK(E))w = Soc(wLK(E)w)∼= Soc(K[x,x−1]) = {0},

a contradiction.
Hence for some v ∈ E0 and k ∈ K× we have µ∗aη = kv. By minimality of LK(E)a, we get LK(E)µ∗a =

LK(E)a. Again by minimality, the nonzero surjection ρη : LK(E)µ∗a→ LK(E)v is an isomorphism. Thus
LK(E)v∼= LK(E)a. In particular, LK(E)v is minimal, so that v is a line point by Proposition 2.6.11. But the
isomorphism LK(E)v∼= LK(E)a implies that a = svt for some s, t ∈ LK(E), so that a ∈ I(Pl(E)).

In order to finish the proof of the theorem, we proceed as follows: I(Pl(E)) = I(
⊔

i∈Γ Hi) =
⊕

i∈Γ I(Hi)
by Proposition 2.4.7. Now, use I(Hi) = I(vi) for any vi ∈Hi (by construction), and apply Lemma 2.6.4. ut

As a consequence of Theorem 2.6.14, we get
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Corollary 2.6.15. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) E contains no line points.
(2) LK(E) has no minimal idempotents.

Proof. (1) implies (2) follows from the fact that if LK(E) has minimal idempotents, then Soc(LK(E)) 6=
{0}, so that Pl(E) 6= /0 by Theorem 2.6.14. That (2) implies (1) follows from Proposition 2.6.11. ut
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Examples 2.6.16. In general, the relative size of Soc(LK(E)) within LK(E) can run the gamut, even among
the fundamental examples of Leavitt path algebras. For instance:

(i) Since for each n ∈ N there are no line points in the graph

Rn = • ddqq
��
QQ

we conclude by Theorem 2.6.14 that Soc(LK(Rn)) = {0}. In particular, Soc(LK(1,n)) = {0} for
each of the Leavitt K-algebras LK(1,n). (We also recover the well-known fact that Soc(K[x,x−1]) =
Soc(LK(R1)) = {0}.)

(ii) Since in the graph

An = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

we have that I(vn)= LK(An) for the line point vn, we conclude by Theorem 2.6.14 that Soc(LK(An))=
LK(An). (Of course this result is easy to see from first principles, since LK(An)∼= Mn(K).)

(iii) Since in the Toeplitz graph
ET = •:: // •v

the only line point is the vertex v, we conclude by Theorem 2.6.14 that Soc(LK(ET )) is the ideal I(v)
of LK(ET ) generated by v. We see immediately that {0}$ Soc(LK(ET ))$ LK(ET ).
Indeed, by Theorem 2.5.19, the ideal I(v) is isomorphic to the Leavitt path algebra of the graph in
Example 2.5.18, which in turn is isomorphic to MZ+(K) by Corollary 2.6.6. Moreover, by Corollary
2.4.13(i) the quotient of LK(ET ) by the socle I(v) is isomorphic to LK(E/{v}) ∼= LK( •:: ) ∼=
K[x,x−1].

We finish the section by giving the aforementioned key consequence of our newly developed tools, in
which we describe the structure of all finite dimensional Leavitt path algebras.
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Theorem 2.6.17. (The Finite Dimension Theorem) Let E be an arbitrary graph and K any field. The
following conditions are equivalent.

(1) LK(E) is a finite dimensional Leavitt path K-algebra.
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(2) E is a finite and acyclic graph.
(3) LK(E) is K-algebra isomorphic to ⊕m

i=1Mni(K), where m = |Sink(E)| and ni is the number of different
paths ending at the sink vi, for 1≤ i≤ m.

Proof. (1)⇒ (2). Since E0∪E1 is a linearly independent set in LK(E) (apply Corollary 1.5.15), (1) implies
that E must be finite. On the other hand, if c were a cycle in E, then applying Corollary 1.5.15 again would
yield that {cn}n∈N is an independent set, contrary to the finite dimensionality of LK(E).

(2) ⇒ (3). We show that LK(E) = ⊕m
i=1I(vi), where {v1, . . . ,vm} = Sink(E). We note that in a finite

acyclic graph E, there is a positive integer b(E) for which every path in E has length at most b(E). In
addition, such a graph must contain at least one sink. Observe first that {{vi}}m

i=1 is a family of pairwise
disjoint hereditary subsets of E. This implies, by Proposition 2.4.7, that ∑

m
i=1 I(vi) =⊕m

i=1I(vi).
Now consider an element αβ ∗ ∈ LK(E), with α,β ∈ Path(E). If r(α) ∈ Sink(E), then αβ ∗ ∈ I(r(α)),

which is one the I(vi)’s. If this is not the case, then apply the (CK2) relation at r(α) to get

αβ
∗ = αr(α)β ∗ = ∑

{e∈s−1(r(α))}
αee∗β ∗.

If for every e ∈ s−1(r(α)) we have r(e) ∈ Sink(E), then we are done. Otherwise, rewrite every r(e) which
is not a sink as before, using (CK2). Since the graph is finite and acyclic, after at most b(E) steps we have
finished.

Finally, we note that m is exactly the cardinality of Sink(E), while by Corollary 2.6.5, ni is the number
of distinct paths ending in vi.

(3)⇒ (1) is clear. ut

We recall that a matricial K-algebra is a finite direct sum of full finite dimensional matrix algebras over
the field K.
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Remark 2.6.18 The Finite Dimension Theorem 2.6.17 yields that the matricial Leavitt path K-algebras
(Definition 2.1.13) coincide precisely with the finite dimensional Leavitt path K-algebras. By Corollary
2.6.6, we see that every matricial K-algebra indeed arises as a Leavitt path K-algebra.
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Definition 2.6.19. A locally matricial K-algebra is a direct limit of matricial K-algebras.
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Proposition 2.6.20. Let E be an acyclic graph and K any field. Then LK(E) is locally matricial.

Proof. Write LK(E) = lim
−→

LK(Fi), as in Proposition 1.6.15, where every Fi is a finite and acyclic graph.

The result then follows, as each LK(Fi) is a matricial algebra by Theorem 2.6.17. ut

Remark 2.6.21. The Finite Dimension Theorem 2.6.17 will play a central role in the theory of Leavitt path
algebras. One immediate consequence is instructive. We see from Theorem 2.6.17 that the only information
required to understand LK(E) up to K-algebra isomorphism when E is a finite acyclic graph is the number
of sinks in E, and the number of paths ending in each of those sinks. In particular, this allows us to construct
isomorphic Leavitt path algebras from non-isomorphic graphs. For example, let

E = • // • // • and F = • // • •oo .

Then E and F are clearly not isomorphic as directed graphs (for instance, F has a vertex of invalence 2,
while E does not). However, by Theorem 2.6.17 we get

LK(E)∼= LK(F)∼= M3(K),

since both E and F contain exactly one sink, and in both E and F there are exactly three paths ending at
that sink.



2.7 The ideal generated by the vertices in cycles without exits 57

2.7 The ideal generated by the vertices in cycles without exits

{V
er
ti
ce
sI
nC
yc
le
s}

For an arbitrary ring R, there are a number of ideals within R which merit special attention: the Jacobson
radical of R, the socle of R, and the left singular ideal of R, to mention just a few. We have already identified
these ideals (and others) in the context of Leavitt path algebras. However, there is one specific ideal within
a Leavitt path algebra LK(E) which plays a central role in the description of the lattice Lid(LK(E)) of all
two-sided ideals of LK(E): the ideal I(Pc(E)) generated by those vertices which lie on a cycle without exits.
We describe I(Pc(E)) in this section.

Just as the ideal generated by the line points has importance (as it coincides with the socle of the cor-
responding Leavitt path algebra), the ideal generated by the vertices which lie on cycles without exits will
also have an important place in the theory. In this case, the cycles without exits will play a role similar to
that of the line points. In addition, we will be able to view this ideal as the ideal generated by the primitive
non-minimal idempotents in LK(E) (such idempotents are discussed further in Section 3.5). Recall from
Notation 2.2.4 that

Pc(E) := {v ∈ E0 | v is the base of some cycle c for which c has no exits}.

Indeed, Pc(E) may be viewed as the disjoint union Pc(E) = ti∈ϒ {c0
i }, where {ci}i∈ϒ is the set of distinct

cycles without exits in E (i.e., for which c0
i 6= c0

j for i 6= j). Note that although Pc(E) is clearly hereditary,
it is not necessarily saturated. For instance, in the graph

•u // •v ff

we have Pc(E) = {v}, which is a hereditary but not saturated subset of E0. Note, however, that I(Pc(E)) =
I(Pc(E)), by Lemma 2.4.1.
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Lemma 2.7.1. Let E be an arbitrary graph and K any field. Let v ∈ Pc(E), and let c be the cycle without
exits such that s(c) = v. Let Λv denote the (possibly infinite) set of paths in E which end at v, but which do
not contain all the edges of c. Then

I(c0) = I(v)∼= MΛv(K[x,x−1]).

Proof. That I(c0) = I(v) is clear because, using the hypotheses that c has no exits, we have {v}= c0.
Consider the family

B := {µck
η
∗ | µ,η ∈Λv,k ∈ Z},

where as usual c0 denotes v and ck denotes (c∗)−k for k < 0. By Corollary 1.5.12, B is a K-linearly
independent set.

By Lemma 2.4.1 we have that every element in I(v) is a K-linear combination of elements of the form
αβ ∗, where r(α) = r(β ) ∈ T (v). But T (v) consists precisely of the vertices in c, as c has no exits. So
α = µc` and β = ηcm for some µ,η ∈Λv, and `,m≥ 0. This shows that B generates I(v), so that B is a
K-basis for I(v).

We define ϕ : I(v)→MΛv(K[x,x−1]) by setting ϕ(µckη∗) = xkeµ,η for each µckη∗ ∈B (where xkeµ,η

denotes the element of MΛv(K[x,x−1]) which is xk in the (µ,η) entry, and zero otherwise). Then one easily
checks that ϕ is a K-algebra isomorphism. ut

We record a consequence of Lemma 2.7.1 which is analogous to a previously noted consequence of
Lemma 2.6.4.
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Corollary 2.7.2. Let K be any field. For any set Λ let Ec
Λ

denote the graph with

(Ec
Λ )

0 = {v}∪{uλ | λ ∈Λ} and (Ec
Λ )

1 = { fc}∪{ fλ | λ ∈Λ},

where s( fλ ) = uλ and r( fλ ) = v for all λ ∈Λ , and fc is a loop based at v. Then LK(Ec
Λ
)∼= MΛ (K[x,x−1]).

In particular, by taking disjoint unions of graphs of this form, any direct sum of full matrix rings over
K[x,x−1] arises as the Leavitt path algebra of a graph.
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Now using Proposition 2.4.7 together with Lemma 2.7.1, we have achieved the following.
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Theorem 2.7.3. Let E be an arbitrary graph and K any field. Then

I(Pc(E))∼=⊕i∈ϒ MΛvi
(K[x,x−1]),

where {ci}i∈ϒ is the set of distinct cycles without exits in E (i.e., for which c0
i 6= c0

j for i 6= j), and Λvi is the
set of paths in E which end at the base vi of the cycle ci, but do not contain all the edges of ci.

For the following corollary, we will need to consider vertices for which its tree does not contain infinite
bifurcations. We give a name to this set which will be useful, as we will see, to describe the center of a
Leavitt path algebra.
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Definition 2.7.4. Let E be an arbitrary graph. Denote by Pb∞(E) the set of all vertices v in E0 such that T (v)
has infinite bifurcations and by Pne(E) the set of vertices whose tree does not contain cycles with exits.
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Corollary 2.7.5. Let E be an arbitrary graph and K any field. Denote by H the set Pl(E)∪Pc(E)⊆ E0.

(i) There is a graded isomorphism of graded K-algebras

I(H)∼=
(
⊕i∈ϒ1MΛvi

(K)
)
⊕
(
⊕i∈ϒ2MΛvi

(K[x,x−1])
)
.

(ii) For every v ∈ Pne(E)\Pb∞ for which every path starting at v connects to H, there is a graded isomor-
phism of graded K-algebras

I(H)∼=
(
⊕i∈ϒ ′1

MΛvi
(K)
)
⊕
(
⊕i∈ϒ ′2

MΛvi
(K[x,x−1])

)
,

where ϒ ′j ⊆ϒj for j = 1,2.

Proof. (i). It is clear that Pl(E) and Pc(E) are hereditary saturated disjoint subsets of E0. By Proposition
2.4.7 we have that I(H) = I(Pl(E))⊕ I(Pc(E)). Now apply Theorems 2.6.14 and 2.7.3 to establish the
result.

(ii). Using (CK2) we may write v = ∑l klγlλ
∗
l for some kl ∈ K×, γl ,λl ∈ Path(E) and r(γl) ∈H. Indeed,

start by writing v=∑e∈s−1(v) ee∗ (note that as there are not infinitely many bifurcations in vertices belonging
to T (v), in particular no vertex here is an infinite emitter). If s(e) ∈H for every such e, we have finished. If
this is not the case then, for those e not having this property, use (CK2) to write r(e) = ∑ f∈s−1(r(e)) f f ∗. If
for every f ∈ s−1(r(e)) we have r( f ) ∈ H, the proof is finished. Otherwise we proceed in the same way as
before. This process must eventually terminate, as v /∈ Pb∞ .

Now we have v = ∑l klγlλ
∗
l ∈ I(H). This implies I(v) ⊆ I(H). By (i) this last ideal is isomorphic to(

⊕i∈ϒ1MΛvi
(K)
)
⊕
(
⊕i∈ϒ2MΛvi

(K[x,x−1])
)

. Now we appeal to the structure of the graded ideals of this
ring and that I(v) is a graded ideal (as it is generated by an element of zero degree) to get the result. ut
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Corollary 2.7.6. Let E be a finite graph and K any field. Let v ∈ Pne(E). Then there exists positive integers
m,n,ri, and ni for which

I(v)∼= (⊕m
i=1Mri(K))⊕

(
⊕n

i=1Mni(K[x,x−1])
)
.

In particular, I(v) is a noetherian K-subalgebra of LK(E).

Proof. Use Corollary 2.7.5(ii) with the fact that E finite implies LK(E) is unital to get that all ϒj and Λv j

must be finite, for j = 1,2. Once we then know the form of I(v), the second statement follows immediately.
ut

The ideal we have described in Theorem 2.7.3 will play an important role in a Leavitt path algebra
because as we now show, it captures all those ideals in the Leavitt path algebra which do not contain
vertices.
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Lemma 2.7.7. Let E be an arbitrary graph and K any field. Let J be a nonzero ideal of LK(E) such that
J∩E0 = /0. Then {0} 6= J∩KE ⊆ I(Pc(E)).

Proof. We first show that {0} 6= J ∩KE. Let y be a nonzero element in J. By the Reduction Theorem,
either there exist α,β ∈ Path(E) such that α∗yβ = ku for some u ∈ E0 and k ∈ K×, or α∗yβ is a nonzero
polynomial in a cycle without exits. Since J does not contain vertices, the first case cannot happen, and by
multiplying by a power of the cycle without exits (if necessary), we produce a nonzero element in J∩KE.

For such a nonzero element x ∈ J ∩KE, write x = ∑u∈U xu, where U = U(x) is the finite family of
vertices of E such that xu 6= 0. Fix u ∈U , and write xu = ∑

r
i=1 kiαi, with ki ∈ K×, αi = αiu ∈ Path(E) for

every i and αi 6= α j for every i 6= j, and in such a way that deg(αi)≤ deg(αi+1) for every i = 1, . . . ,r−1.
We will prove that xu ∈ I(Pc(E)) by induction on the number r of summands. Note that r 6= 1 as other-

wise we would have xu = k1α1, so k−1
1 α∗1 xu = u ∈ J, a contradiction to the hypothesis. So the base case for

the induction is r = 2.
Suppose first that deg(α1) = deg(α2). In this case, since α1 6= α2, we get α∗1 α2 = 0 so that k−1

1 α∗1 xu =
u ∈ J, a contradiction again. This gives deg(α1) < deg(α2), and then α∗1 xu = k1u+ k2e1 · · ·et for some
e1, · · · ,et ∈ E1. By multiplying on the left and right hand sides by u we get

y1 := uα
∗
1 xu = k1u+ k2ue1 · · ·etu ∈ J∩KE.

Observe that u and e1 · · ·et have different degrees, so since k1u 6= 0 we obtain that y1 6= 0. Moreover, as
J does not contain vertices we have that c := ue1 · · ·etu 6= 0, and thus c is a closed path based at u. We
will prove that c does not have exits. Suppose on the contrary that there exist w ∈ T (u) and e, f ∈ E1

such that e 6= f , s(e) = s( f ) = w, c = aweb = aeb for some a,b ∈ Path(E). Then τ = a f satisfies τ∗c =
f ∗a∗aeb = f ∗eb = 0 so that τ∗y1τ = k1r(τ) ∈ J, again a contradiction. Thus by definition u ∈ Pc(E), so
that, in particular, xu ∈ I(Pc(E)). So the base case r = 2 for the induction has been established.

We now assume the result holds for r ≥ 2 and prove it for r+ 1. Assume then that xu = ∑
r+1
i=1 kiαi; we

distinguish two situations.
For the first case, suppose deg(α j)= deg(α j+1) for some 1≤ j≤ r. The element α∗j xuα j =α∗j xuα ju∈ J

is nonzero, as follows: clearly each monomial remains with positive degree as deg(α∗j αiα j) = deg(αi)≥ 0.
Moreover, at least α j = α∗j α jα j appears in the expression for α∗j xuα j because if we had α j = α∗j αiα j
for some i 6= j, then deg(αi) = deg(α j), which implies α∗j αi = 0 and therefore α j = 0, a contradiction.
This shows that α∗j xuα j has at least one nonzero monomial summand, and because distinct paths of E are
linearly independent (see Corollary 1.5.15), then α∗j xuα j 6= 0. Now, this element has at most r summands
because α∗j α j+1α j = 0 and it satisfies the induction hypothesis, so that u ∈ Pc(E).

The second case is when deg(αi) < deg(αi+1) for every i = 1, . . . ,r. Then 0 6= α∗1 xu = k1u+∑
r+1
i=2 kiβi

with βiu = βi ∈ Path(E). Multiply again as follows:

y2 := uβ
∗
r+1uα

∗
1 xuβr+1u = k1u+

r+1

∑
i=2

kiuβ
∗
r+1uβiuβr+1u ∈ J.

A similar argument to the one used above shows that y2 is nonzero so that, in case some monomial summand
of y2 becomes zero, then y2 satisfies the induction hypothesis, therefore u ∈ Pc(E). If this is not the case,
since βr+1 has maximum degree among the βi, then

y2 = k1u+ k2γ1 + k3γ1γ2 + . . .+ kr+1γ1 · · ·γr,

where γi are closed paths based at u. We focus on γ1. Proceeding in a similar fashion as before, we can
conclude that γ1 cannot have exits, as otherwise there would exist a path δ with s(δ ) = u and δ ∗γ1 = 0,
which in turn would give 0 6= δ ∗y2δ = k1r(δ ) ∈ J, a contradiction. Thus γ1 is a closed path without exits,
so that r(γ) = u ∈ Pc(E), and finally x = xu ∈ I(Pc(E)).

Since this holds for every u ∈U we get x = ∑u∈U xu ∈ I(Pc(E)). ut

Prior to achieving our main result about I(Pc(E)), we need a general result about path algebras.
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Lemma 2.7.8. Let E be an arbitrary graph and K any field.
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(i) Let w ∈ E0, let µ ∈ Path(E) with r(µ) = w, and let x ∈ KE for which wx = x. If µx = 0 in KE, then
x = 0.

(ii) Let v∈ E0, let γ ∈ Path(E) with s(γ) = v, and let y∈KE for which yv = y. If yγ = 0 in KE, then y = 0.

Proof. (i) Write x = ∑
n
i=1 kiµi ∈ KE, where ki ∈ K×, and the µi are distinct. Since wx = x, we may assume

that s(µi) = w for all 1≤ i≤ n. In particular, each expression µµi is a path in E. Then from µx = 0 we get
∑

n
i=1 kiµµi = 0, and since all the paths in the set {µµi}n

i=1 are distinct, they are K-linearly independent in
KE (see Remark 1.2.4). Therefore ki = 0 for all 1≤ i≤ n, and so x = 0.

Statement (ii) can be established analogously. ut
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Proposition 2.7.9. Let E be an arbitrary graph and K any field. Let J be an ideal of LK(E) such that
J∩E0 = /0. Then J ⊆ I(Pc(E)).

Proof. We may assume that J 6= 0. Let 0 6= x ∈ J, and write x = ∑
n
i=1 xui for the finite set of vertices

{ui | 1 ≤ i ≤ n} for which 0 6= xui. As J is an ideal, 0 6= xui ∈ J, so that we can assume without loss of
generality that 0 6= x = xu for some u ∈ E0.

We will show, by induction on the degree in ghost edges (recall Definitions 2.2.9), that if xu ∈ J, with
u ∈ E0, then xu ∈ I(Pc(E)). If gdeg(xu) = 0, the result follows by Lemma 2.7.7. Suppose the result is true
for elements having degree in ghost edges strictly less than gdeg(xu), and show it for gdeg(xu).

Write x = ∑
r
i=1 βie∗i +β , with βi ∈ LK(E), β = βu ∈ KE and ei ∈ E1, with ei 6= e j for every i 6= j. Then

xuei = βi + βei ∈ J; since gdeg(xuei) < gdeg(xu), by the induction hypothesis βi + βei ∈ I(Pc(E)), for
every i ∈ {1, . . . ,r}.

Suppose first that u is a finite emitter. If u = ∑
r
i=1 eie∗i , then xu = ∑

r
i=1 βie∗i +∑

r
i=1 βeie∗i = ∑

r
i=1(βi +

βei)e∗i ∈ I(Pc(E)), and we have finished. If u = ∑
r
i=1 eie∗i + ∑

s
j=1 f j f ∗j (where f j ∈ E1), then xu f j =

β f j ∈ J ∩KE. By Lemma 2.7.7, β f j ∈ I(Pc(E)) for every j ∈ {1, . . . ,s}, hence xu = ∑
r
i=1(βi +βei)e∗i +

∑
s
j=1 β f j f ∗j ∈ I(Pc(E)).
Now, suppose that u is an infinite emitter. If β = 0 then for every j we have xue j = β j ∈ I(Pc(E)), by

the induction hypothesis, and so xu ∈ I(Pc(E)). Now we are going to show by contradiction that the case
β 6= 0 cannot happen, and thereby will complete the proof.

So suppose β 6= 0, and write β = ∑
s
i=1 kiβ

′
i , with ki ∈ K×, and β ′i ∈ Path(E) distinct paths such that

|β ′1| ≤ · · · ≤ |β ′s |. Note that, as u is an infinite emitter, u is not in I(Pc(E)). Since β ′i = β ′i u then β ′i is not
in I(Pc(E)) for any i. (Because Pc(E) contains no infinite emitters (by definition), then neither does Pc(E),
and so neither does I(Pc(E)).) Let f ∈ s−1(u) such that f 6= e j for every j. By Lemma 2.7.8(ii) we have
β f 6= 0; since β f = x f , by the induction hypothesis β f ∈ I(Pc(E)), therefore 0 6= x f = β f ∈ I(Pc(E)).

We shall see that r( f ) ∈ Pc(E). Consider the algebra LK(E)/I(Pc(E)) and denote by x the class of
an element x of LK(E) in this quotient. Note that 0 = β f = ∑

s
i=1 kiβ

′
i f , hence, by Theorem 2.4.15 we

have β ′i f = 0, i.e., β ′i f ∈ I(Pc(E)) for every i and so r( f ) = f ∗(β ′i )
∗
β ′i f ∈ I(Pc(E))∩ E0 = Pc(E) by

Corollary 2.4.16(i). Then f ∗β ′1β f = k1r( f )+∑
s
i=2 ki f ∗(β ′1)

∗
β ′i f . Note that the second summand must be

zero because otherwise for some j ∈ {2, · · · ,s} we would have β ′j = β ′1 f γ for some γ ∈ Path(E), which is
not possible because we know β ′j /∈ I(Pc(E)). Therefore 0 6= k1r( f ) ∈ J, a contradiction again. Thus β = 0,
which completes the proof of the result. ut

We finish the section by utilizing Lemma 2.7.8 to give a graph-theoretic description of when an ideal
I(H) is an essential ideal of LK(E).
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Proposition 2.7.10. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E. Then
I(H) is an essential (left / right / two-sided) ideal of LK(E) if and only if every vertex of E connects to a
vertex in H.

