Leavitt path algebras: introduction, motivation, and basic properties

Gene Abrams
University of Colorado
Colorado Springs

Minicourse on Leavitt path algebras, Lecture 1

III Workshop on Dynamics, Numeration, Tilings and Graph Algebras (III FloripaDynSys)

Florianopolis - SC, Brazil, March 2017
Overview

1. Leavitt path algebras: Introduction and Motivation
2. Multiplicative properties
3. Projective modules
1. Leavitt path algebras: Introduction and Motivation

2. Multiplicative properties

3. Projective modules
Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.
Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.

Note: V has a basis $\mathcal{B} = \{b_1, b_2, \ldots, b_n\} \iff V \cong \bigoplus_{i=1}^{n} \mathbb{R}$ as vector spaces. So:

One result of Dimension Theorem, Rephrased:

$$\bigoplus_{i=1}^{n} \mathbb{R} \cong \bigoplus_{i=1}^{m} \mathbb{R} \iff m = n.$$
The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).
Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If $0 \neq v \in V$, then $\{v\}$ is linearly independent. If $kv = 0$, need to show $k = 0$. But $k \neq 0 \Rightarrow 1/k \cdot kv = 0 \Rightarrow v = 0$, contradiction. Similar idea (multiply by the inverse of a nonzero element of K) shows that a maximal linearly independent subset of V actually spans V.
Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If $0 \neq v \in V$, then $\{v\}$ is linearly independent.
Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If $0 \neq v \in V$, then $\{v\}$ is linearly independent.

If $kv = 0$, need to show $k = 0$. But $k \neq 0 \Rightarrow \frac{1}{k}kv = 0 \Rightarrow v = 0$, contradiction.

Similar idea (multiply by the inverse of a nonzero element of K) shows that a maximal linearly independent subset of V actually spans V.
Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must $m = n$? ("module" = "left module")

Question, Rephrased: If we take an R-module which has two different bases, must the two bases contain the same number of elements?
Question: Is the Dimension Theorem true for rings in general? That is, if \(R \) is a ring, and \(\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R \) as \(R \)-modules, must \(m = n \)? ("module" = "left module")

Question, Rephrased: If we take an \(R \)-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \(\mathbb{Z}, M_2(\mathbb{R}), C(\mathbb{R}), \ldots \)
Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must $m = n$? ("module" = "left module")

Question, Rephrased: If we take an R-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \mathbb{Z}, $M_2(R)$, $C(R)$, ...

Example: Consider the ring S of linear transformations from an infinite dimensional \mathbb{R}-vector space V to itself.
Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must $m = n$? (“module” = “left module”)

Question, Rephrased: If we take an R-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \mathbb{Z}, $M_2(\mathbb{R})$, $C(\mathbb{R})$, ...

Example: Consider the ring S of linear transformations from an infinite dimensional \mathbb{R}-vector space V to itself.

Think of V as $\bigoplus_{i=1}^{\infty} \mathbb{R}$. Then think of S as $RFM(\mathbb{R})$.
Brief history, and motivating examples

Intuitively, S and $S \oplus S$ have a chance to be “the same”.

$M \mapsto (\text{Odd numbered columns of } M, \text{Even numbered columns of } M)$

More formally: Let

$$Y_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad \text{and} \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
\[X_1 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix} \quad X_2 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix} \]
Brief history, and motivating examples

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.
Brief history, and motivating examples

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.
Brief history, and motivating examples

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.
Brief history, and motivating examples

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

That is, more formally, $(M_1, M_2) \mapsto M_1X_1 + M_2X_2$ is a reasonable way to associate a pair of matrices with a single one.
Brief history, and motivating examples

Here’s what’s really going on. These equations are easy to verify:

\[Y_1X_1 + Y_2X_2 = I, \]
\[X_1 Y_1 = I = X_2 Y_2, \quad \text{and} \quad X_1 Y_2 = 0 = X_2 Y_1. \]
Brief history, and motivating examples

Here's what's really going on. These equations are easy to verify:

\[Y_1 X_1 + Y_2 X_2 = I, \]
\[X_1 Y_1 = I = X_2 Y_2, \quad \text{and} \quad X_1 Y_2 = 0 = X_2 Y_1. \]