Proof. Since LK(E) is semiprime (Proposition 2.3.1), we may invoke [96, (14.1) Proposition] to conclude
that I(H) is essential as a left or right ideal if and only if it is essential as an ideal. Moreover, as I(H) is a
graded ideal, by [107, 2.3.5 Proposition] we have that essentiality and graded-essentiality (i.e., essentiality
with respect to graded ideals) of I(H) are equivalent. Hence, it suffices to show that I(H) is a graded-
essential ideal if and only if every vertex of E0 connects to a vertex in H.
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Suppose first that I(H) is a graded essential ideal of LK(E). Let v∈E0. If H∩T (v) = /0, then Proposition
2.5.25 would imply I(H)∩ I(T (v)) = 0, but this cannot happen as I(H) is a graded essential ideal. Hence
H ∩T (v) 6= /0. This implies that v connects to a vertex in H.

Conversely, suppose H ∩T (v) 6= /0 for each v ∈ E0. Let J be a nonzero graded ideal and pick a nonzero
homogeneous element x = uxv ∈ J, where u,v ∈ E0. By Corollary 2.2.12(ii), there exists µ ∈ Path(E)
such that 0 6= xµ ∈ KE. Denote r(µ) by w. By hypothesis w connects to a vertex in H, hence there exists
λ ∈ Path(E) such that w = s(λ ) and r(λ ) ∈ H. If xµλ = 0 then xµ ∈ uLK(E)w∩KE would satisfy λ ∈
Path(E)∩ ran(xµ) = /0, by Lemma 2.7.8, a contradiction. Hence 0 6= xµλ ∈ I(H)∩ J, which establishes
the result. ut

2.8 The Structure Theorem for Ideals, and the internal structure of ideals
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Now that we have in hand an explicit description of the lattice of graded ideals of a Leavitt path algebra
(the Structure Theorem for Graded Ideals, Theorem 2.5.8), we turn our attention to explicitly describing
the lattice of all ideals in a Leavitt path algebra. Although the structure of the field K played no role in the
description of the graded ideals, the field will indeed play a pivotal role in this more general setting. The
intuition which lies at the heart of this description is as follows. The prototypical example of a Leavitt path
algebra which contains non-graded ideals is LK(R1)∼=K[x,x−1]. The only graded ideals of LK(R1), namely,
{0} and LK(R1) itself, correspond to the two distinct hereditary saturated subsets of R1. On the other hand,
the non-graded ideals correspond to various polynomial expressions in the cycle c of R1, specifically, are in
bijective correspondence with polynomials of the form 1+k1x+ · · ·+knxn ∈K[x], for n > 0 and kn 6= 0. We
will show in the main result of this section (the Structure Theorem for Ideals, Theorem 2.8.10) that such
a bijection, one which associates hereditary saturated subsets of E0 (possibly also with breaking vertices
of such subsets) together with various cycles in E and polynomials in K[x] on the one hand, with ideals of
LK(E) on the other, may be established for arbitrary graphs E and fields K as well. To achieve this general
result we will rely heavily on our previously completed analysis of the graded ideal structure of LK(E),
together with the structure of the ideal I(Pc) investigated in Section 2.7. It is not coincidental in this context
that the loop in R1 is the only closed simple path based at the vertex of R1. Indeed, in general LK(E) will
contain non-graded ideals only when E fails to satisfy Condition (K).

We remind the reader that when we talk about a cycle based at a vertex (say, v), then we mean a specific
path c = e1 · · ·en in E (one for which s(c) = r(c) = v); on the other hand, when we speak about a cycle, we
mean a collection of paths based at the different vertices of the path c (see Definitions 1.2.2).

Notation 2.8.1. Let E be an arbitrary graph. We define

Cu(E) = {c | c is a cycle in E for which |CSP(v)|= 1 for every v ∈ c0}, and

Cne(E) = {c | c is a cycle in E for which c has no exits in E}.

Observe that Cne(E)⊆Cu(E) for any graph E, but not necessarily conversely: in the Toeplitz graph ET ,
the unique cycle has an exit, but there is exactly one closed simple path at the vertex of that cycle.
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Notation 2.8.2. Let E be an arbitrary graph. Let H ∈HE . Denote by CH the set

CH = {c | c is a cycle in E such that c0∩H = /0, and for which r(e) ∈ H for every exit e of c}.

We note that CH corresponds precisely to the set of cycles without exits in the quotient graph E/H.
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Lemma 2.8.3. Let E be an arbitrary graph, and H ∈HE . Then CH(E)⊆Cu(E).

Proof. Let c be a cycle in CH . We must show that c∈Cu(E), that is, |CSP(v)|= 1 for every v∈ c0. But this
holds because for every exit e of c the vertices in T (r(e)) are in H (because H is hereditary), and because
c0∩H = /0. ut
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Recall the preorder ≤ in E0: given v,w ∈ E0, v≤ w if and only if there is a path µ ∈ Path(E) such that
s(µ) = w and r(µ) = v.

Notation 2.8.4. Let E be an arbitrary graph. For u,v ∈ E0 we write u << v in case u ≤ v but v � u. For a
cycle c in E, we define:

c<< := {w ∈ E0 | w << v for every v ∈ c0}.

Roughly speaking, c<< is the tree of the set of vertices which are ranges of exits for the cycle c, but for
which there are no paths from such vertices which return back to the cycle c. For instance, for the Toeplitz
graph ET of Example 1.3.6, we have c<< = {v}.
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Proposition 2.8.5. Let E be an arbitrary graph and K any field. Let I be an ideal of E. Denote by H :=
I∩E0 and S := {v ∈ BH |vH ∈ I}. Let J denote I/I(H ∪SH); using Theorem 2.4.15, we view J as an ideal
of the Leavitt path algebra of the quotient graph LK(E/(H,S)). Then:

(i) J ⊆ I(Pc(E/(H,S))).
(ii) There exists a set C ⊆CH and a set P = {pc(x) ∈ K[x] | c ∈C} such that each pc(x) is a polynomial

of the form 1+ k1x+ . . .+ knxn, with n > 0 and kn 6= 0, in such a way that J = ⊕c∈CI(pc(c)). (Note
that C is empty precisely when I is graded, which happens precisely when J = {0}.)

(iii) The sets C and P are uniquely determined by I.

Proof. (i). Consider the ideal J = I/I(H ∪ SH) of LK(E/(H,S)). Recall that the vertices in E/(H,S) are
(E0 \H)∪{v′ | v ∈ BH \ S}, and observe that vertices v′ with v ∈ BH \ S correspond to the classes of the
elements vH through the isomorphism LK(E/(H,S)) ∼= LK(E)/I(H ∪SH). It is clear from this that J does
not contain vertices in the graph E/(H,S). Now (i) follows by Proposition 2.7.9.

(ii) and (iii). By Theorem 2.7.3 we have an isomorphism

I(Pc(E/(H,S)))∼=
⊕
i∈ϒ

MΛi(K[x,x−1]),

where ϒ is the set of cycles without exits in E/(H,S). As observed previously, we may identify this set with
CH . We recall now these two well-known facts: first, that the ideals of a direct sum of matrix rings are direct
sums of matrix rings over ideals of the base rings, and, second, that the Laurent polynomial ring K[x,x−1]
is a principal ideal domain. Applying these two facts, along with (i) and the displayed isomorphism, we get
that there exists a subset C of CH and a set of polynomials P as in the statement, uniquely determined by J,
for which

J ∼=
⊕
c∈C

MΛc(pc(x)K[x,x−1])∼=
⊕
c∈C

I(pc(c)),

as desired. ut

The main result of this section is Theorem 2.8.10, which shows that there is a lattice isomorphism
between ideals in the Leavitt path algebra LK(E) on the one hand, and triples consisting of elements in TE
(see Definition 2.5.3), certain subsets of cycles in E, and families of polynomials in K[x] on the other. We
now describe such triples.
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Definition 2.8.6. Let E be an arbitrary graph and K any field. For every pair (H,S) ∈TE , consider a subset
C of CH ; for every element c ∈C, take an arbitrary polynomial pc(x) = 1+ k1x+ · · ·+ knxn ∈ K[x], where
n > 0 and kn 6= 0, and write P = {pc(x) | c ∈C}. We define QE as the set of triples:

QE = {((H,S),C,P)}.

To show that there is a bijection between Lid(LK(E)) and QE we will assign to every triple ((H,S),C,P)
the ideal generated by H ∪SH ∪PC, where for P = {pc(x) | c ∈C}, PC denotes the subset {pc(c) | c ∈C}
of LK(E).
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Definition 2.8.7. Let E be an arbitrary graph and K any field. We define a relation ≤ on QE as follows.
For elements ((H1,S1),C1,P1) and ((H2,S2),C2,P2) of QE , we set Pi := {p(i)c | c ∈Ci} for i = 1,2. We then
define
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((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2) in case:

(H1,S1)≤ (H2,S2), C0
1 ⊆ H2∪C0

2 , and p(2)c | p(1)c in K[x] for every c ∈C1∩C2.
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Proposition 2.8.8. Let E be an arbitrary graph and K any field. Then the relation ≤ defined on QE in
Definition 2.8.7 is a partial order. Furthermore, using this relation, QE is a lattice, in which the supremum
and infimum operators are described as follows.

For the supremum ∨ of two elements, we have

((H1,S1),C1,P1) ∨ ((H2,S2),C2,P2)

= ((H1∪H2∪C0S1∪S2
,(S1∪S2)\H1∪H2∪C0S1∪S2

), C1∨C2, {g.c.d.(p(1)c , p(2)c )}c∈C1∨C2),

where
C = {c ∈C1∩C2 | g.c.d.(p(1)c , p(2)c ) = 1}, and

C1∨C2 =C1∪C2 \{c ∈C1∪C2 | c0 ⊆ H1∪H2∪C0S1∪S2}.

(We interpret p(i)c as 0 if c /∈Ci for i = 1 or 2.)

For the infimum ∧ of two elements, we have

((H1,S1),C1,P1) ∧ ((H2,S2),C2,P2)

= ((H1,S1)∧ (H2,S2), C1∧C2, {l.c.m.(p(1)c , p(2)c )}c∈C1∧C2),

where
C1∧C2 = (C1∩C2)∪CH2

1 ∪CH1
2 ,

with CH2
1 := {c ∈C1 | c0 ⊆ H2} and CH1

2 := {c ∈C2 | c0 ⊆ H1}.

(We interpret p(i)c as 1 if c /∈Ci for i = 1 or 2.)

Proof. It is immediate to see that ≤ is reflexive. To show the antisymmetric property we use the anti-
symmetric property of ≤ on TE (see Proposition 2.5.6) and the fact that for ((H,S),C,P) ∈QE we have
C0∩H = /0 (because C ⊆CH ).

To prove the transitivity, take three triples in QE such that ((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2) and
((H2,S2),C2,P2) ≤ ((H3,S3),C3,P3). Since (H1,S1) ≤ (H2,S2) and (H2,S2) ≤ (H3,S3), it follows that
(H1,S1) ≤ (H3,S3). In addition, C0

1 ⊆ H2 ∪C0
2 and C0

2 ⊆ H3 ∪C0
3 implies C0

1 ⊆ H2 ∪C0
2 ⊆ H3 ∪C0

3 . Fi-
nally, let c ∈C1∩C3. Note that c ∈C3 implies c0∩H3 = /0, hence c ∈C2 because otherwise c0 ⊆ H2∪C0

2

would imply c0 ⊆ H2 ⊆ H3, a contradiction. Therefore c ∈C1∩C2∩C3, and from the relations p(2)c | p(1)c

and p(3)c | p(2)c in K[x] we get p(3)c | p(1)c in K[x]. Hence ((H1,S1),C1,P1)≤ ((H3,S3),C3,P3).
Now we check that the formula given in the statement corresponds to the supremum. To this end, let

((H1,S1),C1,P1),((H2,S2),C2,P2) ∈QE . Denote the element

((H1∪H2∪C0S1∪S2
,(S1∪S2)\H1∪H2∪C0S1∪S2

), C1∨C2, {g.c.d.(p(1)c , p(2)c )}c∈C1∨C2)

by ((H̃, S̃),C̃, P̃). It is not difficult to show that ((Hi,Si),Ci,Pi)≤ ((H̃, S̃),C̃, P̃) for i = 1,2.
Now take ((H ′,S′),C′,P′) ∈QE such that ((Hi,Si),Ci,Pi)≤ ((H ′,S′),C′,P′) for i = 1,2. First we prove

(H̃, S̃) ≤ (H ′,S′). Note that H1 ∪H2 ⊆ H ′. Now we want to show that C0 ⊆ H ′. We start by showing that
C∩C′ = /0. Assume c ∈ C∩C′. Then c ∈ C1 ∩C2 and g.c.d.(p(1)c , p(2)c ) = 1 (recall the definition of C).
Since ((Hi,Si),Ci,Pi)≤ ((H ′,S′),C′,P′) and c ∈Ci∩C′ we have p′c|p

(i)
c , for i = 1,2, where P′ = {p′c | c ∈

C′}. Hence p′c = 1, contradicting the choice of p′c (which, by definition, is a non invertible polynomial in
K[x,x−1]). Using that C0 ⊆C0

1 ⊆ H ′∪C′0, and taking into account that C0∩C′0 = /0, we get C0 ⊆ H ′. This
shows H1∪H2∪C0 ⊆ H ′. Since S1∪S2 ⊆ H ′∪S′ the same argument as in Proposition 2.5.6 shows

H1∪H2∪C0S1∪S2 ⊆ H ′.



64 2 Two-sided ideals

It is immediate that S1∪S2 \H1∪H2∪C0S1∪S2 ⊆ H ′∪S′, and that (C1∨C2)
0 ⊆C0

1 ∪C0
2 ⊆ H ′∪ (C′)0.

Finally, note that for c ∈ (C1 ∨C2)∩C′ we have that p′c|p
(i)
c for i = 1,2. Hence p′c | g.c.d.(p(1)c , p(2)c ).

This concludes the proof of the formula for the supremum.
We leave to the reader the verification of the formula for the infimum. ut
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Lemma 2.8.9. Let E be an arbitrary graph and K any field. For any ideal I of LK(E), let H = I∩E0, and
SH = {v ∈ BH | vH ∈ I} (see Definitions 2.4.4). Then the largest graded ideal of LK(E) contained in I is
precisely I(H ∪SH).

Proof. Clearly I(H ∪ SH) ⊆ I. Now let J be any other graded ideal contained in I. Then by the Structure
Theorem for Graded Ideals, J = I(H ′∪SH ′) for H ′ = J∩E0 ⊆ I∩E0 = H, and SH ′ = {v∈ BH ′ | vH ′ ∈ J} ⊆
SH . ut

We now have all the tools in place to achieve the main result of this section, namely, a description of the
collection of all two-sided ideals of LK(E). Recall that Lid(LK(E)) denotes the lattice of two-sided ideals
of LK(E), under the usual order given by inclusion, and usual lattice operations given by + and ∩.

Theorem 2.8.10. (Structure Theorem for Ideals) Let E be an arbitrary graph and K any field. Then the{d
es
cr
ip
Id
Gr
al

}

following map is a lattice isomorphism:

ϕ : QE −→ Lid(LK(E))

((H,S),C,P) 7→ I(H ∪SH ∪PC)

with inverse given by
ϕ ′ : Lid(LK(E)) −→ QE

I 7→ ((H,S),C,P)

where H = I∩E0, S = {v ∈ BH | vH ∈ I}, and C and P are as described in Proposition 2.8.5.

Proof. We start by showing that ϕ ′ϕ is the identity on QE . Take ((H,S),C,P) ∈QE , and denote by I its
image under ϕ , that is, I = I(H ∪SH ∪PC). We show that I∩E0 = H.

Clearly, H ⊆ I ∩E0 ⊆ I. To see the reverse containment, consider I/I(H ∪ SH) = I(PC), where for any
subset X ⊆ LK(E), X denotes the image of X under the epimorphism Ψ : LK(E)→ LK(E/(H,S)) described
in Theorems 2.4.12 and 2.4.15. Observe that for all c ∈C we have c ∈Cne(E/(H,S)) and that I/I(H ∪SH)
is an ideal of LK(E)/I(H ∪SH) contained in I(Pc(E/(H,S))). Concretely, we have

I/I(H,S)∼=
⊕
c∈C

MΛc(pc(x)K[x,x−1]),

using the notation of Theorem 2.7.3. We want to see that there are no nonzero idempotents in I/I(H∪SH).
If e is an idempotent in I/I(H ∪SH), then the ideal J of LK(E)/I(H ∪SH) generated by e is an idempotent
ideal, contained in I/I(H ∪ SH). However, by the structure of the ideal generated by Pc(E/(H,S)) (see
Theorem 2.7.3), the only idempotent ideals of I(Pc(E/(H,S))) are the direct sums of some subset of the
ideals MΛi(K[x,x−1]) appearing in the decomposition of I(Pc(E/(H,S))) given by Theorem 2.7.3. Since
all the polynomials pc, for c ∈C, are not invertible in K[x,x−1], we conclude that J = 0 and so that e = 0.
Hence I∩E0 ⊆ H by Corollary 2.4.16(i), and we have shown our claim.

We denote the set {v∈BH | vH ∈ I} by S′. Then for v∈ S′ we have that v is an idempotent in I/I(H∪SH);
apply again that this ideal has no nonzero idempotents to get vH ∈ I(H ∪SH). Now, apply Corollary 2.4.16
(ii) to obtain that v ∈ S.

By the proof of Proposition 2.8.5 we see that the sets of cycles and of polynomials associated to the
ideal I = I(H∪SH)+ I(PC) are precisely the sets C and P. Therefore ϕ ′ϕ( ((H,S),C,P) ) = ((H,S),C,P).

Now we establish that the composition ϕϕ ′ is the identity on Lid(LK(E)). To this end, consider
I ∈ Lid(LK(E)). Recall from Proposition 2.8.5 that ϕ ′(I) = ((H,S),C,P), where H = I ∩E0, S = {v ∈
BH | vH ∈ I}, and C ⊆CH and P = {pc}c∈C satisfy
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I/I(H ∪SH) =
⊕
c∈C

I(pc(c)).

Write J = ϕ(ϕ ′(I)) = I(H ∪SH)+ I(PC) (where PC = {pc(c) | c ∈C}). Since I/I(H ∪SH) = J/I(H ∪SH),
we get I = J as desired. By Lemma 2.8.9, I(H ∪SH) is the largest graded ideal of LK(E) contained in I.

To finish the proof we check that both isomorphisms preserve the partial orders. First, assume that
((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2). Since (H1,S1) ≤ (H2,S2), we get that I(H1 ∪ SH1

1 ) ⊆ I(H2 ∪ SH2
2 ) by

Theorem 2.5.8.
Now we want to show I((P1)C1) ⊆ I(H2 ∪ SH2

2 ∪ (P2)C2). Take c ∈ C1. If c ∈ C2 then p(2)c |p(1)c and so
p(1)c (c) ∈ I((P2)C2). If c /∈C2, then since C0

1 ⊆ H2∪C0
2 we have c0 ⊆ H2 and so p1

c(c) ∈ I(H2). This shows
that ϕ preserves the order.

In what follows we will prove that the map ϕ ′ also preserves the order. To this end, let I and J be in
Lid(LK(E)) such that I ⊆ J. Again using Proposition 2.8.5 we have that ϕ ′(I) = ((H1,S1),C1,P1) and
ϕ ′(J) = ((H2,S2),C2,P2), where Hi,Si,Ci,Pi, for i = 1,2, are as defined before. Again using Lemma 2.8.9,
we have that the largest graded ideal I(H1∪SH1

1 ) of I is contained in the largest graded ideal I(H1∪SH2
2 ) of

J. Hence, by Theorem 2.5.8, (H1,S1)≤ (H2,S2).
To finish, we must prove C0

1 ⊆C0
2∪H2 and p(2)c |p(1)c for every c∈C1∩C2. First, we claim CH1 ⊆CH2∪H2.

Consider c ∈CH1 . By definition, c0 ∩H1 = /0 and r(e) ∈ H1 for every exit e of c. If c0 ∩H2 6= /0, then we
have finished. If c0∩H2 = /0, we get c ∈CH2 as r(e) ∈ H2. Note that I/I(H1∪SH1

1 ) =
⊕

c∈C1
I(P(1)

c (c)).
Denote by π the canonical homomorphism: π : LK(E)/I(H1∪SH1

1 )−→ LK(E)/I(H2∪SH2
2 ). Recall that

I(Pc(E/(H1,S1))) =
⊕

c∈CH1

MΛc(K[c,c−1])∼=
⊕

c∈CH1

MΛc(K[x,x−1])

by Theorem 2.7.3 (where c denotes the class of c in LK(E)/I(H1∪SH1
1 )), and thus

Ker(π)∩ I(Pc(E/(H1,S1))) =
⊕

{c∈CH1 | c0⊆H2}
MΛc(K[c,c−1]).

Let c̃ denote the class of c in LK(E)/I(H2∪SH2
2 ). Then, by the above,

π

(
I/I(H1∪SH1

1 )
)
=

⊕
{c∈C1 | c0∩H2= /0}

I(p(1)c (c̃))⊆ π

(
J/I(H1∪SH1

1 )
)
= J/I(H2∪SH2

2 ) =
⊕
c∈C2

I(p(2)c (c̃)).

Therefore we have {c∈C1 | c0∩H2 = /0} ⊆C2 and thus c0
1 ⊆H2∪C0

2 . Finally we observe that for every c∈
C1∩C2 we have p(2)c |p(1)c since I(p(1)c (c̃))⊆ I(p(2)c (c̃)). This implies ((H1,S1),C1,P1)≤ ((H2,S2),C2,P2),
and thereby establishes the result. ut

As done with the Structure Theorem for Graded Ideals, we now record the Structure Theorem for Ideals
in the case that E is row-finite.
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Proposition 2.8.11. Let E be a row-finite graph and K any field. Then every ideal I of LK(E) is of the form
I(H ∪PC), where H = I∩E0, and C and P are as described in Proposition 2.8.5.

Here is an example of how Theorem 2.8.10 allows us to explicitly describe all the ideals of an important
Leavitt path algebra.
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Example 2.8.12. Let K be any field, and let ET be the Toeplitz graph c •u
88

f // •v Easily we see that

HET = { /0,{v},{u,v}} and Cu(ET ) = {c}.

Clearly there are no sets of breaking vertices in ET . So by the Structure Theorem for Ideals, the complete
set of ideals of LK(ET ) is given by:
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I( /0) = {0}, I({v}), I({u,v}) = LK(ET ), and

{I({v}∪{p(c)}) | p(x) = 1+ k1x+ . . .+ knxn ∈ K[x], with kn 6= 0 and n≥ 1}.
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Remark 2.8.13. Let E be an arbitrary graph and K any field. Then there exist natural embeddings of lat-
tices:

HE −→ TE −→ QE

H 7→ (H, /0)

(H,S) 7→ ((H,S), /0, /0) .

We conclude the section by presenting just one result which follows directly from the explicit description
of the lattice of all two-sided ideals of LK(E) given in the Structure Theorem for Ideals 2.8.10. We will
present numerous additional such results in Section 2.9. First, we introduce a binary operation · on QE ,
under which QE becomes a commutative monoid.
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Definition 2.8.14. Let E be an arbitrary graph and K any field. We define a binary operation · on QE as
follows. For any q1 = ((H1,S1),C1,P1) and q2 = ((H2,S2),C2,P2) ∈QE , set

q1 ·q2 = ((H1,S1)∧ (H2,S2), C1∧C2, {p(1)c p(2)c }c∈C1∧C2),

where
C1∧C2 = (C1∩C2)∪CH2

1 ∪CH1
2 ,

with CH2
1 = {c ∈C1 | c0 ⊆ H2} and CH1

2 = {c ∈C2 | c0 ⊆ H1}.

(We interpret p(i)c as 1 if c /∈Ci for i = 1 or 2.)
Clearly this operation is associative and commutative, and the neutral element is ((E0, /0), /0, /0).
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Remark 2.8.15. We note that the set of idempotent elements of QE is precisely TE .

Using the explicit description of the lattice isomorphism ϕ given in the proof of the Structure Theorem
for Ideals, we get
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Proposition 2.8.16. Let ϕ : Lid(LK(E))→QE be the isomorphism of Theorem 2.8.10, and let I and J be
elements of Lid(LK(E)). Then ϕ(IJ) = ϕ(I) ·ϕ(J).

Using Proposition 2.8.16, the fact that the map ϕ therein is a lattice isomorphism, and the obvious
commutativity of the operation · on QE , we achieve the following result, which is perhaps-surprising, in
that LK(E) is in general far from commutative,
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Corollary 2.8.17. Let E be an arbitrary graph and K any field. If I and J are arbitrary ideals of LK(E),
then IJ = JI.

2.9 Additional consequences of the Structure Theorem for Ideals. The Simplicity
Theorem
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The Structure Theorem for Ideals (Theorem 2.8.10) allows us great insight into various ring-theoretic
properties of Leavitt path algebras. We record a number of those results in this section.

Consistent with our presentation of various consequences of the Structure Theorem for Graded Ideals,
we begin by presenting the (non-graded) versions of results analogous to Proposition 2.5.13 and Corollary
2.5.15, namely, results about the simplicity and two-sided chain conditions of Leavitt path algebras.

Recall that an algebra A is said to be simple if A2 6= 0 and the only two-sided ideals of A are {0} and A.
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Theorem 2.9.1. (The Simplicity Theorem) Let E be an arbitrary graph and K any field. Then the Leavitt
path algebra LK(E) is simple if and only if E satisfies the following conditions:

(1) HE = { /0,E0} (i.e., the only hereditary saturated subsets of E0 are /0 and E0), and
(2) E satisfies Condition (L) (i.e., every cycle in E has an exit).

Proof. The Structure Theorem for Ideals 2.8.10 provides a lattice isomorphism ϕ from the lattice QE to
the lattice of all two-sided ideals of LK(E). In particular, we see immediately that if H is a hereditary
saturated subset of E0 not equal to /0 or E0, then ϕ(((H, /0), /0, /0)) is a nontrivial ideal of LK(E). Similarly,
if c is a cycle in E without an exit, then c ∈C/0 (see Notation 2.8.3), and then ϕ((( /0, /0),{c},1+ x)) gives a
nontrivial ideal of LK(E). Thus the two conditions on E are necessary for the simplicity of LK(E).

Conversely, suppose E satisfies the two properties. First, as noted subsequent to Definition 2.4.4, we have
that both B /0 = /0 and BE0 = /0. Additionally, CE0 = /0, and the hypothesis that every cycle in E has an exit
yields that C/0 = /0 as well. Thus QE consists precisely of the two elements ((E0, /0), /0, /0) and (( /0, /0), /0, /0)}.
The simplicity of LK(E) now follows from the Structure Theorem for Ideals. ut
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Example 2.9.2. Consider once again the graphs Rn consisting of one vertex and n loops. Obviously Con-
dition (1) of the Simplicity Theorem is satisfied for Rn. When n ≥ 2, Condition (2) is satisfied for Rn as
well. Thus LK(Rn) is simple for n ≥ 2; i.e., the Leavitt algebra LK(1,n) is simple for n ≥ 2. We note that
Condition (2) is not satisfied for the graph R1, which implies that LK(R1) ∼= K[x,x−1] is not simple. (Of
course this last statement is well known.)

Remark 2.9.3. Note that graphs having infinite emitters may give rise to simple Leavitt path algebras: for
example, the graph RN having one vertex and countably many loops at that vertex satisfies the conditions
of the Simplicity Theorem 2.9.1.

Due to its importance in the general theory of Leavitt path algebras, due to the importance that these
attendant ideas and definitions will play later, and due to its historical significance, we offer now a second
proof of the Simplicity Theorem.
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Definitions 2.9.4. Let E be an arbitrary graph. By an infinite path in E we mean a sequence γ = e1,e2, . . .
for which r(ei) = s(ei+1) for all i ∈ N. We often denote such γ by e1e2 · · · . (We note that the terminology
infinite path is perhaps misleading, but standard: despite its name, an infinite path in E is not an element of
Path(E).) By a vertex in an infinite path γ = e1,e2, . . . we mean a vertex of the form s(ei) for some i ∈ N.

We denote by E∞ the set of all infinite paths of E, and by E≤∞ the set E∞ together with the set of finite
paths in E whose range vertex is a singular vertex.

We say that a vertex v ∈ E0 is cofinal if for every γ ∈ E≤∞ there is a vertex w in the path γ such that
v≥ w. We say that a graph E is cofinal if every vertex in E is cofinal.

If c is a closed path in E, then c gives rise to the infinite path ccc · · · of E. Thus if E is cofinal, then in
particular every vertex of E connects every cycle in E, and to every sink in E.
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Lemma 2.9.5. Let E be a cofinal graph, and let v ∈ E0 be a sink.

(i) The only sink of E is v.
(ii) For every w ∈ E0, v ∈ T (w).

(iii) E contains no infinite paths. In particular, E is acyclic.

Proof.

(i) is obvious.
(ii) Since T (v) = {v}, the result follows from the definition of T (v) by considering the path γ = v ∈ E≤∞.

(iii) If α ∈ E∞, then there exists w ∈ α0 such that v ≥ w, which is impossible. Thus, in particular, E
contains no closed paths.
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Lemma 2.9.6. A graph E is cofinal if and only if H = { /0,E0}.
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Proof. Suppose E is cofinal. Let H ∈H with /0 6= H 6= E0. We choose and fix v∈ E0 \H, and subsequently
build a path γ ∈ E≤∞ such that γ0∩H = /0, as follows. If v ∈ Sing(E), take γ = v, and we are done. If not,
then v ∈ Reg(E), so 0 < |s−1(v)| < ∞ and r(s−1(v)) * H (otherwise, H saturated implies v ∈ H). Hence,
there exists e1 ∈ s−1(v) such that r(e1) /∈ H. Let γ1 = e1 and repeat this process with r(e1). By recurrence
either we reach a singular vertex, or we have an infinite path γ whose vertices are not in H, as desired. Now
consider w ∈H (such exists as /0 6= H by hypothesis). By cofinality, there exists z ∈ γ0 such that w≥ z, and
by the hereditariness of H we get z ∈ H, contradicting the construction of γ .

Conversely, suppose that H = { /0,E0}. Take v ∈ E0 and γ ∈ E≤∞, with v 6∈ γ0 (the case v ∈ γ0 is
obvious). By hypothesis the hereditary saturated subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v) as

described in Lemma 2.0.7. Consider m, the minimum n such that Λn(v)∩ γ0 6= /0, and let w ∈Λm(v)∩ γ0. If
m > 0, then by minimality of m it must be that w is a regular vertex and that r(s−1(w)) ⊆ Λm−1(v). Since
w is a regular vertex and γ = (γn) ∈ E≤∞, there exists i ≥ 1 such that s(γi) = w and r(γi) = w′ ∈ γ0, the
latter meaning that w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m. Therefore m = 0 and
then w ∈Λ0(v) = T (v), as we needed. ut

The previous discussion allows us to re-establish the Simplicity Theorem without the need to invoke the
full power of the Structure Theorem for Ideals 2.8.10.
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Theorem 2.9.7. (The Simplicity Theorem, revisited) Let E be an arbitrary graph and K any field. Then
the Leavitt path algebra LK(E) is simple if and only if the graph E satisfies the following conditions:

(1) The graph E is cofinal, and
(2) E satisfies Condition (L).

Proof. We will use the characterizarion of cofinality given in Lemma 2.9.5. Suppose first that LK(E) is
simple. By Theorem 2.4.8, HE = { /0,E0}. On the other hand, if E does not satisfy Condition (L), then
there exists a cycle c in E which has no exits. This implies that I(Pc(E)) is a nonzero ideal of LK(E), and so
by the simplicity of LK(E), we must have I(Pc(E)) = LK(E). But, by Theorem 2.7.3, the algebra I(Pc(E))
is not simple. This is a contradiction and, therefore, E must satisfy Condition (L).

Now, suppose that the graph E satisfies Conditions (1) and (2) in the statement, and let I be a nonzero
ideal of LK(E). By Corollary 2.2.14, I ∩E0 6= /0. Since I ∩E0 ∈HE (by Lemma 2.4.3), the hypothesis in
the statement imply I∩E0 = E0 or, in other words, E0 ⊆ I. This immediately gives I = LK(E).

We now record the two-sided chain condition results for Leavitt path algebras. Since the verifications of
these results follow from the Structure Theorem for Ideals, using arguments similar to those presented in
Theorem 2.9.1 and Lemma 2.5.12, we omit the proofs. We note, however, that with the Structure Theorem
for Ideals in hand, such proofs are significantly shorter than those offered originally in [11, Theorems 3.6
and 3.9].

Proposition 2.9.8. Let E be an arbitrary graph and K any field.

(i) LK(E) is two-sided artinian if and only if E satisfies Condition (K), HE satisfies the descending chain
condition with respect to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

(ii) LK(E) is two-sided noetherian if and only if HE satisfies the ascending chain condition with respect
to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

We note that, by Proposition 2.5.13(ii), LK(E) is noetherian if and only if LK(E) is graded noetherian (as
the two graph-theoretic conditions on E are identical). The same cannot be said for the artinian condition:
for instance, K[x,x−1]∼= LK(R1) is graded artinian, but is well known to not be artinian. In addition, we note
that if E does not satisfy Condition (K), then there is some hereditary saturated subset H of E0 for which
the quotient graph E/H contains a cycle without an exit; this is how Condition (K) becomes incorporated
into the Structure Theorem for Ideals.

For the next consequence of the Structure Theorem for Ideals, we record the previously promised result
regarding a characterization of Condition (K) in terms of the graded ideals of LK(E).
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Proposition 2.9.9. Let E be an arbitrary graph and K any field. Then every ideal of LK(E) is graded if and
only if E satisfies Condition (K).
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Proof. If E satisfies Condition (K), then Cu(E) = /0 and so, by the Structure Theorem for Ideals 2.8.10,
every ideal of LK(E) is of the form I(H ∪SH), and hence is graded.

Conversely, suppose that E does not satisfy Condition (K). Then there exists a cycle c in Cu(E). Let H
denote the saturated closure of the tree of the ranges of the exits of c. Then H ∈HE , c0 ∩H = /0, and the
range of every exit of c belongs to H. Therefore c ∈CH and so, choosing for example p(x) = 1+ x ∈ K[x],
we have that ϕ(((H, /0),{c},{p(x)})) = I(H ∪{1+ c}) is a nongraded ideal of LK(E). ut
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Example 2.9.10. As one specific consequence of Proposition 2.9.9, we conclude that the list of graded
ideals of the Leavitt path algebra of the infinite clock graph CN, presented in Example 2.5.10, indeed
represents the list of all ideals of LK(CN).

Yet another immediate application of the Structure Theorem for Ideals is the following result, in which
we present (among other things) the converse of Corollary 2.5.23 regarding the structure of graded ideals
in LK(E).
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Corollary 2.9.11. Let E be an arbitrary graph and K any field. For an ideal I of the Leavitt path algebra
LK(E), the following are equivalent.

(1) I is a graded ideal.
(2) I is generated by idempotents.
(3) I = I2.
(4) I is K-algebra isomorphic to a Leavitt path K-algebra.

In particular, by Proposition 2.9.9, E satisfies Condition (K) if and only if every ideal of LK(E) is generated
by idempotents.

Proof. (1) =⇒ (2) follows by Theorem 2.4.8.
(2) =⇒ (3) is trivial.
(3) =⇒ (1) follows from the observation made in Remark 2.8.15.
(1) =⇒ (4) is Corollary 2.5.23.
(4) =⇒ (3) follows because any Leavitt path algebra has local units (Lemma 1.2.12). ut
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Corollary 2.9.12. Let E be an arbitrary graph and K any field. If J is an ideal of a graded ideal I of LK(E),
then J is an ideal of LK(E).

Proof. Let a ∈ LK(E) and y ∈ J ⊆ I. By Corollary 2.9.11(4) and Lemma 1.2.12(v) there exists x ∈ I such
that y = xy. Then ay = (ax)y ∈ IJ ⊆ J. ut

We finish Chapter 2 by presenting a result which serves as an appropriate bridge to Chapter 3, in that
this result relates an ideal structure property to a property of idempotents. Rings for which every nonzero
one-sided ideal contains a nonzero idempotent were studied in [109].
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Proposition 2.9.13. Let E be an arbitrary graph and K any field. The following conditions are equivalent:

(1) E satisfies Condition (L).
(2) Every nonzero two-sided ideal of LK(E) contains a vertex.
(3) Every nonzero one-sided ideal of LK(E) contains a nonzero idempotent.

Proof. (1) ⇒ (3). Let a be a nonzero element in a left ideal I of LK(E). Apply the Reduction Theorem
2.2.11 to find µ,ν ∈ Path(E), v ∈ E0 and k ∈ K× such that 0 6= µ∗aν = kv. Then k−1νµ∗a is nonzero,
because 0 6= v = v2 = k−2µ∗a(νµ∗a)ν , and it is an idempotent inside I, as (k−1νµ∗a)(k−1νµ∗a) =
k−1νvµ∗a = k−1νµ∗a. An analogous proof, or an appeal to Corollary 2.0.9, establishes the result for right
ideals as well.

(3)⇒ (1). If E does not satisfy Condition (L), then there exists a cycle without exits c in E. Denote by
I the (graded) ideal of LK(E) generated by the vertices of c. Lemma 2.7.1 implies that I is isomorphic to
MΛ (K[x,x−1]) for some set Λ . Since the ideals of I are ideals of LK(E) by Corollary 2.9.12, the hypothesis
implies that every nonzero ideal of MΛ (K[x,x−1]) contains a nonzero idempotent, which is not true. This
shows our claim.

An argument similar to the one given in the previous paragraph also establishes (2)⇒ (1). That (1)⇒
(2) is Corollary 2.2.14. ut





Chapter 3
Idempotents, and finitely generated projective modules
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ABSTRACT: The richness of the idempotent structure of Leavitt path algebras lies at the heart of the
subject; in this chapter we present a number of topics which fall under this umbrella. These include: the
purely infinite property (for both simple and non-simple algebras); the structure of the monoid of finitely
generated projective modules; the exchange property; von Neumann regularity; and primitive idempotents.

In this chapter we consider various topics related to the structure of the idempotents in LK(E). We start
with a discussion of the purely infinite simplicity of a Leavitt path algebra, a topic which has fueled much
of the investigative effort in the subject. In the subsequent section we analyze the structure of the monoid
V (LK(E)) of isomorphism classes of finitely generated projective modules over a Leavitt path algebra
LK(E). This will allow us to more fully describe Bergman’s construction (presented earlier in Section 1.4),
which was essential to the genesis of the subject. In Section 3.3 we remind the reader of the definition of
an exchange ring, and subsequently show that the exchange Leavitt path algebras are exactly those arising
from graphs which satisfy Condition (K). Von Neumann regularity is taken up in Section 3.4; in addition
to showing that the von Neumann regular Leavitt path algebras are precisely those arising from acyclic
graphs, we identify the set of vertices which generate the largest von Neumann regular ideal of LK(E).
We continue our discussion of the idempotents in LK(E) in Section 3.5 by identifying the collection of
primitive idempotents which are not minimal.

We consider in Section 3.6 the monoid-theoretic structure of V (LK(E)). While the monoid V (R) for
a general ring R necessarily satisfies certain properties (e.g., V (R) is conical), we will show that when
E is a row-finite graph and R = LK(E) then V (R) enjoys many additional properties over and above the
conical property, including refinement and separativity. In the subsequent Section 3.7 we consider the
extreme cycles in a graph, and show that the ideal of LK(E) generated by the vertices in such cycles may
be appropriately viewed as the “purely infinite socle” of LK(E). We conclude the chapter with Section 3.8,
in which we remind the reader of the general notion of a purely infinite (but not necessarily simple) ring,
and then identify those graphs E for which LK(E) is purely infinite.

We start by presenting an easily established but fundamental result regarding isomorphisms between
various left LK(E)-modules. This result expands on the idea presented in Lemma 2.6.10.
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Proposition 3.0.1. Let E be an arbitrary graph and K any field. Let µ ∈ Path(E) for which s(µ) = v and
r(µ) = w.

(i) There is a direct sum decomposition

LK(E)v = LK(E)µµ
∗⊕LK(E)(v−µµ

∗)

as left ideals of LK(E).
(ii) There is an isomorphism of left LK(E)-modules

LK(E)w∼= LK(E)µµ
∗.

Consequently, there is an isomorphism LK(E)v∼= LK(E)w⊕T for some left ideal T of LK(E).

71
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Proof. (i) Since µµ∗ is an idempotent which commutes with v, we have that v−µµ∗ is also an idempotent.
But µµ∗(v− µµ∗) = µµ∗− µµ∗ = 0 = (v− µµ∗)µµ∗, which gives easily that LK(E)v = LK(E)µµ∗⊕
LK(E)(v−µµ∗) as left LK(E)-modules. (We note that in general the second summand might be {0}.)

(ii) We define ϕ = ρµ∗ : LK(E)w→ LK(E)µµ∗ to be the right multiplication by µ∗ map, so (rw)φ =
rwµ∗ = rµ∗. The observation that µ∗µµ∗ = µ∗ shows that ϕ indeed maps into LK(E)µµ∗. Now define
ψ = ρµ : LK(E)µµ∗ → LK(E)w to be the right multiplication by µ map, so (rµµ∗)ψ = rµµ∗µ = rµ .
Using that µ∗µ = w and that µµ∗µ = µ shows that ϕ and ψ are inverses. The second part of the statement
now follows from (i). ut

3.1 Purely infinite simplicity, and the Dichotomy Principle.
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In Section 2.9 we identified the simple Leavitt path algebras. Intuitively speaking, such algebras can be
partitioned into two types: those which behave much like full matrix rings over K, and those which behave
much like the Leavitt algebras LK(1,n). The goal of this section is to make this dichotomy precise.

Definitions 3.1.1. (See e.g. [33, Definitions 1.2]) Let R be a ring. An idempotent e in R is said to be infinite{i
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if there exist orthogonal idempotents f ,g ∈ R such that e = f +g, g 6= 0, and Re ∼= R f as left R-modules.
Rephrased, the idempotent e is infinite in case Re is isomorphic to a proper direct summand of itself. In
such a situation we say Re is a directly infinite module.
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Remark 3.1.2. We note that if e is an infinite idempotent in a ring R, then the left R-module Re can satisfy
neither the ascending nor the descending chain condition on submodules. In particular, a Noetherian ring
contains no infinite idempotents.
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Example 3.1.3. In our context, the quintessential example of an infinite idempotent is provided in the
Leavitt algebra R = LK(R2) ∼= LK(1,2). We show that 1R is an infinite idempotent. If e, f are the loops
based at v in R2, then by (CK2) we have v = 1R = ee∗+ f f ∗. By Proposition 3.0.1(i) we get LK(R2) =
LK(R2)1R = LK(R2)ee∗⊕LK(R2)(v− ee∗) = LK(R2)ee∗⊕LK(R2) f f ∗ (where each of the two summands
is clearly nonzero), and by Proposition 3.0.1(ii) we have that LK(R2)1R ∼= LK(R2)ee∗. A similar conclusion
can be drawn in any of the Leavitt algebras LK(1,n). (Indeed, we will show in Example 3.2.7 that every
nonzero idempotent of LK(1,n) is infinite.)
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Remark 3.1.4. Suppose e is an infinite idempotent in a ring R, and suppose that g is an idempotent of
R such that Rg ∼= Re⊕Q for some left R-module Q. Then g is infinite as well. This is easy to see, as
by hypothesis, Re ∼= Re⊕P for some nonzero left R-module P, so that Rg ∼= Re⊕Q ∼= (Re⊕P)⊕Q ∼=
(Re⊕Q)⊕P∼= Rg⊕P.

There is a strong connection between infinite idempotents in LK(E) and cycles having exits in E.
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Lemma 3.1.5. Let E be an arbitrary graph and K any field. Suppose c is a cycle based at w, and suppose
e is an exit for c with s(e) = w. Then LK(E)w = P⊕Q, where P and Q are nonzero left ideals of LK(E),
and LK(E)w∼= P as left LK(E)-modules. In particular, w is an infinite idempotent of LK(E).

Proof. By Proposition 3.0.1(i), we get a decomposition LK(E)w = LK(E)cc∗⊕LK(E)(w− cc∗). But since
r(c) = w, we get by Proposition 3.0.1(ii) that LK(E)w∼= LK(E)cc∗. Since e is an exit for c we have c∗e = 0
(by (CK1)). This yields that w−cc∗ 6= 0, since, if otherwise w−cc∗ = 0, then multiplying on the right by e
would give e = 0 in LK(E), violating Corollary 1.5.13. Thus P = LK(E)cc∗ and Q = LK(E)(w− cc∗) give
the desired result. ut

We now identify those vertices of E which are infinite idempotents of LK(E).
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Proposition 3.1.6. Let E be an arbitrary graph and K any field. Let v∈ E0. Then v is an infinite idempotent
in LK(E) if and only if v connects to a cycle with exits in E.
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Proof. Suppose first that v connects to a cycle with exits. Specifically, suppose there exists a cycle c in E
with an exit e to which v connects. Let w denote s(e). Since v connects to c, there exists µ ∈ Path(E) with
s(µ) = v and r(µ) = w. By Proposition 3.0.1(i) we have LK(E)v ∼= LK(E)w⊕T for some left ideal T of
LK(E). But LK(E)w is infinite by Lemma 3.1.5, so that Remark 3.1.4 yields the result.

Conversely, assume that T (v) does not contain any cycle with exits. By Theorem 1.6.10, it suffices to
consider the case of a finite graph E. (Observe that if F is a finite complete subgraph of E containing a
cycle c which has no exits in E, then c is also a cycle without exits in the graph F(Reg(E)∩Reg(F)) built
in Definition 1.5.16, because the vertices in c are regular both in E and in F .)

Now, by Corollary 2.7.6, we have

I(v)∼= Mr1(K)⊕·· ·⊕Mrk(K)⊕Ms1(K[x,x−1])⊕·· ·⊕Ms`(K[x,x−1]),

and by Remark 3.1.2 this ring contains no infinite idempotents. ut

We now utilize a result which we will discuss in further detail in Section 3.8 below.
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Proposition 3.1.7. Let R be a (not necessarily unital) ring. Then the following conditions are equivalent:

(1) For each nonzero x ∈ R there exist elements s, t ∈ R such that sxt is an infinite idempotent.
(2) Every nonzero one-sided ideal of R contains an infinite idempotent.

Proof. (1)⇒ (2). Let a be a nonzero element of R. By (1) there are s, t ∈ R such that e := sat is an infinite
idempotent. Observe that we can assume that s = es and t = te. It then follows that a(ts) is an infinite
idempotent in aR, because (ats)R∼= (sat)R.

(2) ⇒ (1). Let x be a nonzero element in R. Then, for some t ∈ R we have that e := xt is an infinite
idempotent. Hence e = ext is an infinite idempotent. ut
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Definition 3.1.8. A simple ring R which satisfies the equivalent conditions of Proposition 3.1.7 is called a
purely infinite simple ring.
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Remark 3.1.9. It is of historical importance to note that the proof given by Leavitt of the simplicity of
LK(1,n) for each n ≥ 2 [101, Theorem 2] in fact demonstrates that LK(1,n) is purely infinite simple. The
fact that 1LK(1,n) is an infinite idempotent was observed in Example 3.1.3.

We now have all the tools necessary to characterize the purely infinite simple Leavitt path algebras in
terms of properties of the associated graph.
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Theorem 3.1.10. (The Purely Infinite Simplicity Theorem) Let E be an arbitrary graph and K any field.
Then the Leavitt path algebra LK(E) is purely infinite simple if and only if E satisfies the following condi-
tions:

(i) HE = { /0,E0},
(ii) E satisfies Condition (L), and

(iii) every vertex in E0 connects to a cycle.

Equivalently, (iii) may be replaced by:
(iii’) E contains at least one cycle.