Using these, we get inverse maps \(S \to S \oplus S \) and \(S \oplus S \to S \):

\[M \mapsto (MY_1, MY_2) \mapsto MY_1 X_1 + MY_2 X_2 = M \cdot I = M, \quad \text{and} \]
Brief history, and motivating examples

Here’s what’s really going on. These equations are easy to verify:

\[Y_1 X_1 + Y_2 X_2 = I, \]
\[X_1 Y_1 = I = X_2 Y_2, \] and \[X_1 Y_2 = 0 = X_2 Y_1. \]

Using these, we get inverse maps \(S \to S \oplus S \) and \(S \oplus S \to S \):

\[M \mapsto (MY_1, MY_2) \mapsto MY_1 X_1 + MY_2 X_2 = M \cdot I = M, \] and

\[(M_1, M_2) \mapsto M_1 X_1 + M_2 X_2 \]
\[\mapsto ((M_1 X_1 + M_2 X_2)Y_1, (M_1 X_1 + M_2 X_2)Y_2) = (M_1, M_2) \]
Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains four elements y_1, y_2, x_1, x_2 satisfying

$$y_1x_1 + y_2x_2 = 1_R,$$

$$x_1y_1 = 1_R = x_2y_2, \text{ and } x_1y_2 = 0 = x_2y_1.$$

Then $R \cong R \oplus R$.
Using exactly the same idea, let R be ANY ring which contains four elements y_1, y_2, x_1, x_2 satisfying

$$y_1x_1 + y_2x_2 = 1_R,$$

$$x_1y_1 = 1_R = x_2y_2,$$

and

$$x_1y_2 = 0 = x_2y_1.$$

Then $R \cong R \oplus R$.

Note for later: i.e., $\sum_{i=1}^{2} y_ix_i = 1_R$ and $x_iy_j = \delta_{i,j}1_R$.

Gene Abrams
University of Colorado @ Colorado Springs

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 1: introduction, motivation, and basic properties
Brief history, and motivating examples

Remark: Here the sets $\{1_R\}$ and $\{x_1, x_2\}$ are each bases for R.
Brief history, and motivating examples

Remark: Here the sets \{1_R\} and \{x_1, x_2\} are each bases for \(R\).

Actually, when \(R \cong R \oplus R\) as \(R\)-modules, then \(\bigoplus_{i=1}^{m} R \cong \bigoplus_{i=1}^{n} R\) for all \(m, n \in \mathbb{N}\).
Leavitt path algebras

Natural question:
Does there exist R with, e.g., $R \cong R \oplus R \oplus R$, but $R \not\cong R \oplus R$?
Leavitt algebras

Natural question:

Does there exist R with, e.g., $R \cong R \oplus R \oplus R$, but $R \not\cong R \oplus R$?

Theorem

For every $m < n \in \mathbb{N}$ and field K there exists a K-algebra $R = L_K(m, n)$ with $\bigoplus_{i=1}^m R \cong \bigoplus_{i=1}^n R$, and all isomorphisms between free left R-modules result precisely from this one. Moreover, $L_K(m, n)$ is universal with this property.
Leavitt algebras

The $m = 1$ situation of Leavitt’s Theorem is now somewhat familiar. Similar to the $n = 2$ case that we saw above, $R \cong R^n$ if and only if there exist

$$x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in R$$

for which

$$\sum_{i=1}^{n} y_i x_i = 1_R$$

and

$$x_i y_j = \delta_{i,j} 1_R.$$
Leavitt algebras

The \(m = 1 \) situation of Leavitt’s Theorem is now somewhat familiar. Similar to the \(n = 2 \) case that we saw above, \(R \cong R^n \) if and only if there exist

\[
x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in R
\]

for which

\[
\sum_{i=1}^{n} y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.
\]

\(L_K(1, n) \) is the quotient

\[
K < X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n > / \ < (\sum_{i=1}^{n} Y_i X_i) - 1_K; X_i Y_j - \delta_{i,j} 1_K >
\]

Note: \(RFM(K) \) is much bigger than \(L_K(1, 2) \).
Leavitt path algebras

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \iff a \equiv b \text{ mod}(n - 1).$$

In particular, $S \cong S^n$, and $n > 1$ is minimal with this property.
Leavitt algebras

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \iff a \equiv b \mod(n - 1).$$

In particular, $S \cong S^n$, and $n > 1$ is minimal with this property.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and $n \geq 2$, $L_K(1, n)$ is simple.