Proof. Suppose first that conditions (i), (ii) and (iii) are satisfied. By the Simplicity Theorem 2.9.1 we
have that LK(E) is a simple ring. Note that (ii) and (iii) together give that every vertex connects to a cycle
with exits. So by Proposition 3.1.6 we get that all the vertices of E are infinite idempotents in LK(E).
Now let 0 6= α ∈ LK(E). Since E satisfies Condition (L), by the Reduction Theorem 2.2.11 there exist
µ,κ ∈ Path(E) and k ∈ K× with k−1µακ = v for some vertex v. Since v is an infinite idempotent by the
previous paragraph, we see from Proposition 3.1.7(i) that LK(E) is purely infinite.

Conversely, suppose that LK(E) is purely infinite simple. Again invoking the Simplicity Theorem 2.9.1,
the graph E satisfies Conditions (i) and (ii) in the statement. Now we see that Condition (iii) holds as well.
By Proposition 3.1.6, it suffices to show that every vertex v of E is an infinite idempotent in LK(E). By
hypothesis (using Proposition 3.1.7(ii)), the nonzero left ideal LK(E)v contains an infinite idempotent y;



74 3 Idempotents, and finitely generated projective modules

write y = rv for some r ∈ LK(E). As y is infinite, necessarily y 6= 0. Then, since rv · rv = rv, it is easy
to show that x = vrv is an idempotent as well; moreover, x 6= 0, as otherwise x = 0 would give rx = 0,
which would give rvrv = rv = 0, contrary to the choice of y = rv. Thus x is a nonzero idempotent in
LK(E)v which commutes with v, and so LK(E)v = LK(E)x⊕ LK(E)(v− x). But LK(E)vrv = LK(E)rv;
the inclusion ⊆ is clear, while ⊇ follows from rv = rvrv. Rephrased, LK(E)x = LK(E)y. Thus LK(E)v =
LK(E)y⊕LK(E)(v− x). As y is infinite, we get that v must be infinite as well, using Remark 3.1.4.

We finish by showing that Conditions (iii) and (iii’) are equivalent in the presence of Conditions (i) and
(ii). By Theorem 2.9.7, condition (i) may be replaced by the condition that E is cofinal. In particular, every
vertex of E must connect to every cycle of E (as each cycle gives rise to an infinite path in E). So the
existence of at least one cycle suffices to give (iii), and conversely. ut

With both the Simplicity Theorem 2.9.7 and Purely Infinite Simplicity Theorem 3.1.10 now established,
Proposition 2.6.20 immediately yields the following.
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Theorem 3.1.11. (The Dichotomy Principle for simple Leavitt path algebras) Let E be an arbitrary
graph and K any field. If LK(E) is simple, then either LK(E) is locally matricial or LK(E) is purely infinite
simple.
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Example 3.1.12. Any algebra of the form MΛ (K) (for any set Λ ) is an example of a locally matricial
simple Leavitt path algebra (see Corollary 2.6.6). Additional such examples exist as well, for instance, let
E denote the “doubly infinite line graph”

•
��
?? •

��
?? •

��
?? • · · · · · ·

The corresponding Leavitt path algebra LK(E) is simple, but is not isomorphic to MΛ (K) for any set Λ , as
Soc(LK(E)) = {0} by Theorem 2.6.14.
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Remark 3.1.13. We note that as a result of Condition (3) in Theorem 3.1.10, if E is a graph for which
LK(E) is purely infinite simple, then necessarily E contains no sinks.

Indeed, the cofinality condition yields a version of the Dichotomy Principle with respect to graded
simplicity.

Proposition 3.1.14. (The Trichotomy Principle for graded simple Leavitt path algebras) Let E be an{t
ri
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arbitrary graph and K any field. If LK(E) is graded simple, then exactly one of the following occurs:

(i) LK(E) is locally matricial, or
(ii) LK(E)∼= MΛ (K[x,x−1]) for some set Λ , or

(iii) LK(E) is purely infinite simple.

Proof. By Corollary 2.5.15 and Lemma 2.9.6, the graded simplicity of LK(E) is equivalent to the cofinality
of E. The three possibilities given in the statement correspond precisely to whether E contains no cycles;
resp., contains exactly one cycle; resp., contains two or more cycles. If E contains no cycles then (i) follows
by Proposition 2.6.20. If E contains at least two cycles then by cofinality each cycle in E must connect to
each of the other cycles in E. Consequently, each cycle in E has an exit, and (iii) follows by the Purely
Infinite Simplicity Theorem 3.1.10.

Now suppose that E contains exactly one cycle c. Then c has no exits (otherwise, if e were an exit for
c then by cofinality r(e) would connect to c, and would thus produce a second cycle in E). So Pc(E) is
nonempty, which yields that I(Pc(E)) is a nonzero (necessarily graded) ideal of LK(E). But then graded
simplicity gives that LK(E) = I(Pc(E)), from which Theorem 2.7.3 yields the desired result. ut

3.2 Finitely generated projective modules: the V -monoid
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The goal of this section is to establish Theorem 1.4.3, the fundamental result which was presented (without
proof) in the first chapter. This result provided one of the main springboards from which the entire subject
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of Leavitt path algebras was launched. We restate the result below as Theorem 3.2.6. We recall now the
definitions of its two main ingredients.

{V
mo
no
id
de
f}

Definition 3.2.1. Let R be a unital ring. We denote by V (R) the set of isomorphism classes (denoted using
[ ]) of finitely generated projective left R-modules. We endow V (R) with the structure of a commutative
monoid by defining

[P]+ [Q] := [P⊕Q]

for [P], [Q] ∈ V (R).
Suppose more generally that R is a not-necessarily-unital ring. We consider any unital ring S containing

R as a two-sided ideal, and denote by FP(R,S) the class of finitely generated projective left S-modules
P for which P = RP. In this situation, V (R) is defined as the monoid of isomorphism classes of objects
in FP(R,S). This definition of V (R) does not depend on the particular unital ring S in which R sits as a
two-sided ideal, as can be seen from the following alternative description: V (R) is the set of equivalence
classes of idempotents in MN(R), where e ∼ f in MN(R) if and only if there are x,y ∈MN(R) such that
e = xy and f = yx. (See [105, page 296].)

For an idempotent e ∈ R we will sometimes denote the element [Re] of V (R) simply by [e].

We note that if R is a ring with local units, then the well-studied Grothendieck group K0(R) of R is
the universal group corresponding to the monoid V (R), see [105, Proposition 0.1]. We will study the
Grothendieck group of Leavitt path algebras in great depth throughout Chapter 6.

For any graph E one can associate a monoid ME ; this monoid will play a central role in the theory of
Leavitt path algebras. We now present the definition of the monoid ME associated to a row-finite graph; we
will extend this definition to arbitrary graphs later in this section.
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Definition 3.2.2. Let E be a row-finite graph. We define ME to be the free abelian monoid (written addi-
tively), having generating set {av | v ∈ E0}, and with relations given by setting

av = ∑
{e∈E1|s(e)=v}

ar(e) for every v ∈ Reg(E).

For notational clarity, we often denote the zero element of ME by z.
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Examples 3.2.3 Some examples of the construction of the monoid ME will be helpful.

(i) As noted in Section 1.4, if Rn is the rose with n petals graph (n≥ 2), then

MRn = {z,av,2av, . . . ,(n−1)av}, with relation nav = av.

Although this observation is somewhat counterintuitive at first glance, we see that the subset MRn \{z}
of MRn is not only closed under + (and thereby forms a subsemigroup of MRn ), MRn \{z} is in fact a
group, isomorphic to Z/(n−1)Z, with identity element (n−1)av.

(ii) For the graph R1 having one vertex v and one loop, we see that MR1 is the monoid {z,av,2av, . . .} ∼=
Z+.

(iii) For the straight line graph An (n ≥ 1), MAn is generated by the n elements av1 ,av2 , . . . ,avn , with
relations avi = avi+1 for 1≤ i≤ n−1. Thus MAn = {z,avn ,2avn , . . .} ∼= Z+.

(iv) For the Toeplitz graph ET of Example 1.3.6, MET is the free abelian monoid generated by {au,av},
modulo the single relation au = au +av.
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Definition 3.2.4. The category RG of row-finite graphs is the full subcategory of the category G (given
in Definition 1.6.2) whose objects are the pairs (E,Reg(E)), where E is a row-finite graph. We identify
the objects of RG with the row-finite graphs. Note that the morphisms between two objects E and F of
RG are precisely the complete homomorphisms ψ : E→ F , that is, the graph homomorphisms ψ : E→ F
such that ψ0 and ψ1 are injective and such that, for each v ∈ Reg(E), the map ψ1 induces a bijection
from s−1

E (v) onto s−1
F (ψ0(v)). The subcategory RG of G is closed under direct limits, and the assignment

E 7→ LK(E) (= CReg(E)
K (E)) extends to a continuous functor from RG to the category of K-algebras (cf.

Proposition 1.6.4).
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Lemma 3.2.5. The assignment E 7→ME can be extended to a continuous functor from the category RG of
row-finite graphs and complete graph homomorphisms to the category of abelian monoids. Moreover, this
assignment commutes with direct limits. It follows that every graph monoid ME arising from a row-finite
graph E is the direct limit of graph monoids corresponding to finite graphs.

Proof. Every complete graph homomorphism f : E→ F induces a natural monoid homomorphism

M( f ) : ME →MF ,

and so we get a functor M from the category RG to the category of abelian monoids. The fact that M
commutes with direct limits is established in the same way as in Proposition 1.6.4. ut

We recall that a unital ring R is called left hereditary in case every left ideal of R is projective. We are
ready to prove Theorem 1.4.3, slightly restated and expanded here.
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Theorem 3.2.6. Let E be a row-finite graph and K any field. Then there is a natural monoid isomorphism
V (LK(E))∼= ME . Moreover, if E is finite, then LK(E) is hereditary.

Proof. Because of the defining relations used to build ME , for each row-finite graph E there is a unique
monoid homomorphism γE : ME→ V (LK(E)) such that γE(av) = [LK(E)v]. Clearly these homomorphisms
induce a natural transformation from the functor M to the functor V ◦L; that is, if f : E→ F is a complete
graph homomorphism, then the following diagram commutes:

ME
γE−−−−→ V (LK(E))

M( f )
y yV (LK( f ))

MF
γF−−−−→ V (LK(F))

We need to show that γE is a monoid isomorphism for every row-finite graph E. By Lemma 5.3.3 and
Corollary 1.6.16, we see that it is enough to show that γE is an isomorphism for any finite graph E.

So let E be a finite graph, and let {v1, . . . ,vm}= Reg(E) (i.e., the non-sinks of E). We start by defining
the algebra

A0 = ∏
v∈E0

K.

In A0 we clearly have a family {pv : v ∈ E0} of orthogonal idempotents such that ∑v∈E0 pv = 1. Now we
consider the two finitely generated projective left A0-modules P = A0 pv1 and Q = ⊕{e∈E1|s(e)=v1}A0 pr(e).
By a beautiful (and delicate) construction of Bergman (see [51, page 38]), there exists an algebra A1 :=
A0〈i, i−1 : P∼= Q〉 which admits a universal isomorphism i : P := A1⊗A0 P→Q := A1⊗A0 Q. By examining
the construction, we see that this algebra is precisely the algebra LK(X1), where X1 is the graph having X0

1 =
E0, and where v1 emits the same edges as it does in E, but all other vertices do not emit any edges. More
explicitly, the row (xe : s(e) = v1) implements an isomomorphism P=A1 pv1→Q=⊕{e∈E1|s(e)=v1}A1 pr(e),
with inverse given by the column (ye : s(e) = v1)

T , which is clearly universal. By [51, Theorem 5.2], the
monoid V (A1) is obtained from V (A0) by adjoining the relation [P] = [Q]. Because in our situation we
have that V (A0) is the free abelian monoid on generators {av | v∈ E0}, where av = [pv], we get that V (A1)
is given by generators {av | v ∈ E0} and a single relation

av1 = ∑
{e∈E1|s(e)=v1}

ar(e).

Now we proceed inductively. For k ≥ 1, let Ak be the Leavitt path algebra Ak = LK(Xk), where Xk is
the graph with the same vertices as E, but where only the first k vertices v1, . . . ,vk emit edges, and these
vertices emit the same edges as they do in E. We assume by induction that V (Ak) is the abelian monoid
given by generators {av | v ∈ E0} and relations

avi = ∑
{e∈E1|s(e)=vi}

ar(e),
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for i = 1, . . . ,k. Let Xk+1 be the analogous graph, corresponding to vertices v1, . . . ,vk,vk+1. Then we have
Ak+1 = Ak〈i, i−1 : P ∼= Q〉 for P = Ak pvk+1 and Q = ⊕{e∈E1|s(e)=vk+1}Ak pr(e), and so we can again apply
[51, Theorem 5.2] to deduce that V (Ak+1) is the monoid with the same generators as before, and with
relations corresponding to those given in the displayed equations. This establishes the desired isomorphism
of monoids.

It follows from a related result of Bergman ([51, Theorem 6.2]) that the global dimension of LK(E) is at
most 1, i.e., that LK(E) is hereditary. ut
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Example 3.2.7. By Theorem 3.2.6 and Examples 3.2.3(i), we see that, for n≥ 2,

V (LK(Rn))∼= {z,av,2av, . . . ,(n−1)av}, with relation nav = av.

We note that this conclusion regarding the explicit description of the V -monoid of the Leavitt algebras
LK(1,n) ∼= LK(Rn) is quite non-trivial; we do not know of a “direct” or “first principles” proof of this
statement.

Further, this property implies that every nonzero finitely generated projective module over LK(1,n) is
necessarily infinite, as the regular module LK(1,n) itself is infinite.

Of course we may also apply Theorem 3.2.6 to the graphs R1 and An to get the well-known facts that
the V -monoid of each of the algebras LK(R1)∼= K[x,x−1] and LK(An)∼= Mn(K) is isomorphic to Z+.
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Example 3.2.8. Let E be the graph

u

��
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>>

;; v XXoo

ll

Then ME is the monoid generated by {au,av,aw}, modulo the relations au = av; av = au + av + aw; and
aw = au + av. By some tedious computations, it is not hard to show that ME = {z,au,2au,3au}. (We will
give a streamlined approach to the computation of ME in Section 6.1.) We note that, as was the case with
the MRn examples (n≥ 2), this monoid ME has the property that ME \{z} is a group (isomorphic to Z/3Z).
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Remark 3.2.9. Of all the specific examples of graphs presented in this section, the Rn graphs of Examples
3.2.3(i), and the graph E of Example 3.2.8, are precisely the graphs which have the property that the corre-
sponding Leavitt path algebra is purely infinite simple (by Theorem 3.1.10). That these are also precisely
the graphs for which ME \{z} is a group is not coincidental, as we will show in Proposition 6.1.12 below.

We now describe the monoid ME corresponding to an arbitrary graph E. Indeed, we do more than this:
we describe the monoid corresponding to any object (E,X) in the category G investigated in Chapter 1.
As the reader can guess, this assignment will be extended to a continuous functor from G to the category
of abelian monoids. (A complete treatment in the more general framework of separated graphs appears in
[31].)

Recall the category G presented in Definition 1.6.2, whose objects are the pairs (E,X), where E is a
directed graph and X is a subset of Reg(E).
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Definition 3.2.10. Let (E,X) be an object of the category G . We define the graph monoid M(E,X) as the
abelian monoid given by the set of generators

E0t{q′Z | Z ⊆ s−1(v), v ∈ E0, 0 < |Z|< ∞},

together with the following relations:

(1) v = r(Z) + q′Z for v ∈ E0, Z ⊆ s−1(v), and 0 < |Z| < ∞, where for a finite subset Y of E1 we set
r(Y ) := ∑e∈Y r(e),

(2) q′Z1
= r(Z2 \Z1)+q′Z2

for finite nonempty subsets Z1 and Z2 of s−1(v), v ∈ E0, with Z1 $ Z2, and
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(3) q′Z = 0 for Z = s−1(v) when v ∈ X .

Of course the elements q′Z are intended to represent the equivalence classes of the idempotents v−
∑e∈Z ee∗ in CX

K (E), for Z a finite nonempty subset of s−1(v), v ∈ E0.
Clearly we see that M(E,Reg(E)) = ME when E is a row-finite graph, so these monoids M(E,X) gen-

eralize the monoids ME defined above for row-finite graphs.
In order to simplify notation, we will denote elements in the monoid M(E,X) corresponding to vertices

v in E simply by the same symbol v. Of course these correspond to the elements denoted by av in the
monoid ME = M(E,Reg(E)). Due to the various decorations of the generators of M(E,X), we think this
simplification will be helpful for the reader.

There is some redundancy among these generators and relations. In particular, we could omit the gen-
erators q′Z for nonempty proper subsets Z of s−1(v) for v ∈ Reg(E), since relation (2) gives q′Z in terms of
q′s−1(v), and relation (1) for Z follows from the corresponding relation for s−1(v) in light of (2). In general,
(1) may be viewed as a form of (2) with Z1 = /0, except that the notation q′/0 would not be well-defined.

Taking into account these comments, an alternative definition of the monoid M(E,X) is as follows: the
monoid M(E,X) is the abelian monoid given by the set of generators

E0t{qv | v ∈ Reg(E)\X}t{q′Z | Z ⊆ s−1(v), v ∈ Inf(E), 0 < |Z|< ∞}

and the following relations:

(1′) v = r(Z)+q′Z for v ∈ Inf(E), Z ⊆ s−1(v), and 0 < |Z|< ∞,
(2′) q′Z1

= r(Z2 \Z1)+q′Z2
for finite nonempty subsets Z1 and Z2 of s−1(v), v ∈ Inf(E), with Z1 $ Z2,

(3′) v = r(s−1(v)) for each v ∈ X , and
(4′) v = r(s−1(v))+qv for each v ∈ Reg(E)\X .

Of course the elements qv for v ∈ Reg(E) \ X are intended to represent the equivalence classes of the
idempotents v−∑e∈s−1(v) ee∗ in CX

K (E), and correspond to the elements qs−1(v) in the above notation.
Although this second definition might seem more intuitive, the reason to work instead with the first

definition becomes apparent when we look for the natural definition of the morphism associated to a map
in G . Consider a morphism φ : (F,Y )→ (E,X) in G . There is a unique monoid homomorphism M(φ) :
M(F,Y )→ M(E,X) sending v 7→ φ 0(v) for v ∈ F0, and sending q′Z 7→ q′

φ1(Z) for nonempty finite sets

Z ⊆ s−1(v), v ∈ E0. The latter assignments are well-defined because if Z is a nonempty finite subset of
s−1(v) for some v ∈ E0, then φ 1(Z) is a nonempty finite subset of s−1(φ 0(v)). Moreover, the conditions
(2) and (3) in Definition 1.6.2 make clear that relation (3) above is preserved by M(φ). The assignments
(E,X) 7→ M(E,X) and φ 7→ M(φ) define a functor M from G to the category of abelian monoids. It is
easily checked (just as for the functor CX

K in Proposition 1.6.4) that M is continuous.

We denote by Mon the category of abelian monoids.
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Theorem 3.2.11. Let E be an arbitrary graph and K any field. Let G be the category presented in Definition
1.6.2. For each object (E,X) of G , define

Γ (E,X) : M(E,X)→ V (CX
K (E))

to be the monoid homomorphism sending v 7→ [v] for v ∈ E0, and q′Z 7→ [v−∑e∈Z ee∗] for each finite
nonempty subset Z ⊆ s−1(v). Then Γ : M→ V ◦CK is an isomorphism of functors G →Mon.

Proof. It is easily seen that the maps Γ (E,X) are well-defined monoid homomorphisms, and that Γ defines
a natural transformation from M to V ◦CK .

We have observed that M is continuous, as is V ◦CK (by taking into account that V is continuous, and
invoking Proposition 1.6.4). Thus, by Theorem 1.6.10, we see that it is sufficient to show that Γ (E,X) is
an isomorphism in the case where E is a finite graph.

We use induction on |Reg(E)| (i.e., the number of non-sinks in E) to establish the result for finite objects
(E,X) in G . The result is trivial if |Reg(E)|= 0 (i.e., if there are no edges in E). Assume that Γ (F,Y ) is an
isomorphism for all finite objects (F,Y ) of G for which |Reg(F)| ≤ n−1 for some n≥ 1, and let (E,X) be
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a finite object in G such that |Reg(E)|= n. Select v ∈ E0 such that s−1(v) 6= /0. We can apply induction to
the object (F,Y ) obtained from (E,X) by deleting all the edges in s−1(v), and leaving intact the structure
corresponding to the remaining vertices (keeping F0 = E0).

Assume first that v ∈ X . Then M(E,X) is obtained from M(F,Y ) by factoring out the relation v =
r(s−1(v)). On the other hand, the algebra CX

K (E) is the Bergman algebra obtained from CY
K(F) by ad-

joining a universal isomorphism between the pair of finitely generated projective modules CY
K(F)v and⊕

e∈s−1(v)C
Y
K(F)r(e).

Accordingly, it follows from [51, Theorem 5.2] that V (CX
K (E)) is the quotient of V (CY

K(F)) modulo
the relation [v] = [r(s−1(v))]. Since Γ (F,Y ) : M(F,Y )→ V (CY

K(F)) is an isomorphism by the induction
hypothesis, we obtain that Γ (E,X) is an isomorphism in this case. (The proof in this case is indeed similar
to the proof of Theorem 3.2.6.)

Assume now that v /∈ X . In this case, M(E,X) is obtained from M(F,Y ) by adjoining a new generator
qv and factoring out the relation v = r(s−1(v))+ qv. On the K-algebra side, we shall make use of another
of Bergman’s constructions, namely “the creation of idempotents”. Write s−1(v) = {e1, . . . ,em}. Let R be
the algebra obtained from CY

K(F) by adjoining m+1 pairwise orthogonal idempotents g1, . . . ,gm,q′v with

v = g1 + · · ·+gm +q′v.

It follows from [51, Theorem 5.1] that V (R) is the monoid obtained from V (CY
K(F)) by adjoining m+ 1

new generators z1, . . . ,zm,q′′v , and factoring out the relation [v] = ∑
m
j=1 z j +q′′v .

It is then clear that CX
K (E) is isomorphic to the Bergman algebra obtained from R by consecutively

adjoining universal isomorphisms between the left modules generated by the idempotents r(ei) and gi, for
i= 1, . . . ,m. It follows that V (CX

K (E)) is the monoid obtained from V (CY
K(F)) by adjoining a new generator

q′′v and factoring out the relation [v] = [r(s−1(v))] + q′′v . Therefore, applying the induction hypothesis to
(F,Y ), we again conclude that Γ (E,X) is an isomorphism. ut

We can now obtain the description of V (LK(E)) for an arbitrary graph E. To match the notation utilized
in the row-finite case, we set ME := M(E,Reg(E)). From Definition 3.2.10 we see that ME is the abelian
monoid given by the set of generators

E0t{q′Z | Z ⊆ s−1(v), v ∈ Inf(E), 0 < |Z|< ∞},

and the following relations:

(1) v = r(Z)+q′Z for v ∈ Inf(E), Z ⊆ s−1(v), and 0 < |Z|< ∞,
(2) q′Z1

= r(Z2 \Z1)+q′Z2
for finite nonempty subsets Z1 and Z2 of s−1(v), v ∈ Inf(E), with Z1 $ Z2, and

(3) v = r(s−1(v)) for each v ∈ Reg(E).
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Corollary 3.2.12. Let E be an arbitrary graph and K any field. Then V (LK(E))∼= ME .

3.3 The exchange property
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Our next excursion into the idempotent structure of Leavitt path algebras brings us to the notion of an ex-
change ring. The exchange property for modules was introduced by Crawley and Jónsson in [62]. Roughly
speaking, it is the suitable condition which yields a version of the Krull Schmidt Theorem even in situations
where the modules do not decompose as direct sums of indecomposables. Following [140], the (unital) ring
R is an exchange ring if RR has the property that for every left R-module M and any two decompositions of
M as M = M′⊕N and M =

⊕n
i=1 Mi, for which M′ ∼= RR, then there exist submodules M′i ⊆Mi such that

M = M′⊕ (
⊕n

i=1 M′i) .
A multiplicative characterization of unital exchange rings was obtained independently by Goodearl [80]

and by Nicholson [110]. Concretely, R is an exchange ring if and only if for every element a ∈ R there
exists an idempotent e ∈ R such that e ∈ Ra and 1− e ∈ R(1− a). The appropriate generalization of the
notion of exchange ring to not-necessarily unital rings was provided in [19]: R is exchange in case there
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is a unital ring S containing R as an ideal, for which, for every x ∈ R, there exists e = e2 ∈ R for which
e− x ∈ S(x− x2).

Many classes of rings are exchange rings. In that regard, for our purposes the next three results are key.
Because the exchange property in a ring can be formulated as the existence of a solution to a specific type
of equation in the ring, and because it is easy to show that any finite dimensional matrix algebra Mn(K) is
an exchange ring, we get the following.
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Proposition 3.3.1. The direct limit of exchange rings is an exchange ring. In particular, let K be a field.
Then any locally matricial K-algebra is an exchange ring. Specifically, MΛ (K) is an exchange ring for any
set Λ .

In the current context, the most important class of exchange rings is the following.
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Theorem 3.3.2. [21, Corollary 1.2] Let R be a purely infinite simple ring. Then R is an exchange ring.

On the other hand, the K-algebra R = K[x,x−1] is not an exchange ring, as follows. Since the only
idempotents in R are 0 and 1, and a = 1+ x+ x2 is not invertible in R, and 1− a = −x− x2 is also not
invertible in R, the exchange condition fails for the element a. More generally,
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Lemma 3.3.3. For any field K, and for any set Λ , the matrix algebra MΛ (K[x,x−1]) is not an exchange
ring.

We will need the following additional property of exchange rings (which we state here in less than its
full generality).
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Theorem 3.3.4. ([19, Lemma 3.1(a) and Theorem 2.2]) Let R be a ring and let I be an ideal of R. Then R
is an exchange ring if and only if I and R/I are exchange rings, and the natural map V (R) 7→ V (R/I) is
surjective.

Having given this background information, we now focus on our goal of identifying those Leavitt path
algebras LK(E) which are exchange rings. Recall that for X ⊆ E0, we denote by X the hereditary saturated
closure of X .
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Proposition 3.3.5. Let E be a graph and suppose that c is a cycle with exits such that for every v ∈ c0 there
is only one cycle based at v. Let v ∈ c0, and consider the set

X = {w ∈ E0 | v≥ w and w� v}.

Then X is a hereditary subset of E0 and H := X is a hereditary saturated subset of E0 for which c0∩H = /0.
In particular, c is a cycle without exits in the quotient graph E/H.

Proof. Clearly X is a hereditary subset of E0 with X ∩ c0 = /0. Since the hypotheses yield that no vertex in
X \X can be contained in a cycle, we see that X ∩ c0 = /0 as well. ut
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Lemma 3.3.6. Let E be an arbitrary graph. If E does not satisfy Condition (K), then there exists a heredi-
tary saturated subset H in E0 such that E/H does not satisfy Condition (L).

Proof. Since E does not satisfy Condition (K), then there exists u ∈ E0 which is the base of a unique
closed simple path, hence of a unique cycle; denote it by c. As in Proposition 3.3.5, the hereditary set
X = {w ∈ E0 | v≥ w,w� v} has the property that X ∩ c0 = /0. Set H := X . Then c is a cycle without exits
in E/H, so that E/H does not satisfy Condition (L). ut
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Lemma 3.3.7. Let E be an arbitrary graph and K any field. If LK(E) is an exchange ring, then E satisfies
Condition (L).

Proof. Suppose on the contrary that E does not satisfy Condition (L). Then there exists a cycle c in E which
has no exits. Denote by I the ideal of LK(E) generated by c0. Then Lemma 2.7.1 gives that I is isomorphic
to MΛ (K[x,x−1]) for some set Λ , which is not an exchange ring by Lemma 3.3.3. But every ideal of an
exchange ring is exchange (Theorem 3.3.4), so I must be exchange, a contradiction. ut
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Lemma 3.3.7, together with relationships between Condition (K) and Condition (L), will help us reach
the main goal in this section, namely, to show that the exchange Leavitt path algebras are precisely those
arising from graphs having Condition (K). One of the fundamental steps in the proof of that result is the
following graph theoretic property.
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Lemma 3.3.8. Let E be a graph satisfying Condition (K), and let X be a finite subgraph of E. Then there
is a finite complete subgraph F of E, containing X, such that F satisfies Condition (K).

Proof. By Theorem 1.6.10 there is a finite complete subgraph G of E such that X ⊆G. The goal is to embed
G in a finite complete subgraph F of E such that F satisfies Condition (K). Let∼E be the symmetric closure
of the relation ≥ on E0: that is, for v,w ∈ E0, v ∼E w in case either v = w, or there is a closed path in E
containing both v and w.

We claim that if v ∼E w then |CSPE(v)| > 1 if and only if |CSPE(w)| > 1. Indeed, it suffices to show
one of the implications. Assume that |CSPE(v)| > 1 and that v 6= w and v ∼E w. Since v ∼E w, one can
easily show that there is a closed simple path e1e2 · · ·en ∈ CSPE(v) such that s(ei) = w for exactly one i
with 1 < i≤ n. By hypothesis, there is a distinct path γ = f1 f2 · · · fm in CSPE(v). If γ0 does not contain w,
then eiei+1 · · ·ene1e2 · · ·ei−1 and eiei+1 · · ·enγe1e2 · · ·ei−1 are distinct elements of CSPE(w). If γ0 contains
w, and e1e2 · · ·ei−1 6= f1 f2 · · · fi−1, then taking j such that s( f j) = w, we obtain that eiei+1 · · ·en f1 f2 · · · f j−1
and eiei+1 · · ·ene1e2 · · ·ei−1 are distinct elements of CSPE(w). Similarly, if γ0 contains w, fm−(n−i) · · · fm 6=
ei · · ·en, and j is as above, then f j · · · fme1 · · ·ei−1 and ei · · ·ene1 · · ·ei−1 are distinct elements of CSPE(w).
Finally if both e1e2 · · ·ei−1 = f1 f2 · · · fi−1 and fm−(n−i) · · · fm = ei · · ·en, then eiei+1 · · ·ene1e2 · · ·ei−1 and
fi fi+1 · · · f j−1 are two different elements of CSPE(w), where j is the first index for which j > i and s( f j) =
w. This establishes the claim.

There is a finite number of cycles c1, . . . ,cr in G, based at v1, . . . ,vr respectively, for which |CSPG(vi)|=
1 for all i. We form a new graph G′ by adding to G the vertices and edges in a closed simple path γi 6= ci
based at vi, for i = 1, . . . ,r. Let F be the completion of G′ in E, so that F is formed by adding the edges
departing from vertices v ∈ (G′)0 such that v ∈ Reg(E) and s−1

G′ (v) 6= /0, together with the corresponding
range vertices (in case these edges were not already in G′).

We show that F satisfies Condition (K). Note that, for v∈ (G′)0, either |CSPG′(v)| ≥ 2 or |CSPG′(v)|= 0,
as follows. If v ∈ G0 and |CSPG(v)|= 1 then v ∈ ∪r

i=1c0
i and thus |CSPG′(v)| ≥ 2. If v ∈ γ0

i for some i then
v ∼G′ vi and so |CSPG′(v)| ≥ 2, because |CSPG′(vi)| ≥ 2, using the observation above. Finally if v ∈ G0,
|CSPG(v)|= 0 and |CSPG′(v)| 6= 0, then v∼G′ vi for some i, and so |CSPG′(v)| ≥ 2.

Since all vertices in F0 \ (G′)0 are sinks in F , it therefore suffices to show that |CSPF(w)| 6= 1 for all
w ∈ (G′)0 having |CSPG′(w)| = 0. Suppose that there is a cycle c = e1e2 · · ·em based at w in F and that
|CSPG′(w)| = 0. If w /∈ G0, then w ∈ γ0

i for some i, and so |CSPG′(w)| ≥ 2, because w ∼G′ vi. Therefore,
w∈G0. Let p be the smallest index with ep /∈G1. Then we have s(ep)∈G0. Since G is complete, the vertex
s(ep) is a sink in G, and is not a sink in G′. It follows that s(ep) ∈ γ0

i for some i, and so |CSPG′(s(ep))| ≥ 2
as before. Hence

|CSPF(s(ep))| ≥ |CSPG′(s(ep))| ≥ 2.

Since w∼F s(ep), we get that |CSPF(w)| ≥ 2, as desired. ut
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Lemma 3.3.9. Let E be a graph and K a field for which the ideal lattice L (LK(E)) of LK(E) is finite. Then
E satisfies Condition (K).

Proof. By Lemma 3.3.6, it suffices to show that the quotient graph E/H satisfies Condition (L) for every
H ∈HE . Suppose on the contrary that there exists a hereditary saturated subset H of E0 such that E/H does
not satisfy Condition (L). This means that E/H contains a cycle without exits, say c. Since LK(E/H) ∼=
LK(E)/I(H ∪BH

H) (see Theorem 2.4.15) has a finite number of ideals, we may assume that H = /0.
Denote by I the ideal generated by c0. By Lemma 2.7.1 the ideal I is isomorphic to MΛ (K[x,x−1]) for

some set Λ , so that I has infinitely many ideals. Since I is a graded ideal, the ideals of I are also ideals of
LK(E) (by Lemma 2.9.12), so LK(E) has infinitely many ideals, a contradiction. ut

We note that the converse of Lemma 3.3.9 is clearly not true, with any graph having infinitely many
vertices and no edges providing a counterexample.

Although at first glance the following result might seem to be quite limited in its scope, it will indeed
provide the basis of the key theorem of this section.
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Proposition 3.3.10. Let E be a row-finite graph for which the ideal lattice L (LK(E)) is finite. Then LK(E)
is an exchange ring.

Proof. Observe first that Lemma 3.3.9 implies that the graph E satisfies Condition (K). Since L (LK(E))
is finite, we can build an ascending chain of ideals

0 = I0 ⊆ I1 ⊆ ·· · ⊆ In = LK(E)

such that, for every i ∈ {1, . . . ,n−1} the ideal Ii is maximal among the ideals of LK(E) contained in Ii+1.
Now we prove the result by induction on n.

If n = 1, then LK(E) is a simple ring. By the Dichotomy Principle 3.1.11, LK(E) is either locally matri-
cial or purely infinite simple. But then Proposition 3.3.1 together with Theorem 3.3.2 imply that LK(E) is
an exchange ring.

Now suppose the result holds for any Leavitt path algebra in which there are a finite number of ideals,
and a maximal chain of two-sided ideals has length k < n. Since the graph satisfies Condition (K) (by
Lemma 3.3.9), Proposition 2.9.9 can be applied to get that every ideal of LK(E) is graded. Since E is
row-finite, by Theorem 2.5.9 there exist Hi ∈HE , for i ∈ {1, . . . ,n} such that:

(1) Ii = I(Hi) for every 1≤ i≤ n,
(2) Hi & Hi+1 for every i ∈ {1, . . . , n−1}, and
(3) for every i ∈ {1, . . . , n−1}, there is no hereditary and saturated set T such that Hi & T & Hi+1.

At this point we may apply the induction hypothesis to In−1, which is the Leavitt path algebra of a row-
finite graph by Proposition 2.5.19, and has finitely many ideals by Corollary 2.9.12. Thus we have that In−1
is an exchange ring. But LK(E)/In−1 ∼= LK(E/Hn−1) is a simple Leavitt path algebra (it is simple by the
maximality of In−1 inside LK(E), and it is a Leavitt path algebra by Corollary 2.4.13(i)). By the first step
of the induction hypothesis, LK(E)/In−1 ∼= LK(E/Hn−1) is an exchange ring. Since V (LK(E/Hn−1)) is
generated by the isomorphism classes arising from its vertices (by Theorem 3.2.6), we obviously have that
the natural map V (LK(E))→ V (LK(E)/In−1) is surjective. So Theorem 3.3.4 can be applied, and finishes
the proof. ut

We are now in position to present the main result of the section.
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Theorem 3.3.11. Let E be an arbitrary graph and K any field. Then the following are equivalent.

(1) LK(E) is an exchange ring.
(2) E/H satisfies Condition (L) for every hereditary saturated subset H of E0.
(3) E satisfies Condition (K).
(4) Lgr(LK(E)) = L (LK(E)); that is, every two-sided ideal of LK(E) is graded.
(5) The graphs EH and E/H both satisfy Condition (K) for every hereditary saturated subset H of E0.
(6) The graphs EH and E/H both satisfy Condition (K) for some hereditary saturated subset H of E0.

Proof. (1) ⇒ (2). Consider a hereditary saturated subset H ∈HE . By Corollary 2.4.13(ii) we have that
LK(E)/I(H ∪BH

H) is isomorphic to the Leavitt path algebra LK(E/H). Since the quotient of an exchange
ring by an ideal is an exchange ring (Theorem 3.3.4), Lemma 3.3.7 applies to get (2).

(2)⇒ (3) is Lemma 3.3.6.
(3)⇒ (1). By Lemma 3.3.8 and Theorem 1.6.10, we can write

LK(E)∼= lim−→
F∈F

CXF
K (F)∼= lim−→

F∈F
LK(F(XF)),

where F is the family of finite complete subgraphs of E satisfying Condition (K), and F(XF) is the finite
graph obtained from F by applying Theorem 1.5.18. Recalling Definition 1.5.16, we see that the graph
F(XF) satisfies Condition (K) if F satisfies Condition (K), because both graphs contain the same closed
paths, and the new vertices added to F in order to form F(XF) are sinks. Since the class of exchange rings
is closed under direct limits (Proposition 3.3.1), it suffices to prove the result for finite graphs.
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Let E be a finite graph with Condition (K). Then all the ideals of LK(E) are graded by Proposition
2.9.9, and so, by Theorem 2.5.9, the lattice of ideals of LK(E) is finite. The result follows therefore from
Proposition 3.3.10.

(3)⇔ (4) is Proposition 2.9.9.
(3)⇔ (5)⇔ (6). It is easy to see that for every H ∈HE we have CSPE(v) = CSPEH (v) for all v ∈ H,

and CSPE(w) = CSPE/H(w) for all w ∈ E0 \H. This gives the result. ut

We close the section by giving another characterization of the exchange Leavitt path algebras. Recall
that an ideal I of LK(E) is self-adjoint in case α∗ ∈ I for every α ∈ I.
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Proposition 3.3.12. Let E be an arbitrary graph and K any field. Then E satisfies Condition (K) if and
only if every two-sided ideal of LK(E) ideal is self adjoint.

Proof. Suppose E satisfies Condition (K). Then by Theorem 3.3.11 every ideal of LK(E) is graded, and by
Corollary 2.4.10 every such ideal is self adjoint.

Conversely, suppose every ideal of LK(E) is self-adjoint. Let H be a hereditary saturated subset of E0.
We will show that E/H satisfies Condition (L), and thus Theorem 3.3.11 will yield the desired result.
On the contrary, if E/H does not satisfy Condition (L), then there exists a cycle without exits c in E/H.
By Lemma 2.7.1 the ideal I of LK(E/H) generated by c0 is isomorphic to MΛ (K[x,x−1]) for some set
Λ . By Corollary 2.4.10 I(H ∪BH

H) is a self adjoint ideal, hence the hypothesis implies that every ideal
of LK(E)/I(H ∪BH

H) is self adjoint. Since LK(E/H) ∼= LK(E)/I(H ∪BH
H) (by Corollary 2.4.13(ii)), the

Leavitt path algebra LK(E/H) satisfies that each of its ideals is self adjoint. But every ideal of I is an ideal
of LK(E/H) (by Lemma 2.9.12), hence every ideal of I, and consequently of MΛ (K[x,x−1]), is self adjoint.
But this is a contradiction, as can easily be seen by using the same ideas as presented in the |Λ | = 1 case
given prior to Corollary 2.4.10. ut

3.4 Von Neumann regularity
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In this section we will show that the Leavitt path algebras arising from acyclic graphs are precisely the von
Neumann regular Leavitt path algebras. Subsequently, we will give an explicit description of the largest
von Neumann regular ideal of a Leavitt path algebra.

Recall that an element a in a ring R is said to be von Neumann regular if there exists b ∈ R such
that aba = a. The ring R is called a von Neumann regular ring if every element in R is von Neumann
regular. Note that in this situation the element x = ba is idempotent. Indeed, von Neumann regular rings
are characterized as those rings for which every finitely generated left ideal is generated by an idempotent,
so that the topic of von Neumann regularity fits well with the theme of this chapter.
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Theorem 3.4.1. Let E be an arbitrary graph and K any field. Then the following are equivalent.

(1) LK(E) is von Neumann regular.
(2) E is acyclic.
(3) LK(E) is locally K-matricial.

Proof. (1)⇒ (2). Suppose that there exists a cycle c in E; denote s(c) by v. We will prove that the element
v− c cannot be von Neumann regular. Suppose otherwise that there exists an element β ∈ LK(E) such that
(v− c)β (v− c) = (v− c). Replacing β by vβv if necessary, there is no loss of generality in assuming that

β = vβv. We write β as a sum of homogeneous elements β =
n
∑

i=m
βi, where m,n ∈ Z, βm 6= 0, βn 6= 0, and

deg(βi) = i for all nonzero βi with m≤ i≤ n. Since deg(v) = 0, we have vβiv = βi for all i. Then

v− c = (v− c)

(
n

∑
i=m

βi

)
(v− c).
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Equating the lowest degree terms on both sides, we get βm = v. Since deg(v) = 0, we conclude that m = 0,

and that β0 = v. Thus β =
n
∑

i=0
βi. Suppose deg(c) = s > 0. By again equating terms of like degree in the

displayed equation, we see that βi = 0 whenever i is nonzero and not a multiple of s, so that

n

∑
i=m

βi = v+
n/s

∑
t=1

βts.

So upon rewriting the equation above, we have

v− c = (v− c)v(v− c)+(v− c)

(
k

∑
t=1

βts

)
(v− c), which gives 0 =−c+ c2 +(v− c)

(
k

∑
t=1

βts

)
(v− c).

By equating the degree s components on both sides we obtain βs = c. Similarly, by equating the degree 2s
components, we get 0 = c2−cβs−βsc+β2s. But substituting βs = c yields β2s = c2, and continuing in this
manner we get βts = ct , for every t ∈ N. But this is not possible, as βts = 0 for t > n/s.

(2)⇒ (3) is Proposition 2.6.20.
(3) ⇒ (1). It is well known that every matricial K-algebra is a von Neumann regular ring, and hence

easily so too is any direct union of such algebras. ut

Remark 3.4.2. It was established in [14, Theorem 1] that in the context of Leavitt path algebras, the three
properties von Neumann regularity, π-regularity, and strong π-regularity are equivalent.

Every ring R contains a largest von Neumann regular ideal (see e.g., [78, Proposition 1.5]), which we
denote here by U(R). Specifically, U(R) is an ideal of R, which is von Neumann regular as a ring, with the
property that if J is any ideal of R which is von Neumann regular as a ring, then J ⊆U(R). This ideal is
often called the Brown-McCoy radical of R. It is not hard to show that R/U(R) contains no nonzero von
Neumann regular ideals.
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Remark 3.4.3. It is clear that if R is matricial, then U(R) = R. On the other hand, using an idea which
amounts to a special case of the idea used in the proof of Theorem 3.4.1, it is easy to show that
U(K[x,x−1]) = {0}. This in turn can be used to show that U(R) = {0} for any K-algebra R of the form
which arises in Theorem 2.7.3. In particular, U(I(Pc(E)) = {0}, where Pc(E) is the set of vertices in E0

which lie in a cycle without exits (cf. Notation 2.2.4).

We begin by showing that every von Neumann regular ideal of a Leavitt path algebra is graded.
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Lemma 3.4.4. Let E be an arbitrary graph and K any field. Then every von Neumann regular ideal of
LK(E) is a graded ideal.

Proof. Clearly the result holds for the zero ideal, so let I be a nonzero von Neumann regular ideal of
LK(E). By the Structure Theorem for Ideals 2.8.10 we have that I = I(H ∪ SH ∪PC), where H, SH and
PC are as described therein. If I were not graded, then necessarily PC 6= /0, and the ideal I/I(H ∪ SH) of
the Leavitt path algebra LK(E)/I(H ∪ SH) would be contained in I(Pc(E/(H,S))). By Theorem 2.7.3,
LK(E)/I(H ∪ SH) would then be isomorphic to a subalgebra of

⊕
c∈C MΛc(pc(x)K[x,x−1]). But algebras

of the latter form contain no nonzero von Neumann regular elements, which contradicts the von Neumann
regularity of I/I(H∪SH) (which is a consequence of it being the quotient of the von Neumann regular ring
I). Therefore I must be graded, as required. ut

In the context of Leavitt path algebras, we are able to describe the Brown-McCoy radical of LK(E) in
terms of a specific subset of E0.
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Definition 3.4.5. For a graph E, we denote by Pnc(E) the set of all vertices in E0 which do not connect to
any cycle in E.

It is clear from the definition that Pnc(E) is both hereditary and saturated. As well, we see immediately
that Pl(E)⊆ Pnc(E).
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Proposition 3.4.6. Let E be an arbitrary graph and K any field. Let H denote Pnc(E). Then U(LK(E)) =
I(H ∪BH

H).

Proof. We first establish that I(H ∪BH
H) is a von Neumann regular ideal of LK(E). Indeed, by Theorem

2.5.22, this ideal (viewed as a ring) is isomorphic to the Leavitt path algebra of the graph (H,BH )E. Since
none of the vertices in H connects to a cycle in E then it is straightforward from the definition of (H,BH )E
that this graph is necessarily acyclic. So by Theorem 3.4.1, LK((H,BH )E), and hence I(H ∪BH

H), is a von
Neumann regular ring. Thus I(H ∪BH

H)⊆U(LK(E)).
To establish the reverse inclusion, we first invoke Lemma 3.4.4 to get that U(LK(E)) is a graded ideal.

So by the Structure Theorem for Graded Ideals 2.5.8 we have U(LK(E)) = I(H ′∪SH ′) for some S ⊆ BH ′ ,
where H ′ = U(LK(E))∩E0. We claim that H ′ ⊆ H; to establish the claim, we consider the ideal I(H ′).
By Theorem 2.5.19, I(H ′) is isomorphic to LK(H ′E). On the other hand, I(H ′)⊆ I(H ′∪SH ′) =U(LK(E)),
so that I(H ′) is von Neumann regular (as it is an ideal of the von Neumann regular ring U(LK(E))). Thus
Theorem 3.4.1 applies to yield that H ′E is acyclic and, consequently, that H ′ has no cycles. By definition,
this gives that H ′ ⊆ Pnc(E) = H, which establishes the claim.

Now, use that H ′ ⊆ H implies BH ′ ⊆ H ∪BH and, consequently, that SH ′ ⊆ H ∪BH
H , to get U(LK(E)) =

I(H ′∪SH ′)⊆ I(H ∪BH
H). ut
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Remark 3.4.7. Since Pnc(E) ∈HE , we have I(Pnc(E)) = LK(E) if and only if Pnc(E) = E0. But by defini-
tion, the latter statement is equivalent to E being acyclic. So Proposition 3.4.6 can be viewed as a general-
ization of Theorem 3.4.1.

We recall the following subset of E0 given in Definitions 2.6.1: the set of line points of E, denote Pl(E),
is the set of those vertices of E which connect neither to bifurcations nor to cycles. In particular, Pl(E)
contains all the sinks of E. Additionally, by definition we have Pl(E)⊆Pnc(E), so that I(Pl(E))⊆ I(Pnc(E))
for any graph E.
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Corollary 3.4.8. Let E be a finite graph and K any field. Then Soc(LK(E)) =U(LK(E)); that is, the socle
coincides with the Brown-McCoy radical for the Leavitt path algebra of a finite graph.