(On the other hand, for $m \geq 2$, $L_K(m, n)$ is not simple.)

Remember, a ring R being *simple* means:

\[\forall 0 \neq r \in R, \exists \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^{n} \alpha_i r \beta_i = 1_R. \]
Leavitt algebras

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \iff a \equiv b \mod(n - 1).$$

In particular, $S \cong S^n$, and $n > 1$ is minimal with this property.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and $n \geq 2$, $L_K(1, n)$ is simple.

(On the other hand, for $m \geq 2$, $L_K(m, n)$ is not simple.)

Remember, a ring R being *simple* means:

$\forall \ 0 \neq r \in R, \ \exists \ \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^{n} \alpha_i r \beta_i = 1_R.$

Actually, $L_K(1, n)$ is VERY simple:

$\forall \ 0 \neq r \in L_K(1, n), \ \exists \ \alpha, \beta \in L_K(1, n) \text{ with } \alpha r \beta = 1_{L_K(1,n)}.$
Building rings from combinatorial objects

Here’s a familiar idea. Consider the set $T = \{x^0, x^1, x^2, \ldots\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$.

Consider formal symbols of the form

$$k_1 t_1 + k_2 t_2 + \cdots + k_n t_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g. $(kt)(k't') = kk'(t \cdot t')$.
Building rings from combinatorial objects

Here’s a familiar idea. Consider the set $T = \{x^0, x^1, x^2, \ldots\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$.

Consider formal symbols of the form

$$k_1 t_1 + k_2 t_2 + \cdots + k_n t_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g.

$$(kt)(k't') = kk'(t \cdot t')$$

Here KT is just the ring $\mathbb{R}[x]$ of polynomials with coefficients in \mathbb{R}.
Here’s a familiar idea. Consider the set $T = \{x^0, x^1, x^2,\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$. Consider formal symbols of the form

$$k_1 t_1 + k_2 t_2 + \cdots + k_n t_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g.

$$(kt)(k't') = kk'(t \cdot t').$$

Here KT is just the ring $\mathbb{R}[x]$ of polynomials with coefficients in \mathbb{R}.

Also, e.g. if we impose the relation $x^n = x^0$ on T, call the new semigroup \overline{T}, then $\overline{T} = \{x^0, x^1, x^2, ..., x^{n-1}\}$, and

$$\mathbb{R}\overline{T} \cong \mathbb{R}[x]/\langle x^n - 1 \rangle$$
Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and 'multiplication' in K and S.
Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and ‘multiplication’ in K and S.

For instance:

matrix rings, group rings, multivariable polynomial rings, etc ... can all be thought of in this way.
General path algebras

Let E be a directed graph. $E = (E^0, E^1, r, s)$

$$s(e) \cdot e \rightarrow r(e)$$

The *path algebra of E with coefficients in K* is the K-algebra KS as above, where the underlying set S is the set of all directed paths in E (including vertices), and multiplication of paths is just concatenation. Denote by KE. In particular, in KE,

For each edge e, $s(e) \cdot e = e = e \cdot r(e)$

For each vertex v, $v \cdot v = v$
Building Leavitt path algebras

Start with E, build its *double graph* \hat{E}.
Building Leavitt path algebras

Start with E, build its *double graph* \hat{E}. Example:

\[E = \]

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet \\
& \Downarrow & \Downarrow & \swarrow & \swarrow \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
& \swarrow & & \swarrow & \\
\bullet & & & \bullet & \bullet \\
& & \Downarrow & \swarrow & \\
\bullet & & & \bullet & \bullet \\
& & & \Downarrow & \swarrow \\
\bullet & & & \bullet & \bullet \\
& & & \Downarrow & \swarrow \\
\bullet & & & \bullet & \bullet \\
\end{array}
\]
Building Leavitt path algebras

Start with E, build its double graph \hat{E}. Example:

\[E = \]

\[\begin{array}{cc}
 & t \\
 v & w & \cdot \\
 & j \\
 f & g & i \\
 & w \\
 & x \\
 & u \\
 e & h \\
\end{array} \]

\[\hat{E} = \]

\[\begin{array}{cc}
 & t \\
 v & w & \cdot \\
 & j \\
 f & g & i \\
 & w \\
 & x \\
 & u \\
 e & h \\
\end{array} \]
Building Leavitt path algebras

Construct the path algebra $K\hat{E}$.