Proof. Using Theorem 2.6.14 and Proposition 3.4.6, we need only show that I(Pl(E)) = I(Pnc(E)). As
noted immediately above, the containment I(Pl(E))⊆ I(Pnc(E)) holds for any graph E. Conversely, recall
that for a finite graph E, each vertex connects either to a cycle or to a sink. So v ∈ Pnc(E) and the finiteness
of E implies that there is an integer N for which every path starting at v ends in a sink in at most N steps.
But then using the (CK2) relation as many times as necessary at each of these N steps (together with the
finiteness of the graph), we see that v is in the saturated closure of the sinks of E, and hence v ∈ I(Pl(E)).
So I(Pnc(E))⊆ I(Pl(E)), completing the proof. ut
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Example 3.4.9. In the particular case of the Toeplitz algebra TK = LK(ET ) (see Example 1.3.6), the largest
von Neumann regular ideal U(TK) is the ideal generated by the sink, which by Corollary 3.4.8 is precisely
Soc(TK).
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Remark 3.4.10. Corollary 3.4.8 does not extend to infinite graphs, not even to infinite acyclic graphs. For
example, let E denote the graph

•v1 //

��

•v2 //

��

•v3 //

��

•v4 //

��•w1 •w2 •w3

Then Pl(E) = {wn}n∈N. It is easy to see that I(Pl(E)) is not all of LK(E) (since vi /∈ I(Pl(E)) for all i ∈N),
so that by Theorem 2.6.14 we have Soc(LK(E)) 6= LK(E). But by Theorem 3.4.1 we have that LK(E) is
von Neumann regular, so that U(LK(E)) = LK(E).
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3.5 Primitive non-minimal idempotents
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We continue our description of idempotent-related topics by considering the primitive, non-minimal idem-
potents of LK(E). We focus first on the ideal generated by these elements; this ideal will play a role similar
to that played by Soc(LK(E)), but with respect to the vertices which lie on cycles without exits. We will
utilize the following general ring-theoretic result.
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Proposition 3.5.1. ([96, Proposition 21.8]) Let e be an idempotent in a (not-necessarily unital) ring R. The
following are equivalent.

(1) Re is an indecomposable right R-module (equivalently, Re is an indecomposable left R-module).
(2) eRe is a ring without nontrivial idempotents.
(3) e cannot be decomposed as a+b, where a,b are nonzero orthogonal idempotents in R.

A nonzero idempotent of R which satisfies these conditions is called a primitive idempotent.

Clearly (by (i)) any minimal idempotent of R (Definitions 2.6.7) is necessarily primitive.
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Proposition 3.5.2. Let E be an arbitrary graph and K any field. Let v∈E0. Then v is a primitive idempotent
of LK(E) if and only if T (v) has no bifurcations.

Proof. Suppose that T (v) has bifurcations; say T (v) has its first bifurcation at w, with µ being the shortest
path which connects v to w. Since there are no bifurcations in µ , the (CK2) relation at each non-final vertex
of µ yields µµ∗ = v. Hence we get LK(E)v = LK(E)µµ∗. Let e and f be two different edges emitted by w;
then ee∗ 6= w (as otherwise w− ee∗ = 0, which on right multiplication by f would give f = 0), and so by
Proposition 3.0.1(i) we get LK(E)w = LK(E)ee∗⊕LK(E)(w− ee∗) is a decomposition of the desired type.

Conversely, suppose that T (v) has no bifurcations. Two cases can occur. First, suppose T (v) does not
contain vertices in cycles. In this case, v ∈ Pl(E), which means that v is minimal by Proposition 2.6.11, and
so necessarily primitive. On the other hand, suppose T (v)∩Pc(E) 6= /0. Since T (v) has no bifurcations, there
can be only one cycle c∈ LK(E) such that T (v)∩c0 6= /0, which in addition has no exits. Furthermore, every
vertex of T (v) is either in c0 or connects to a vertex w in c0 via a path µ , where there are no bifurcations at
any of the vertices of µ . Since then µµ∗ = v, we get LK(E)v∼= LK(E)w as left LK(E)-modules by Proposi-
tion 3.0.1(ii). Since w is in a cycle without exits, by Proposition 2.2.7 we have wLK(E)w∼=K[x,x−1], which
is a ring without nontrivial idempotents. Now Proposition 3.5.1 gives that w and v are both primitive, and
completes the proof. ut

Remark 3.5.3. If vLK(E)v is a ring with no nontrivial idempotents, then v is a primitive idempotent and,
as a consequence of the proof of Proposition 3.5.2, we have either vLK(E)v ∼= K (if v is minimal) or
vLK(E)v∼= K[x,x−1] (if it is not).

We have found a close relationship between the primitive and the minimal vertices of the Leavitt path
algebra of any graph: the minimal vertices are those whose trees do not contain bifurcations nor connect to
cycles, while the primitive vertices see this second condition suppressed. In particular,
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Remark 3.5.4. A vertex v ∈ E0 is a primitive non-minimal idempotent of LK(E) if and only if vLK(E)v∼=
K[x,x−1]. In particular, the vertices in Pc(E) are primitive non-minimal.

Proposition 3.5.2 provides us with a tool to distinguish between those cycles with exits and those cycles
without exits in a graph, giving us a characterization of Condition (L) in terms of primitive vertices.
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Corollary 3.5.5. Let E be an arbitrary graph and K any field. Then E satisfies Condition (L) if and only if
every primitive vertex in LK(E) is minimal.

In particular, if every vertex in LK(E) is infinite, then E satisfies Condition (L).

Proof. By Proposition 3.5.2 and Remark 3.5.4, LK(E) contains a primitive non-minimal vertex if and only
if E contains a cycle without exits. The additional statement follows vacuously. ut
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In Theorem 3.5.7 we extend Corollary 3.5.5 from the primitive non-minimal vertices to the primitive
non-minimal idempotents of a Leavitt path algebra. As one consequence, this will show (Corollary 3.5.8)
that Condition (L) is a ring isomorphism invariant of Leavitt path algebras, in the sense that if E,F are two
graphs such that LK(E)∼= LK(F) as rings, then E satisfies Condition (L) if and only if F does as well.
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Proposition 3.5.6. Let E be an arbitrary graph and K any field. If z ∈ LK(E) is a primitive idempotent and
we can write αzβ = kv for α,β ∈ LK(E), k ∈ K×, and v ∈ E0, then LK(E)z ∼= LK(E)v. If, moreover, z is
primitive non-minimal, then zLK(E)z∼= K[x,x−1].

Proof. We may assume α = vα and β = βv. Define a = k−1αz and b = zβ . Then ab = v, and e := ba =
k−1zβαz is in zLK(E)z. Moreover, e2 = baba = bva = ba = e and thus LK(E)e∼= LK(E)v as left ideals of
LK(E) by a standard ring theory result. (The maps ρb : LK(E)e→ LK(E)v and ρa : LK(E)v→ LK(E)e give
the isomorphisms.) Note in particular that this implies LK(E)e 6= {0}. Since z is a primitive idempotent,
zLK(E)z is a ring without nontrivial idempotents, so that e ∈ {0,z}; since e 6= 0, we have z = e, so that
LK(E)z∼= LK(E)v as desired. If in addition z is primitive non-minimal, then so necessarily is v, and hence
zLK(E)z∼= vLK(E)v∼= K[x,x−1] by Remark 3.5.4. ut

We are now in position to establish a result similar to Corollary 3.5.5, but with respect to all idempotents
in LK(E).
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Theorem 3.5.7. Let E be an arbitrary graph and K any field. Then E satisfies Condition (L) if and only if
every primitive idempotent in LK(E) is minimal.

Proof. If LK(E) has no primitive non-minimal idempotents, in particular it has no primitive non-minimal
vertices, so that by Corollary 3.5.5, E satisfies Condition (L).

Now suppose E satisfies Condition (L), and let x be a primitive non-minimal idempotent of LK(E). By
the Reduction Theorem 2.2.11 there exist a vertex v, a nonzero scalar k and elements µ,κ ∈ Path(E) such
that µ∗xκ = kv. Note that, by Corollary 3.5.5, v cannot be primitive non-minimal. But this is a contradiction
since by Proposition 3.5.6, LK(E)v∼= LK(E)x. ut

Because Theorem 3.5.7 yields a characterization of Condition (L) in E as a ring-theoretic condition on
LK(E), we immediately get the following.
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Corollary 3.5.8. Let E,F be arbitrary graphs and K any field, and suppose LK(E)∼= LK(F) as rings. Then
E satisfies Condition (L) if and only if F satisfies Condition (L).

Observe that Corollary 3.5.8 also follows from Proposition 2.9.13.
The tools developed above will allow us to reformulate, in terms of idempotents, the Simplicity and

Purely Infinite Simplicity Theorems. By the Simplicity Theorem 2.9.1, LK(E) is simple if and only if
HE = { /0,E0}, and E satisfies Condition (L). The condition HE = { /0,E0} is equivalent to the nonexistence
of nontrivial two-sided ideals of LK(E) generated by idempotents (see Theorem 2.5.8 and Corollary 2.9.11).
So Theorem 3.5.7 yields the following.
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Corollary 3.5.9. Let E be an arbitrary graph and K any field. Then LK(E) is simple if and only if every
primitive idempotent in LK(E) is minimal, and LK(E) contains no nontrivial two-sided ideals generated by
idempotents.

By the Purely Infinite Simplicity Theorem 3.1.10, LK(E) is purely infinite simple if and only if LK(E)
is simple, and every vertex of E connects to a cycle. If E is finite, then the latter condition may be replaced
by the condition that there are no minimal idempotents in LK(E), as follows. On the one hand, if every
vertex connects to a cycle (necessarily with an exit), then there are no minimal vertices in E (indeed, by
Proposition 3.1.6, every vertex is infinite in this case). On the other hand, if there are no minimal vertices
then there are no sinks, and since E is finite, this yields that every vertex must connect to a cycle. But
Soc(LK(E)) = I(Pl(E)) (Theorem 2.6.14), and Pl(E) = /0 (because E is finite and there are no sinks), so
that Soc(LK(E)) = {0}. Specifically, there are no minimal idempotents in LK(E). So we have established
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Corollary 3.5.10. Let E be a finite graph and K any field. Then LK(E) is purely infinite simple if and only
if LK(E) contains no primitive idempotents and no nontrivial two-sided ideals generated by idempotents.
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3.6 Structural properties of the V -monoid
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For a ring R with enough idempotents, the monoid V (R) of isomorphism classes of finitely generated
projective left R-modules was discussed in Section 3.2. The monoid V (R) is clearly conical; that is, if
p,q ∈ V (R) have p+q = 0, then p = q = 0. In the specific case of a Leavitt path algebra LK(E), we show
in this section that the monoid V (LK(E)) satisfies some additional monoid-theoretic properties (properties
which, unlike the conical property, fail for some monoids of the form V (S) for some rings S). These prop-
erties arise in various contexts associated with decomposition and cancellation properties among finitely
generated projective left LK(E)-modules.
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Definitions 3.6.1. Let (M,+) denote an abelian monoid.

(i) M is called a refinement monoid if whenever a+ b = c+ d in M, there exist x,y,z, t ∈ M such that
a = x+ y and b = z+ t, while c = x+ z and d = y+ t.

(ii) There is a canonical preorder on any abelian monoid M (the algebraic preorder), defined by setting
x ≤ y if and only if there exists m ∈M such that y = x+m. Following [32], M is called a separative
monoid in case M satisfies the following condition: if a,b,c ∈M satisfy a+c = b+c, and c≤ na and
c≤ nb for some n ∈ N, then a = b.

There are analogous definitions from a ring-theoretic point of view.
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Definitions 3.6.2. Let R be a ring with enough idempotents. The class of finitely generated projective left
R-modules is denoted by FP(R).

(i) We say that FP(R) satisfies the refinement property if whenever A1,A2,B1,B2 ∈ FP(R) satisfy A1⊕
A2 ∼= B1⊕B2, then there exist decompositions Ai = Ai1⊕Ai2 for i = 1,2 such that A1 j⊕A2 j ∼= B j for
j = 1,2.

(ii) We say that R is separative if whenever A,B,C ∈ FP(R) satisfy A⊕C ∼= B⊕C and C is isomorphic
to direct summands of both nA and nB for some n ∈ N, then A∼= B.
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Remark 3.6.3. We note that, while the monoid V (R) of isomorphism classes of finitely generated projec-
tive left R-modules has been, and will continue to be, a key player in the subject of Leavitt path algebras, it
is more common in the literature to focus on the class of all finitely generated projective left R-modules in
a discussion of the properties of R presented in Definitions 3.6.2.

The following is then clear.
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Proposition 3.6.4. Let R be a ring with enough idempotents.

(i) V (R) is a refinement monoid if and only if FP(R) satisfies the refinement property.
(ii) V (R) is separative if and only if R is separative.

We will show in this section that V (LK(E)) is both separative and a refinement monoid for every graph
E and field K. The approach will be to first establish these results for row-finite graphs, and subsequently
invoke appropriate direct limit theorems from Chapter 1. For context, we note that it has been shown [32,
Proposition 1.2] that every exchange ring satisfies the refinement property. On the other hand, it is an
outstanding open question to determine whether every exchange ring is separative.

We recall here the definition of the monoid ME (Definition 3.2.2). For any row-finite graph E, ME
denotes the abelian monoid given by the generators {av | v ∈ E0}, with the relations:

av = ∑
{e∈E1|s(e)=v}

ar(e) for every v ∈ E0 that emits edges. (M){(
M)

}

We introduce some helpful notation. Let E be a row-finite graph, and let F be the free abelian monoid
on the set E0. Each of the nonzero elements of F can be written in a unique form (up to permutation) as
∑

n
i=1 xi, where xi ∈ E0 (and repeats are allowed). Now we will give a description of the congruence on F

generated by the relations (M) on F. For x ∈ Reg(E), write
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r(x) := ∑
{e∈E1|s(e)=x}

r(e) ∈ F.

With this notation, the relations (M) are expressed more efficiently as x = r(x) for every x ∈ Reg(E).
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Definition 3.6.5. Let F be the free abelian monoid on the set of vertices E0 of a row-finite graph E. Define a
binary relation→1 on F\{0} as follows. Let ∑

n
i=1 xi be an element in F\{0} as above and let j ∈ {1, . . . ,n}

be an index such that x j emits edges. Then ∑
n
i=1 xi→1 ∑i6= j xi +r(x j). Let→ be the transitive and reflexive

closure of→1 on F\{0}, that is, α→ β if and only if there is a finite string α = α0→1 α1→1 · · · →1 αt =
β . Let ∼ be the congruence on F\{0} generated by the relation→1 (or, equivalently, by the relation→).
Namely α ∼ α for all α ∈ F \ {0} and, for α,β 6= 0, we have α ∼ β if and only if there is a finite string
α = α0,α1, . . . ,αn = β , such that, for each i = 0, . . . ,n−1, either αi→1 αi+1 or αi+1→1 αi. The number
n above will be called the length of the string. The congruence ∼ on F\{0} is extended to F by adding the
single pair 0∼ 0. It is clear that ∼ is the congruence on F generated by relations (M), and so ME = F/∼.

The support of an element γ in F, denoted supp(γ) ⊆ E0, is the set of basis elements appearing in the
canonical expression of γ .
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Lemma 3.6.6. Let→ be the binary relation on F given in Definition 3.6.5. Suppose α,β ,α1,β1 ∈ F\{0}
with α = α1 +α2 and α → β . Then β can be written as β = β1 +β2 with α1→ β1 and α2→ β2.

Proof. By induction, it is enough to show the result in the case where α →1 β . If α →1 β , then there is an
element x in the support of α such that β = (α− x)+ r(x). The element x belongs either to the support of
α1 or to the support of α2. Assume, for instance, that the element x belongs to the support of α1. Then we
set β1 = (α1− x)+ r(x) and β2 = α2. The case where x is in the support of α2 is similar. ut

Note that the elements β1 and β2 in Lemma 3.6.6 are not uniquely determined by α1 and α2 in general,
because the element x ∈ E0 considered in the proof could belong to both the support of α1 and the support
of α2.

The following lemma gives the important “confluence” property of the congruence∼ on the free abelian
monoid F.
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Lemma 3.6.7. (The Confluence Lemma) Let α and β be nonzero elements in F. Then α ∼ β if and only
if there is γ ∈ F\{0} such that α → γ and β → γ .

Proof. Assume that α ∼ β . Then there exists a finite string α = α0,α1, . . . ,αn = β , such that, for each
i = 0, . . . ,n−1, either αi→1 αi+1 or αi+1→1 αi. We proceed by induction on n. If n = 0, then α = β and
there is nothing to prove. Assume the result is true for strings of length n−1, and let α =α0,α1, . . . ,αn = β

be a string of length n. By the induction hypothesis, there is λ ∈ F such that α → λ and αn−1→ λ . Now
there are two cases to consider. If β →1 αn−1, then β → λ and we are done. Assume that αn−1→1 β . By
definition of →1, there is a basis element x ∈ E0 in the support of αn−1 such that αn−1 = x+α ′n−1 and
β = r(x)+α ′n−1. By Lemma 3.6.6, we have λ = λ (x)+λ ′, where x→ λ (x) and α ′n−1→ λ ′. If the length
of the string from x to λ (x) is positive, then we have r(x)→ λ (x) and so β = r(x)+α ′n−1→ λ (x)+λ ′ = λ .
In case that x = λ (x), we define γ = r(x)+λ ′. Then λ →1 γ and so α → γ , and also β = r(x)+α ′n−1→
r(x)+λ ′ = γ . This concludes the proof. ut

We are now ready to show the refinement property of ME .
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Proposition 3.6.8. The monoid ME associated with any row-finite graph E is a refinement monoid.

Proof. We use the identification ME = F/∼. Let α = α1 +α2 ∼ β = β1 +β2, with α1,α2,β1,β2 ∈ F. By
Lemma 3.6.7, there is γ ∈ F such that α → γ and β → γ . By Lemma 3.6.6, we can write γ = α ′1 +α ′2 =
β ′1 + β ′2, with αi → α ′i and βi → β ′i for i = 1,2. Since F is a free abelian monoid, F has the refinement
property and so there are decompositions α ′i = γi1+γi2 for i = 1,2 such that β ′j = γ1 j +γ2 j for j = 1,2. The
result follows. ut



90 3 Idempotents, and finitely generated projective modules

Let E be row-finite. Our next goal is to establish a lattice isomorphism between the lattice HE of
hereditary saturated subsets of E0 and the lattice of order-ideals of the associated monoid ME . This in turn
can then be interpreted as a lattice isomorphism with the graded ideals of LK(E) (Theorem 2.5.9), and
thereby also an isomorphism with the lattice of the ideals of LK(E) generated by idempotents (Corollary
2.9.11).

An order-ideal of a monoid M is a submonoid I of M such that x+ y = z in M and z ∈ I imply that
both x,y belong to I. An order-ideal can also be described as a submonoid I of M which is hereditary with
respect to the canonical preorder ≤ on M: x ≤ y and y ∈ I imply x ∈ I. Recall that the preorder ≤ on M is
defined by setting x≤ y if and only if there exists m ∈M such that y = x+m.

The set L (M) of order-ideals of M forms a (complete) lattice
(
L (M),⊆,∑,∩

)
. Here, for a family of

order-ideals {Ii}, we denote by ∑Ii the set of elements x ∈M such that x ≤ y for some y belonging to the
algebraic sum ∑ Ii of the order-ideals Ii. Note that ∑ Ii = ∑Ii whenever M is a refinement monoid.

Let FE be the free abelian monoid on E0, and recall that ME = FE/∼. For γ ∈ FE we will denote by [γ]
its class in ME . Note that any order-ideal I of ME is generated as a monoid by the set {[v] | v ∈ E0}∩ I.

The set HE of hereditary saturated subsets of E0 is also a complete lattice (HE ,⊆,∪,∩) (Remark 2.5.2).
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Proposition 3.6.9. Let E be a row-finite graph. Then there are order-preserving mutually inverse maps

ϕ : HE −→L (ME) and ψ : L (ME)−→HE ,

where ϕ(H) is the order-ideal of ME generated by {[v] | v∈H}, for H ∈HE , and ψ(I) is the set of elements
v in E0 such that [v] ∈ I, for I ∈L (ME).

Proof. The maps ϕ and ψ are obviously order-preserving. We claim that to establish the result it suffices
to show

(1) for I ∈L (ME), the set ψ(I) is a hereditary saturated subset of E0, and
(2) if H ∈HE then [v] ∈ ϕ(H) if and only if v ∈ H.

To see this, if (1) and (2) hold, then ψ is well-defined by (1), and ψ(ϕ(H)) = H for H ∈HE , by (2). On the
other hand, if I is an order-ideal of ME , then obviously ϕ(ψ(I))⊆ I, and since I is generated as a monoid
by {[v] | v ∈ E0}∩ I = [ψ(I)], it follows that I ⊆ ϕ(ψ(I)).

Proof of (1). Let I be an order-ideal of ME , and set H := ψ(I) = {v ∈ E0 | [v] ∈ I}. To see that H
is hereditary, we have to prove that, whenever we have γ = e1e2, · · ·en in Path(E) with s(e1) = v and
r(en) = w and v ∈ H, then w ∈ H. If we consider the corresponding sequence v→1 γ1→1 γ2→1 · · · →1 γn
in FE , we see that w belongs to the support of γn, so that w ≤ γn in FE . This implies that [w] ≤ [γn] = [v],
and so [w] ∈ I because I is hereditary.

To show saturation, take a non-sink v ∈ E0 such that r(e) ∈ H for every e ∈ E1 such that s(e) = v. We
then have supp(r(v))⊆H, so that [r(v)]∈ I because I is a submonoid of ME . But [v] = [r(v)], so that [v]∈ I
and v ∈ H.

Proof of (2). Let H be a hereditary saturated subset of E0, and let I := ϕ(H) be the order-ideal of ME
generated by {[v] | v ∈ H}. Clearly [v] ∈ I if v ∈ H. Conversely, suppose that [v] ∈ I. Then [v]≤ [γ], where
γ ∈ FE satisfies supp(γ) ⊆ H. Thus we can write [γ] = [v]+ [δ ] for some δ ∈ FE . By Lemma 3.6.7, there
is β ∈ FE such that γ → β and v+ δ → β . Since H is hereditary and supp(γ) ⊆ H, we get supp(β ) ⊆ H.
By Lemma 3.6.6, we have β = β1+β2, where v→ β1 and δ → β2. Observe that supp(β1)⊆ supp(β )⊆H.
Using that H is saturated, it is a simple matter to check that, if α→1 α ′ and supp(α ′)⊆H, then supp(α)⊆
H. Using this and induction, we obtain that v ∈ H, as desired. ut

We now show that the monoid ME associated with a row-finite graph E is always a separative monoid.
Recall (Definitions 3.6.1) this means that for elements x,y,z ∈ME , if x+ z = y+ z and z ≤ nx and z ≤ ny
for some positive integer n, then x = y.

The separativity of ME follows from results of Brookfield [53] on primely generated monoids; see
also [143, Chapter 6]. Indeed the class of primely generated refinement monoids satisfies many other nice
cancellation properties. We will highlight unperforation later, and refer the reader to [53] for further infor-
mation.
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Definition 3.6.10. Let M be a monoid. An element p ∈M is prime if for all a1,a2 ∈M, p≤ a1+a2 implies
p≤ a1 or p≤ a2. A monoid is primely generated if each of its elements is a sum of primes.

Proposition 3.6.11. [53, Corollary 6.8] Any finitely generated refinement monoid is primely generated.{f
in
ge
n}

It follows from Propositions 3.6.8 and 3.6.11 that, for a finite graph E, the monoid ME is primely
generated. Note that the primely generated property does not extend in general to row-finite graphs, as is
demonstrated by the following graph G:

p0 //

��

p1 //

}}

p2 //

vv

p3 //

tt

· · ·

a

The corresponding monoid MG has generators a, p0, p1, . . . , and relations given by pi = pi+1 + a for all
i≥ 0. One can easily see that the only prime element in M is a, so that M is not primely generated.
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Theorem 3.6.12. Let E be a row-finite graph. Then the monoid ME is separative.

Proof. By Lemma 5.3.3, we get that ME is the direct limit of monoids MXi corresponding to finite graphs
Xi. Therefore, in order to check separativity, we can assume that the graph E is finite. In this situation,
we have that ME is generated by the finite set E0 of vertices of E, and thus ME is finitely generated. By
Proposition 3.6.8, ME is a refinement monoid, so it follows from Proposition 3.6.11 that ME is a primely
generated refinement monoid. By [53, Theorem 4.5], the monoid ME is separative. ut

As remarked previously, primely generated refinement monoids satisfy many nice cancellation proper-
ties, as shown in [53]. Some of these properties are preserved in direct limits, so they are automatically true
for the graph monoids corresponding to any row-finite graph. Especially important in several applications
is the property of unperforation.
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Definition 3.6.13. The monoid (M,+) is said to be unperforated in case, for all elements a,b ∈M and all
positive integers n, we have na≤ nb =⇒ a≤ b.
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Proposition 3.6.14. Let E be a row-finite graph. Then the monoid ME is unperforated.

Proof. As in the proof of Theorem 3.6.12, we can reduce to the case of a finite graph E. In this case, the
result follows from [53, Corollary 5.11(5)]. ut
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Corollary 3.6.15. Let E be a row-finite graph. Then FP(LK(E)) satisfies the refinement property, and
LK(E) is a separative ring. Moreover, the monoid V (LK(E)) is unperforated.

Proof. By Theorem 3.2.6, we have V (LK(E))∼=ME . So the result follows from Proposition 3.6.8, Theorem
3.6.12 and Proposition 3.6.14. ut

Another useful technique to deal with graph monoids of finite graphs consists of considering composi-
tion series of order-ideals in the monoid. These composition series correspond via Proposition 3.6.9 and
Theorem 2.5.9 to composition series of graded ideals in LK(E). (Using [49, Theorem 4.1(b)], they also
correspond to composition series of closed gauge-invariant ideals of the graph C∗-algebra C∗(E); this ap-
proach will be used in the proof of Theorem 5.3.4 below.) The composition series approach can be used
to achieve a different proof of the separativity of ME (Theorem 3.6.12), an approach we sketch in Remark
3.6.19.
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Definition 3.6.16. Given an order-ideal S of a monoid M we define a congruence∼S on M by setting a∼S b
if and only if there exist e, f ∈ S such that a+ e = b+ f . Let M/S be the factor monoid obtained from the
congruence ∼S. (See [32].) We denote by [x]S the class of an element x ∈M in M/S.



92 3 Idempotents, and finitely generated projective modules

In particular, If I is any ideal of a ring R, the monoid V (I) is an order-ideal of V (R). Using the construction
of the factor monoid given in Definition 3.6.16, it can be shown that for a large class of rings R, one has
V (R/I)∼= V (R)/V (I) for any ideal I of R; see [32, Proposition 1.4]. We present here some general useful
facts about V -monoids.

{L
VA
is
oI
dA

}

Proposition 3.6.17. Let R be any ring with local units.

(i) Assume that V (R) is a refinement monoid. Then the map

I 7→ V (I)

gives a lattice isomorphism between the lattice Lidem(R) consisting of those ideals of R which are
generated by idempotents, and the lattice L (V (R)) of order-ideals of V (R).

(ii) If I is an ideal of R generated by idempotents, then there is a canonical injective map

ω : V (R)/V (I)→ V (R/I),

such that ω([e]V (I)) = [e+ I] for every idempotent e in R.

Proof. (i) Since R has local units and V (R) is a refinement monoid, every idempotent E in MN(R) is
equivalent to an idempotent of the form e1 ⊕ ·· · ⊕ en for some idempotents e1, . . . ,en of R. It follows
that the set of trace ideals considered in [31, Definition 10.9] is exactly the set of ideals of R generated
by idempotents. Therefore the bijective correspondence follows from [31, Proposition 10.10] (see [70,
Theorem 2.1(c)] for the unital case).

(ii) Since R has local units, the proof of [28, Proposition 5.3(c)] can be easily adapted to get that the
map ω is injective. Note that ω is just the map induced by the canonical projection π : R→ R/I. ut

Observe that Proposition 3.6.9 can be obtained by combining Theorem 2.5.9, Corollary 2.9.11, Theorem
3.2.6 and Theorem 3.6.8, by using Proposition 3.6.17(i). A similar route can be used to show the following
result.
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Lemma 3.6.18. Let E be a row-finite graph. For a hereditary saturated subset H of E0, consider the order-
ideal S = ϕ(H) of ME associated with H, as in Proposition 3.6.9. Let E/H be the quotient graph (recall
Definition 2.4.11). Then there are natural monoid isomorphisms

ME/S∼= V (LK(E))/V (I(H))∼= V (LK(E)/I(H))∼= V (LK(E/H))∼= ME/H .

Proof. By Theorem 3.2.6 we have ME ∼= V (LK(E)). By Proposition 3.6.17, the map

ω : V (LK(E))/V (I(H))→ V (LK(E)/I(H)) defined by ω([e]V (I(H))) = [e+ I(H)]

is injective. Moreover, there is an isomorphism LK(E)/I(H) ∼= LK(E/H), given in Corollary 2.4.13(i).
Since V (LK(E/H))∼= ME/H , the monoid V (LK(E/H)) is generated by the classes of vertices v in E0 \H,
so we get that the map ω is surjective. The result follows. ut
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Remark 3.6.19. We sketch a proof of the separativity of ME , different from the one presented in Theorem
3.6.12, using the theory of order-ideals. For a row-finite graph E, we call ME simple in case the only
order-ideals of ME are trivial. This corresponds by Proposition 3.6.9 to the situation where the hereditary
saturated subset generated by any vertex of E is E0. By Lemma 2.9.6, this happens if and only if E is
cofinal (Definition 2.9.4).

As in the proof of Theorem 3.6.12, we can assume that E is a finite graph. In this case it is obvious that
E0 has a finite number of hereditary saturated subsets, so ME has a finite number of order-ideals. Take a
finite chain 0 = S0 ≤ S1 ≤ ·· · ≤ Sn = ME such that each Si is an order-ideal of ME , and all the quotients
Si/Si−1 are simple. By Proposition 3.6.9, we have Si∼=MHi , for some finite graph Hi, and by Lemma 3.6.18,
we have Si/Si−1 ∼= MGi for some cofinal finite graph Gi. By Proposition 3.6.8, Si is a refinement monoid
for all i, so the Extension Theorem for refinement monoids ([32, Theorem 4.5]) tells us that Si is separative
if and only if so are Si−1 and Si/Si−1. It follows by induction that it is enough to show the case where E is
a cofinal finite graph.
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Let E be a cofinal finite graph. We distinguish three cases. First, suppose that E is acyclic. Then there
is a sink v, and by cofinality for every vertex w of E there is a path from w to v. It follows that ME is a
free abelian monoid of rank one (i.e., isomorphic to Z+), generated by av. In particular ME is a separative
monoid. Secondly, assume that E has a cycle without exits, and let v be any vertex in this cycle. By using
the cofinality condition, it is easy to see that there are no other cycles in E, and that every vertex in E
connects to v. It follows again that ME is a free abelian monoid of rank one, generated by av. Finally, we
consider the case where every cycle in E has an exit. By cofinality, every vertex connects to every cycle.
Using this and the property that every cycle has an exit, it is easy to show that for every nonzero element
x in ME there is a nonzero element y in ME such that x = x+ y. It follows that ME \{0} is a group; see for
example [32, Proposition 2.4]. In particular ME is a separative monoid. ut
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Example 3.6.20. This example will be useful later on. Consider the following graph E:

a
��
XX boo // c

��
XX

// d .

Then ME is the monoid generated by a,b,c,d with defining relations a = 2a, b = a+ c, c = 2c+d.
A composition series of order-ideals for ME is obtained from the graph monoids corresponding to the

following chain of hereditary saturated subsets of E:

/0 , d , c
��
XX

// d , a
��
XX boo // c

��
XX

// d .

By Lemma 3.6.18, the corresponding simple quotient monoids are the graph monoids corresponding to the
following graphs:

d , c
��
XX , a

��
XX boo .

It is a relatively straightforward matter to generalize the previously established structural results about
graph monoids of row-finite graphs to arbitrary graphs, using the direct limit machinery from Section 1.6.
We complete this section by providing the details.
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Theorem 3.6.21. Let E be an arbitrary graph, let K be a field, and let X be a subset of Reg(E). Then the
monoid V (CX

K (E)) is an unperforated, separative, refinement monoid. In particular, the monoid V (LK(E))
is an unperforated, separative, refinement monoid.

Proof. Since the properties in the statement are preserved under direct limits, and since the functor V
is continuous, we see from Theorem 1.6.10 that it suffices to show the result for a finite graph E. So
suppose that E is a finite graph and that X is a finite subset of Reg(E). By Theorem 1.5.18, we have that
CX

K (E) ∼= LK(E(X)) for a certain finite graph E(X). By Proposition 3.6.8, Theorem 3.6.12, Proposition
3.6.14 and Theorem 3.2.6, V (LK(E(X)) is an unperforated, separative, refinement monoid, and thus so is
V (CX

K (E)). ut
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Remark 3.6.22. For a refinement monoid, unperforation implies separativity. This follows immediately
from [59, Theorem 1], and it was noted independently in [142, Corollary 2.4].
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Theorem 3.6.23. Let E be an arbitrary graph and K any field.

(i) The map
I 7→ V (I)

gives a lattice isomorphism between the lattice Lgr(LK(E)) of graded ideals of LK(E) and the lattice
L (V (LK(E))) of order-ideals of V (LK(E)).
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(ii) Let I be a graded ideal of LK(E). Then there is a natural monoid isomorphism

ω :
V (LK(E))

V (I)
−→ V (LK(E)/I).

Proof. (i) Since V (LK(E)) is a refinement monoid (Theorem 3.6.21) and the graded ideals of LK(E) are
precisely the idempotent-generated ideals (Corollary 2.9.11), the result follows directly from Proposition
3.6.17(i).

(ii) Again by Corollary 2.9.11, we have that I is an idempotent-generated ideal, so the map ω is injective
by Proposition 3.6.17(ii). Now by Theorem 2.5.8 there exist H ∈HE and S⊆ BH such that I = I(H ∪SH).
Therefore, by using Theorem 2.4.15 and Corollary 3.2.12, we get

V (LK(E)/I) = V (LK(E)/I(H ∪SH))∼= V (LK(E/(H,S)))∼= ME/(H,S).

It follows that V (LK(E)/I) is generated by elements of the form [v−∑ f∈Z f f ∗], where v ∈ E0 \H and Z is
a finite (possibly empty) subset of s−1

E (v) such that r( f ) /∈H for every f ∈ Z. Thus the map ω is surjective,
and consequently a monoid isomorphism. ut

3.7 Extreme cycles
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In Chapter 1 we described the three “primary colors” of Leavitt path algebras: n×n matrix rings Mn(K)∼=
LK(An), Laurent polynomials K[x,x−1] ∼= LK(R1), and Leavitt algebras LK(1,n) ∼= LK(Rn) (for n ≥ 2). In
Theorem 2.6.14 we showed that the ideal of LK(E) generated by the set of line points Pl(E) yields a piece
of LK(E) similar in appearance to the first color, while in Theorem 2.7.3 we showed that the ideal of LK(E)
generated by the vertices which lie on cycles without exits Pc(E) is similar in appearance to the second
color. Intuitively, in this section we complete the picture by describing the piece of LK(E) which most
resembles the third color. Specifically, we identify sets of vertices which generate ideals in LK(E) which
are purely infinite simple as a K-algebra.
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Definitions 3.7.1. Let E be a graph and c a cycle in E. We say that c is an extreme cycle if c has exits and,
for every path λ starting at a vertex in c0, there exists µ ∈ Path(E) such that r(λ ) = s(µ), and r(λ µ) ∈ c0.
We will denote by Pec(E) the set of vertices which belong to extreme cycles. Intuitively, c is an extreme
cycle in case every path which leaves c can be lengthened in such a way that the longer path returns to c.

Let X ′ec be the set of all extreme cycles in a graph E. We define in X ′ec the following relation: given c,d ∈
X ′ec, we write c∼ d whenever c and d are connected, that is, T (c0)∩d0 6= /0, equivalently, T (d0)∩ c0 6= /0.
It is not difficult to see that ∼ is an equivalence relation. The set of all ∼-equivalence classes is denoted by
Xec = X ′ec/ ∼. When we want to emphasize a specific graph E under consideration we will write X ′ec(E)
and Xec(E) for X ′ec and Xec, respectively.

For c ∈ X ′ec, we let c̃ denote the class of c. We write c̃0 to represent the set of all vertices which are in
the cycles belonging to c̃.
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Examples 3.7.2. Consider the following graphs.

E = •ve
&& f // •w

g

ss

h

QQ and F = •v′e′
(( f ′

** •w′

g′
ii

h′1

tt

h′2

QQ .

Then straightforward computations yield that Pec(E) = {w}, X ′ec(E) = {g,h}, and Xec(E) = {g̃}. Similarly,
Pec(F) = {v′,w′}, X ′ec(F) = {e′, f ′g′,g′ f ′,h′1,h

′
2}, and Xec(F) =

{
ẽ′
}

.
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Example 3.7.3. Let ET be the Toeplitz graph e •u
88

f // •v . Then clearly Pec(ET ) = /0.
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Remark 3.7.4. Let E be an arbitrary graph. These two observations are straightforward to verify.

(i) For any c ∈ X ′ec, c̃0 = T (c0). Consequently, c̃0 is a hereditary subset of E0, which in turn yields that
Pec(E) is a hereditary subset of E0.

(ii) Given c,d ∈ X ′ec, c̃ 6= d̃ if and only if c̃0∩ d̃0 = /0.

We analyze the structure of the ideal generated by Pec(E).
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Lemma 3.7.5. Let E be an arbitrary graph and K any field. For every cycle c such that c ∈ X ′ec, the ideal
I(c̃0) is isomorphic to a purely infinite simple Leavitt path algebra. Concretely, I(c̃0) ∼= LK(HE), where
H = c̃0.

Proof. Observing that H is a hereditary subset of E0, we may use Theorem 2.5.19 and Remark 2.5.21(iii)
to get that I(c̃0) is isomorphic to the Leavitt path algebra LK(HE). We will show that this Leavitt path
algebra is purely infinite and simple by invoking the Purely Infinite Simplicity Theorem 3.1.10.

To show that every vertex of HE connects to a cycle, take v ∈ HE0. If v ∈ H then it connects to c by
definition of H = c̃0. If v /∈ H then there is f ∈ (HE)1 such that s( f ) = v and r( f ) ∈ H. Hence v connects
to c too.

Next, we show that every cycle in HE has an exit. Pick such a cycle d; then necessarily by the definition
of HE, d is a cycle in H. Since by construction we have d̃ = c̃, this means that d connects to c and hence it
has an exit in E, which is also an exit in HE.

Finally, to show that the only hereditary saturated subsets of (HE)0 are /0 and (HE)0, let /0 6= H ′ ∈HH E ,
and consider v ∈ H ′. Note that every pair of vertices in H is connected by a path, and that (HE)0 is the
saturation of H in HE. Hence, if v ∈ H then H ′ = (HE)0. If v /∈ H then there exists f ∈ (HE)1 such that
v = s( f ) and r( f ) ∈ H. This implies (HE)0 ⊆ H ′, so we get equality too. ut
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Proposition 3.7.6. Let E be an arbitrary graph and K any field. Then

I(Pec(E)) =⊕c̃∈Xec I(c̃0).

Furthermore, I(c̃0) is isomorphic to a purely infinite simple Leavitt path algebra for each c̃ ∈ Xec.

Proof. The hereditary set Pec(E) can be partitioned as Pec(E) = tc̃∈Xec c̃0. By the Remark 3.7.4(ii) and
Proposition 2.4.7, I(Pec(E)) = I(tc̃∈Xec c̃0) = ⊕c̃∈Xec I(c̃0). Finally, each I(c̃0) is isomorphic to a purely
infinite simple Leavitt path algebra by Lemma 3.7.5. ut
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Lemma 3.7.7. Let E be an arbitrary graph and K any field. Then the hereditary sets Pl(E), Pc(E) and
Pec(E) are pairwise disjoint. Consequently, the ideal of LK(E) generated by their union is I(Pl(E))⊕
I(Pc(E))⊕ I(Pec(E)).

Proof. By the definition of Pl(E), Pc(E) and Pec(E), they are pairwise disjoint. To get the result, apply
Proposition 2.4.7. ut

The following ideal will be of use later on, so we name it here.
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Definition 3.7.8. For a graph E we define

Ilce := I(Pl(E))⊕ I(Pc(E))⊕ I(Pec(E)).

As mentioned at the start of this section, the ideal Ilce captures the essential structural properties of the
three primary colors of Leavitt path algebras, a statement we now make more precise.
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Theorem 3.7.9. Let E be an arbitrary graph and K any field. Consider Ilce, the ideal of LK(E) presented
in Definition 3.7.8. Then

Ilce ∼=
(
⊕i∈Γ1MΛi(K)

)
⊕
(
⊕ j∈Γ2MΛ j(K[x,x−1])

)
⊕
(
⊕l∈Γ3 I(c̃0

l )
)
,
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where Γ1 is the index set of the disjoint decomposition of Pl(E) into hereditary sets, i.e., Pl(E) = ti∈Γ1Hi
as in Lemma 2.6.13, and for every i ∈ Γ1 we have that Λi denotes the cardinal of the set {µµ∗ | µ ∈
Path(E), r(µ) ∈ Hi}; where Γ2 is the index set of the cycles without exits in E and for every j ∈ Γ2 it
happens that Λ j is the cardinal of the set of different paths ending at the basis of cycle without exits c j and
not containing all the edges of the cycle; and where Γ3 indexes Xec(E) (see Definition 3.7.1).

Proof. We know that I(Pl(E)) is the socle of the Leavitt path algebra LK(E) and also its structure, which
is precisely the given in the statement, by Theorem 2.6.14. The structure of I(Pc(E)) was established in
Theorem 2.7.3. Finally, the structure of the third summand in Ilce follows by Proposition 3.7.6. That each
direct summand I(c̃0

nl
) is purely infinite simple (loosely speaking, is of the same primary color as the Leavitt

algebras) follows from Proposition 3.7.6. ut

In general the ideal Ilce of LK(E) need not be essential in LK(E). For example, let F denote the “doubly
infinite line graph” of Example 3.1.12. Since there are no cycles in F , we get vacuously that Pec(F) = /0 =
Pc(E). Since there are no line points in F , we have Pl(F) = /0, so that, by definition, Ilce(F) = {0}. So we
have produced an example of the desired type. However, when E0 is finite, we show below that the ideal
Ilce is “large” in LK(E). The key is the following.
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Lemma 3.7.10. Let E be a graph for which E0 is finite. Let v ∈ E0. Then v connects to at least one of: a
sink, a cycle without exits, or an extreme cycle.

Proof. Recall the preorder ≥ on E0 presented in Definition 2.0.5. Consider partial order resulting from the
antisymmetric closure of ≥; denote it by ≥′. The statement will be proved once we show that the minimal
elements in (E0,≥′) are sinks, vertices in cycles without exits, and vertices in extreme cycles.

Indeed, let v ∈ E0 be a minimal element. If v is a sink, we are done. Otherwise, there exists w ∈ E0 such
that v≥ w. The minimality of v implies w≥′ v, hence there is a cycle c in E such that v,w ∈ c0. If c has no
exits, we are done. Otherwise, let µ be a path in E of length ≥ 1 such that the first edge appearing in µ is
an exit for c. Then v≥ s(µ). Again by the minimality of v we have s(µ)≥′ v. This implies that every path
starting at a vertex of c0 returns to c0 and so c is an extreme cycle as required. ut
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Proposition 3.7.11. Let E be a graph for which E0 is finite. Then Ilce is an essential ideal of LK(E).

Proof. Let v ∈ E0. Since E0 is finite then Lemma 3.7.10 ensures that v connects to a line point, or to a
cycle without exists, or to an extreme cycle. This means that every vertex of E connects to the hereditary
set Pl(E)∪Pc(E)∪Pec(E) and, consequently, to its hereditary saturated closure, which we denote by H.
By Proposition 2.7.10 this means that I(H) is an essential ideal of LK(E), and by Lemma 3.7.7 it coincides
with Ilce. ut

We note that although Ilce is an essential ideal of LK(E) when E0 is finite, Ilce need not equal all of
LK(E). We see this behavior in LK(ET ), where ET is the Toeplitz graph as discussed in Example 3.7.3.
Here we have Pec(ET ) = /0 = Pc(ET ), and Pl(ET ) is the sink v. So Ilce(ET ) = I({v}) 6= LK(ET ) (because
{v} ∈HET ).

3.8 Purely infinite without simplicity
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We conclude Chapter 3 by presenting a description of the purely infinite (but not necessarily simple) Leavitt
path algebras arising from row-finite graphs. As happened in the purely infinite simple case (Section 3.1),
an in-depth analysis of the idempotent structure of LK(E) will be required. Many of the fundamental ideas
in this section can be found in the seminal paper [42].

The general theory of purely infinite rings works smoothly for s-unital rings, defined here.
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Definition 3.8.1. A ring R is said to be s-unital provided for each a in R there exist b in R such that
a = ab = ba. By [22, Lemma 2.2], if R is s-unital then for each finite subset F of R there is an element u in
R such that ux = x = xu for all x ∈ F .
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Of course all rings with local units are s-unital, so that all Leavitt path algebras fall under this umbrella.
For an example of an s-unital ring without nonzero idempotents, consider the algebra Cc(R) of those
continuous functions on the real line having compact support.

We start by recalling the definitions of the properties properly purely infinite and purely infinite in a
general non-unital, non-simple ring, introduced in [42]. We will then specialize to the simple case.
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Definition 3.8.2. Let R be a ring, and suppose x and y are square matrices over R, say x ∈ Mk(R) and
y ∈Mn(R) for k,n ∈ N. We use ⊕ to denote block sums of matrices; thus,

x⊕ y =
(

x 0
0 y

)
∈Mk+n(R),

and similarly for block sums of more than two matrices. We define a relation - on matrices over R by
declaring that x- y if and only if there exist α ∈Mkn(R) and β ∈Mnk(R) such that x = αyβ .

It is not hard to show that if x and y are idempotent matrices, then x- y if and only if x∼ f , where f is
an idempotent such that f ≤ y.

For any ring R and element a ∈ R, the expression RaR denotes the set of all finite sums ∑
n
i=1 ziati, where

zi, ti ∈ R. In case R is s-unital, then RaR is precisely the ideal of R generated by a.
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Definitions 3.8.3. Let R be any ring.

(i) We call an element a ∈ R properly infinite if a 6= 0 and a⊕a- a.
(ii) We call R purely infinite if the following two conditions are satisfied:

(1) no quotient of R is a division ring, and
(2) whenever a ∈ R and b ∈ RaR, then b- a (i.e., b = xay for some x,y ∈ R).

(iii) We call R properly purely infinite if every nonzero element of R is properly infinite.
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Lemma 3.8.4. Let R be an s-unital ring.

(i) If R is properly purely infinite, then R is purely infinite.
(ii) If M2(R) is purely infinite, then R is properly purely infinite.

Proof. (i) Suppose first that R/I is a division ring for some ideal I of R. Take a nonzero element a of
R/I. Then a is a nonzero element in R, and thus by hypothesis is properly infinite. So there exist elements
α1,α2,β1,β2 ∈ R such that (

a 0
0 a

)
=

(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2
0 0

)
.

But then in R/I we have that (
a 0
0 a

)
=

(
α1aβ 1 α1aβ 2
α2aβ 1 α2aβ 2

)
.

Since a 6= 0, it follows that α1,α2,β 1,β 2 are all nonzero. Now, since R/I is a division ring, α1aβ 2 = 0
implies a = 0, a contradiction. This shows that no quotient of R is a division ring, so that Condition (1) of
Definitions 3.8.3(ii) holds.

Now let a ∈ R be properly infinite and b ∈ RaR. By using that R is s-unital, one can easily see that
x1 + x2 + · · ·+ xr - x1⊕ x2⊕·· ·⊕ xr for all x1, . . . ,xr ∈ R, cf. [42, Lemma 2.2]. Write b = ∑

n
i=1 xiayi for

some xi,yi ∈ R. We have xiayi - a for all 1≤ i≤ n, whence by the above, we have

b- x1ay1⊕ x2ay2⊕·· ·⊕ xnayn - a⊕a⊕·· ·⊕a- a,

with the final - being a consequence of a⊕a - a. This establishes Condition (2) of Definitions 3.8.3(ii),
and yields the result.

(ii) As R is s-unital, given a ∈ R there exists u ∈ R such that ua = au = a. Hence,

a⊕a =

(
u 0
0 0

)(
a 0
0 0

)(
u 0
0 0

)
+

(
0 0
u 0

)(
a 0
0 0

)(
0 u
0 0

)
∈M2(R)(a⊕0)M2(R).



98 3 Idempotents, and finitely generated projective modules

Since M2(R) is assumed to be purely infinite, it follows that a⊕a- a⊕0, and so a⊕a- a. Therefore a is
either zero or properly infinite. ut

The concepts of properly purely infinite and purely infinite agree for simple s-unital rings. Moreover, in
this case we can relate these conditions to the existence of infinite idempotents in all nonzero right (or left)
ideals, see Proposition 3.8.7 below. However there are simple, non s-unital rings, which are purely infinite
but not properly purely infinite ([42, Example 3.5]).

We first show, in the next few lemmas, that every simple s-unital purely infinite ring contains nonzero
idempotents.
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Lemma 3.8.5. Let R be a ring (without a unit), and suppose that R contains nonzero elements x,y,u,v
satisfying the relations

vu = uv = u, yu = y, vx = x, v = yx. (3.1){r
el
s:
ex
is
ts
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}

Then R contains a nonzero idempotent.

Proof. Let R̃ denote a ring obtained by adjoining a unit to R. Then in R̃ we have

(y+(1− v))(x+(1−u)) = yx+ y(1−u)+(1− v)x+(1− v)(1−u) = v+0+0+(1− v) = 1.

It follows that e = (x+(1−u))(y+(1−v)) is an idempotent in R̃, whence 1−e is an idempotent which is
easily seen to belong to R. If e 6= 1, then 1− e is the desired nonzero idempotent in R.

Suppose that e = 1. Then y = yeu = y(x+(1−u))(y+(1− v))u = yxy ∈ R, which shows that v = yx is
a (nonzero) idempotent in R. ut
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Lemma 3.8.6. If R is s-unital, simple, and purely infinite then R contains a nonzero idempotent.

Proof. Let 0 6= x ∈ R, so (as R is s-unital) there exists a ∈ R with ax = xa = x. Then 0 6= x = xa = xa2,
so that a2 6= 0. Using two times the s-unitality, we see that there are b,c ∈ R such that ab = ba = a and
bc = cb = b. Since R is purely infinite, there are s, t ∈ R such that c = sa2t. Thus we have the following
relations between a,b,c and s, t:

ab = ba = a, bc = cb = b, and c = sa2t.

Define x = at, y = sa, v = c, and u = b. Then vu = uv = u , yx = sa2t = v , vx = cat = cbat = bat = at = x ,
and yu = sab = sa = y. So x,y,u,v are nonzero elements of R satisfying the relations (3.1), and so it follows
from Lemma 3.8.5 that R contains a nonzero idempotent. ut

We now obtain the promised characterization of purely infinite simple s-unital rings. In particular all the
conditions below are equivalent for a simple Leavitt path algebra.

{s
im
pl
es
-u
ni
ta
l}

Proposition 3.8.7. Let R be a simple s-unital ring. Then the following are equivalent:

(1) R is properly purely infinite.
(2) R is purely infinite.
(3) For every nonzero a ∈ R there are elements s, t ∈ R such that sat is a nonzero, infinite idempotent.
(4) Every nonzero one-sided ideal of R contains a nonzero infinite idempotent.

Proof. (1)⇒ (2) follows from Lemma 3.8.4(i).
(2)⇒ (3). By Lemma 3.8.6 R contains a nonzero idempotent e. So given a nonzero element a in R there

exist s, t in R such that e = sat. It remains to check that every nonzero idempotent in R is infinite. Let e
be a nonzero idempotent. Assume first that e is a unit for R. Then, since R is not a division ring, there is
a nonzero a in R such that a is not left invertible in R. Let s, t ∈ R be such that sat = e. Then f := tsa is
an idempotent in R with e ∼ f and f 6= e, which implies that e is infinite. Finally assume that e is not a
unit for R. We may assume that (1− e)x 6= 0 for some x ∈ R, where here 1 ∈ R̃ if R is not unital. As before
we can find an idempotent f ∈ (1− e)xR such that f ∼ e. But now g := f (1− e) is an idempotent in R
orthogonal to e, and equivalent to e. Since e+g = uev for some u,v ∈ R, there is an idempotent h≤ e such
that h∼ e+g∼ e⊕ e, showing indeed that e is properly infinite. This completes the argument.
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(3)⇒ (4) is contained in Proposition 3.1.7.
(4) ⇒ (1). First observe that, as R is a simple ring, every infinite idempotent in R is indeed properly

infinite. Now let a be a nonzero element in R. By assumption, there is a properly infinite idempotent e in R
such that e- a. Since R is simple there exists n≥ 1 such that a- n · e = e⊕ e⊕·· ·⊕ e. Thus we get

a⊕a- n · e⊕n · e- e- a,

showing that a is properly infinite. ut
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Lemma 3.8.8. Let I be an ideal of an arbitrary ring R.

(i) If R is (properly) purely infinite, then so is R/I.
(ii) Suppose that I is s-unital when viewed as a ring. If R is (properly) purely infinite, then so is I.

Proof. (i) It is clear that proper pure infiniteness passes from R to R/I. Now assume only that R is purely
infinite. Since any quotient of R/I is also a quotient of R, no quotient of R/I is a division ring. Consider
a,b ∈ R such that b ∈ (R/I)a(R/I). Then there is some c ∈ RaR such that c = b. By hypothesis, c = xay for
some x,y ∈ R, and therefore b = c = xay.

(ii) Assume first the specific case in which R is properly purely infinite, and let 0 6= a ∈ I. Then there

exist α1,α2,β1,β2 ∈ R such that
(

a 0
0 a

)
=

(
α1
α2

)
a
(
β1 β2

)
. Since I is s-unital, we also have a = ua = au

for some u ∈ I. Then (
a 0
0 a

)
=

(
α1u
α2u

)
a
(
uβ1 uβ2

)
with α1u,α2u,uβ1,uβ2 ∈ I. This proves that I is properly purely infinite.

Now assume the general case, so we assume only that R is purely infinite. Suppose first that I has an
ideal J such that I/J is a division ring. Since I is s-unital, J is an ideal of R. Since R/J is purely infinite by
(i), it suffices to find a contradiction working in R/J. Thus, there is no loss of generality in assuming that
J = 0. If e is the unit of I, then I = eI = Ie, and so I = eR = Re. It follows that er = ere = re for all r ∈ R,
whence e is a central idempotent of R. But then the annihilator of e in R is an ideal T such that R = I⊕T ,
and R/T ∼= I is a division ring, contradicting the assumption that R is purely infinite. Therefore no quotient
of I is a division ring.

Secondly, if a ∈ I and b ∈ IaI, then we at least have b = xay for some x,y ∈ R. Since also a = ua = au
for some u ∈ I, we have b = (xu)a(uy) with xu,uy ∈ I. Thus I satisfies the two required conditions, and is
therefore purely infinite. ut
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Lemma 3.8.9. Let e be an idempotent in a ring R. If R is (properly) purely infinite, then so is eRe.

Proof. Assume first that R is properly purely infinite. Any nonzero element a ∈ R is properly infinite in R,

and so
(

a 0
0 a

)
=

(
α1
α2

)
a
(
β1 β2

)
for some α1,α2,β1,β2 ∈ R. Then

(
a 0
0 a

)
=

(
eα1e
eα2e

)
a
(
eβ1e eβ2e

)
,

which shows that a is properly infinite in eRe. Therefore eRe is properly purely infinite in this case.
Now assume only that R is purely infinite. We first show that a prime purely infinite ring does not

contain idempotents e such that eRe is a division ring. To do so, suppose that R is a prime purely infinite
ring, and we have an idempotent e ∈ R such that eRe is a division ring. Since R is prime, eR is a simple
right R-module.

If eR = R, then (R(1− e))2 = 0 and so R(1− e) = 0 because R is prime. (Here we are writing R(1− e)
for the left ideal {r− re | r ∈ R}.) But then R = eRe and R is a division ring, contradicting the hypothesis
that R is purely infinite. Thus, eR 6= R and so (1− e)R 6= 0. Now (1− e)ReR 6= 0 because R is prime, and
hence there exists a nonzero element a ∈ (1− e)Re. Note that aR is a nonzero homomorphic image of eR,
whence aR is a simple right R-module. Since R is prime, aR = gR for some idempotent g, and eg = 0
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because ea = 0. Observe that g−ge is an idempotent which generates gR, so we can replace g by g−ge.
Hence, there is no loss of generality in assuming that e⊥ g.

Now f = e+g is an idempotent such that f R = eR⊕aR, and f ∈ ReR because gR = aR⊆ ReR. Since R
is purely infinite, f = xey for some x,y ∈ R. But then f R is a homomorphic image of eR, implying that f R
is simple or zero, which is impossible in light of f R = eR⊕aR. This contradiction establishes our claim.

Suppose now that I is an ideal of eRe such that eRe/I is a division ring. In this case I is a maximal ideal
of eRe. Moreover, e /∈ (eRe)I(eRe) = eRIRe, and so e /∈ RIR. Consequently, e is a nonzero idempotent in
R/RIR, and in particular, e cannot be in the Jacobson radical of R/RIR. Hence, there exists a (left) primitive
ideal P of R such that e /∈ P and RIR⊆ P. Now I ⊆ P∩ eRe$ eRe, and by maximality of I in eRe we have
I = P∩ eRe. This yields eRe/I = eRe/(P∩ eRe) ∼= e(R/P)e. But this means that the purely infinite prime
ring R/P has a corner which is a division ring, contradicting the claim above. Therefore no quotient of eRe
is a division ring.

Establishing the second condition is easier. Suppose that a ∈ eRe and b ∈ (eRe)a(eRe)⊆ RaR. Since R
is purely infinite, there exist x,y ∈ R such that b = xay, and hence b = (exe)a(eye) with exe,eye ∈ eRe. This
shows that eRe is purely infinite. ut

Our next goal is to characterize the properly infinite vertices of a Leavitt path algebra. Recall that a
characterization of the infinite vertices has been given in Proposition 3.1.6.
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Lemma 3.8.10. Let E be an arbitrary graph. If v ∈ E0 and |CSP(v)| ≥ 2, then v is a properly infinite
idempotent in LK(E).

Proof. Let e1 · · ·em and f1 · · · fn be two different closed simple paths in E based at v. Then there is some
positive integer t such that ei = fi for i = 1, . . . , t− 1 while et 6= ft . Thus, we have at least two different
edges leaving the vertex r(et−1) = r( ft−1). We compute that

v = s(e1) & r(e1) & · · ·& r(et−1) & r(et)⊕ r( ft) & r(et+1)⊕ r( ft+1) & · · ·& r(em)⊕ r( fn) = v⊕v.

Therefore v is properly infinite. ut

We now obtain a characterization of the properly infinite vertices in a Leavitt path algebra. Recall that
for X ⊆ E0, we denote by X the hereditary saturated closure of X .
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Proposition 3.8.11. Let E be an arbitrary graph and K any field. Let v ∈ E0. Then v is a properly infinite
idempotent in LK(E) if and only if there are vertices w1, . . . ,wn in T (v) such that |CSP(wi)| ≥ 2 for all i
and v ∈ {w1, . . . ,wn}.

Proof. Assume that v is properly infinite. Let W be the set of vertices w in T (v) such that |CSP(w)| ≥ 2.
If I(v) = I(W ) then there is a finite number w1, . . . ,wn of elements of W such that I(v) = I({w1, . . . ,wn}).
It then follows that v ∈ {w1, . . . ,wn}. It suffices therefore to show that I(v) = I(W ). On the contrary, sup-
pose I(W ) is strictly contained in I(v). Then by Zorn’s Lemma there exists a hereditary saturated subset H
properly contained in T (v) and containing W . Then LK(E)/I(H∪BH

H)
∼= LK(E/H), and X := T (v)\H is a

hereditary saturated subset of E/H not containing any non-trivial hereditary saturated subsets. By Theorem
2.5.19 we have I(v)/I(H ∪BH

H)
∼= LK(X (E/H)), and LK(X (E/H)) is graded simple. Moreover, v is a prop-

erly infinite idempotent in LK(X (E/H)), and it follows from the Trichotomy Principle (Proposition 3.1.14)
that LK(X (E/H)) is purely infinite simple. Therefore there exists w ∈ TE/H(v) such that |CSPE/H(w)| ≥ 2.
Thus we obtain w ∈ T (v)\H and |CSPE(w)| ≥ 2, so that w ∈W \H, which is a contradiction, and thereby
establishes one direction.

Conversely, assume that there are distinct vertices w1, . . . ,wn in T (v) such that |CSP(wi)| ≥ 2 for all i
and v∈ {w1, . . . ,wn}. By Lemma 3.8.10, e :=w1+w2+ · · ·+wn is a properly infinite idempotent of LK(E).
We claim that e. v. If w j ∈ T (wi) for i 6= j, then wi⊕w j . w j⊕w j . w j and so we can eliminate such wi.
Thus we may assume without loss of generality that wi /∈ T (w j) for all i 6= j. For each i, let γi ∈ Path(E)
with s(γi) = v and r(γi) = wi. Since wi /∈ T (w j) for all i, we see that the paths γ1,γ2, · · · ,γn are pairwise
incomparable, so that γ∗i γ j = 0 if i 6= j, and thus

g := γ1γ
∗
1 + γ2γ

∗
2 + · · ·+ γnγ

∗
n
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is an idempotent such that g≤ v, and such that

e = w1 +w2 + · · ·+wn ∼ g.

It follows that w1 +w2 + · · ·+wn . v. Since I(v) = I(w1, . . . ,wn) = I(w1 + · · ·+wn), we have v. ` · (w1 +
· · ·wn) = ` · e for some ` ∈ N. Finally we have

v⊕ v. 2` · (w1 + · · ·+wn). w1 + · · ·+wn . v ,

which shows that v is properly infinite. ut
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}

Remark 3.8.12. It follows easily from Proposition 3.8.11 that, for a vertex v of an arbitrary graph E, if v is
a properly infinite idempotent in LK(E), then |CSP(v)| is either 0 or ≥ 2.

{d
ef
:i
nf
in
it
ee
le
me
nt

}

Definition 3.8.13. An element a of a ring R is said to be an infinite element in case a⊕ b - a for some
nonzero element b in R. Obviously, a properly infinite element of R is an infinite element of R.
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Lemma 3.8.14. Let E be an arbitrary graph and K be any field. Suppose that every nonzero ideal of every
quotient of LK(E) contains an infinite element. Then E satisfies Condition (K), and BH = /0 for every
H ∈HE .

Proof. To show that E satisfies Condition (K), we have to check that CH = /0 for every H ∈ HE (see
the proof of Corollary 2.9.9). If CH 6= /0 for some H ∈ HE , then by the Structure Theorem for Ideals
2.8.10 there is a subquotient of LK(E) isomorphic to MΛ (p(x)K[x,x−1]), for some set Λ , where p(x) is a
polynomial of the form 1+ a1x+ · · ·+ anxn, with n > 0 and an 6= 0. Since K[x,x−1] embeds into a field,
rank considerations show immediately that there are no infinite elements in the ring MΛ (p(x)K[x,x−1]).
Therefore our hypothesis implies that CH = /0 for all H ∈HE .

Now suppose that, for some H ∈HE , we have BH 6= /0. Then the algebra LK(E)/I(H)∼= LK(E/(H, /0))
has a nonzero socle, indeed the ideal I(H ∪BH

H)/I(H) is a nonzero ideal of LK(E)/I(H) contained in the
socle of LK(E)/I(H) (see Theorem 2.4.15). Since clearly the socle (of any semiprime ring) cannot contain
infinite elements, we obtain a nonzero subquotient of LK(E) with no infinite elements, contradicting our
hypothesis. ut

Recall that a nonzero element u of a conical monoid V is said to be irreducible in case u cannot be
written as a sum of two nonzero elements ([42, Definitions 6.1]). Observe that, for an idempotent e of a
ring R, we have that [e] is irreducible in V (R) if and only if e is a primitive idempotent of R.

We are now in position to present the main result of this section, in which we characterize the purely
infinite Leavitt path algebras.
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}
Theorem 3.8.15. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) Every nonzero ideal of every quotient of LK(E) contains an infinite vertex, i.e., if I $ J are ideals of
LK(E), then there exists v ∈ E0 such that v ∈ J \ I and such that v+ I is an infinite idempotent of
LK(E)/I.

(2) Every nonzero right ideal of every quotient of LK(E) contains an infinite idempotent.
(3) Every nonzero left ideal of every quotient of LK(E) contains an infinite idempotent.
(4) LK(E) is properly purely infinite.
(5) LK(E) is purely infinite.
(6) Every vertex v ∈ E0 is properly infinite as an idempotent in LK(E), and BH = /0 for all H ∈HE .

Proof. We recall that LK(E) has local units (cf. Lemma 1.2.12(v)), so that all previously established results
about s-unital rings apply here.

(1)⇒ (2) and (3). Observe that Lemma 3.8.14 gives that E satisfies Condition (K) and that BH = /0 for
every H ∈HE . Therefore all the ideals of LK(E) are of the form I(H) for some H ∈HE . So a nonzero
quotient of LK(E) will be of the form LK(E/H). Moreover, by Theorem 3.3.11, each such E/H necessarily
satisfies Condition (L).
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Let v be a vertex of E/H. If v does not connect to any cycle in E/H, then TE/H(v) is an acyclic graph,
and thus the ideal generated by v in LK(E/H) does not contain any infinite vertex, by Proposition 3.1.6,
contradicting (1). Therefore every vertex of E/H connects to a cycle with exits, and again by Proposition
3.1.6, we get that every vertex is infinite.

By Proposition 2.9.13, every nonzero one-sided ideal of LK(E/H) contains a nonzero idempotent.
By Corollary 3.2.12, it only remains to show that every idempotent of the form v−∑e∈Z ee∗, where
v ∈ Inf(E/H) and Z is a non-empty finite subset of s−1

E/H(v), is infinite. But in this situation we can

choose f ∈ s−1
E/H(v) \ Z, and f f ∗ ≤ v−∑e∈Z ee∗, with f f ∗ ∼ f ∗ f = r( f ), which is an infinite idempo-

tent in LK(E/H) by the above. It follows that every nonzero idempotent of LK(E/H) is infinite, and so
every nonzero one-sided ideal of LK(E/H) contains an infinite idempotent.

(2) or (3)⇒ (4). This holds in any s-unital ring, see e.g. [42, Proposition 3.13].
(4)⇒ (5). This implication also holds in any s-unital ring, by Lemma 3.8.4(i).
(5)⇒ (6). Let v be a vertex in E. By Proposition 3.6.21, V (LK(E)) is a refinement monoid. Hence, by

[42, Theorem 6.10], in order to show that v is properly infinite as an idempotent of LK(E), it suffices to
show that [v] is not irreducible in any quotient of V (LK(E)).

By Theorem 3.6.23(i), any order-ideal I of V (LK(E)) is of the form V (I(H∪SH)), where H is a heredi-
tary saturated subset of E0 and S⊆ BH . Moreover, it follows from Theorem 3.6.23(ii) that we have monoid
isomorphisms

V (LK(E))/I ∼= V (LK(E)/I(H ∪SH))∼= V (LK(E/(H,S))).

Since there is nothing to do if [v] ∈ I, we may assume that v /∈ H. By Lemma 3.8.8(i), LK(E/(H,S)) ∼=
LK(E)/I(H∪SH) is purely infinite, and so for this part of the proof we may replace LK(E) by LK(E/(H,S)).
Thus, we need only show that [v] is not irreducible in V (LK(E)), or equivalently, that v is not a primitive
idempotent.

By Proposition 3.5.2, if v is a primitive idempotent then there cannot be any bifurcations in T (v). So
either v is a line point, or there is a unique shortest path connecting v to a cycle without exits. So we get that
either vLK(E)v ∼= K, or vLK(E)v ∼= K[x,x−1]. In any case vLK(E)v is not properly infinite, contradicting
Lemma 3.8.9.

We now show that BH = /0 for every H ∈HE . Let H ∈HE . Then LK(E)/I(H)∼= LK(E/(H, /0)) is prop-
erly infinite by Lemma 3.8.8(i), so by the preceeding argument every vertex of LK(E/(H, /0)) is properly
infinite. But if v ∈ BH then the idempotent v′ in the graph E/(H, /0) (which corresponds to the class of vH )
belongs to the socle of LK(E/(H, /0)) and so cannot be properly infinite. This shows that BH = /0.

(6)⇒ (1). By Proposition 3.8.11, for every v ∈ E0 there are w1, . . . ,wn ∈ T (v) such that |CSP(wi)| ≥ 2
for all i such that I(v) = I({w1, . . . ,wn}). It follows in particular that E satisfies Condition (L). Since the
same is true for every graph E/H, where H is a hereditary saturated subset of E0, we conclude that E
satisfies Condition (K) by Theorem 3.3.11. It follows from Proposition 2.9.9 that every ideal of LK(E) is
a graded ideal. Since BH = /0 for every H ∈HE , it follows from the Structure Theorem for Graded Ideals
2.5.8 that every ideal of LK(E) is of the form I(H) for some H ∈HE . Thus every nonzero ideal of every
quotient LK(E)/I(H)∼= LK(E/H) of LK(E) contains a vertex (by Proposition 2.9.13), which is necessarily
(properly) infinite. ut
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Remark 3.8.16. As a result of Proposition 3.8.11, Condition (6) of Theorem 3.8.15 provides a charac-
terization of purely infinite Leavitt path algebras LK(E) which depends solely on properties of the graph
E.{e

xa
mp
le
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s}

Example 3.8.17. We present an example of a purely infinite non-simple Leavitt path algebra. Consider the
following graph E:

u•
��
WW •voo // •w

��
WW .

We note that LK(E) is purely infinite because all vertices in E are properly infinite, and E is row-finite.
(Observe that v is properly infinite by using Proposition 3.8.11.) On the other hand, it is non-simple because
{u} and {w} are hereditary saturated subsets.
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We close the chapter by recording the following consequence of Theorem 3.8.15.
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}

Corollary 3.8.18. Let E be an arbitrary graph and K any field. If LK(E) is purely infinite then LK(E) is an
exchange ring.



References 207

References

1. Gene Abrams. Infinite matrix types which determine Morita equivalence. Arch. Math. (Basel), 46(1):33–37, 1986.
2. Gene Abrams. Leavitt path algebras: the first decade. Bull. Math. Sci., 5(1):59–120, 2015.
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for Leavitt path algebras of arbitrary graphs. Rev. Mat. Iberoam., 26(2):611–638, 2010.
44. Gonzalo Aranda Pino, Enrique Pardo, and Mercedes Siles Molina. Exchange Leavitt path algebras and stable rank. J.

Algebra, 305(2):912–936, 2006.
45. Gonzalo Aranda Pino, Enrique Pardo, and Mercedes Siles Molina. Prime spectrum and primitive Leavitt path algebras.

Indiana Univ. Math. J., 58(2):869–890, 2009.
46. Gonzalo Aranda Pino, Kulumani Rangaswamy, and Lia Vaš. ∗-regular Leavitt path algebras of arbitrary graphs. Acta

Math. Sin. (Engl. Ser.), 28(5):957–968, 2012.
47. Hyman Bass, Alex Heller, and Richard G. Swan. The Whitehead group of a polynomial extension. Inst. Hautes Études

Sci. Publ. Math., (22):61–79, 1964.
48. Teresa Bates and David Pask. Flow equivalence of graph algebras. Ergodic Theory Dynam. Systems, 24(2):367–382,

2004.
49. Teresa Bates, David Pask, Iain Raeburn, and Wojciech Szymański. The C∗-algebras of row-finite graphs. New York J.
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129. Konrad Schmüdgen. Noncommutative real algebraic geometry—some basic concepts and first ideas. In Emerging

applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 325–350. Springer, New York, 2009.
130. Laurence C. Siebenmann. A total Whitehead torsion obstruction to fibering over the circle. Comment. Math. Helv.,

45:1–48, 1970.
131. Mercedes Siles Molina. Algebras of quotients of Lie algebras. J. Pure Appl. Algebra, 188(1-3):175–188, 2004.
132. S. Paul Smith. Category equivalences involving graded modules over path algebras of quivers. Adv. Math., 230(4-

6):1780–1810, 2012.
133. S. Paul Smith. The space of Penrose tilings and the noncommutative curve with homogeneous coordinate ring

k〈x,y〉/(y2). J. Noncommut. Geom., 8(2):541–586, 2014.
134. Mark Tomforde. Extensions of graph C*-algebras. ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Dartmouth

College.
135. Mark Tomforde. Uniqueness theorems and ideal structure for Leavitt path algebras. J. Algebra, 318(1):270–299, 2007.
136. Mark Tomforde. Leavitt path algebras with coefficients in a commutative ring. J. Pure Appl. Algebra, 215(4):471–484,

2011.
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138. Leonid N. Vaseršteı̆n. The stable range of rings and the dimension of topological spaces. Funkcional. Anal. i Priložen.,
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