Consider these relations in $K\hat{E}$:

(CK1) $e^* e = r(e)$; and $f^* e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E_1 | s(e) = v\}} ee^*$ for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only finitely many edges: "regular" vertices)

Definition

The Leavitt path algebra of E with coefficients in K is $L(K)(E) = K\hat{E}/\langle (CK1), (CK2) \rangle$.

Gene Abrams
University of Colorado @ Colorado Springs

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 1: introduction, motivation, and basic properties
Building Leavitt path algebras

Construct the path algebra $K\hat{E}$. Consider these relations in $K\hat{E}$:

$$(CK1) \ e^*e = r(e); \text{ and } f^*e = 0 \text{ for } f \neq e \text{ (for all edges } e, f \text{ in } E).$$

$$(CK2) \ v = \sum \{e \in E_1 | s(e) = v\} ee^* \text{ for each vertex } v \text{ in } E.$$ (just at those vertices v which are not sinks, and which emit only finitely many edges: “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K is $L_K(E) = K\hat{E}/\langle (CK1), (CK2) \rangle$.
Building Leavitt path algebras

Construct the path algebra $K\hat{E}$. Consider these relations in $K\hat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum\{e \in E^1 | s(e) = v\} ee^*$ for each vertex v in E.
Building Leavitt path algebras

Construct the path algebra $K\hat{E}$. Consider these relations in $K\hat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum\{e \in E^1 | s(e) = v\} ee^*$ for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only finitely many edges: “regular” vertices)
Building Leavitt path algebras

Construct the path algebra $\mathbb{K}\hat{E}$. Consider these relations in $\mathbb{K}\hat{E}$:

(CK1) $e^* e = r(e)$; and $f^* e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum\{e \in E^1 | s(e) = v\} ee^*$ for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only finitely many edges: “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in \mathbb{K}

$$L_\mathbb{K}(E) = \mathbb{K}\hat{E} / < (CK1), (CK2) >$$
Leavitt path algebras: Examples

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:

\[\hat{E} = \]

\[ee^* + ff^* + gg^* = v \quad g^*g = w \quad g^*f = 0 \]

\[h^*h = w \ (CK1) \quad hh^* = u \ (CK2) \]
Leavitt path algebras: Examples

Some sample computations in $L_\mathbb{C}(E)$ from the Example:

$\hat{E} =$

$$ee^* + ff^* + gg^* = v \quad g^*g = w \quad g^*f = 0$$
$$h^*h = w \ (CK1) \quad hh^* = u \ (CK2)$$

$ff^* = \ldots \ (\text{no simplification})$ Note: $(ff^*)^2 = f(f^*f)f^* = ff^*$

Gene Abrams
University of Colorado @ Colorado Springs

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 1: introduction, motivation, and basic properties
Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:
Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

\[E = v_1 \xrightarrow{e_1} v_2 \xrightarrow{e_2} v_3 \ldots \ldots \ldots \ldots v_{n-1} \xrightarrow{e_{n-1}} v_n \]

Then \(L_K(E) \cong M_n(K) \).
Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

\[
E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}
\]

Then \(L_K(E) \cong M_n(K)\).

\[
E = \bullet^v \xrightarrow{\x}
\]

Then \(L_K(E) \cong K[x, x^{-1}]\).
Leavitt path algebras: Examples

\[E = R_n = \]

Then \(L_K(E) \cong L_K(1, n) \).
Leavitt path algebras: Examples

Then $L_K(E) \cong L_K(1, n)$.

Remember: $L_K(1, n)$ has generators and relations:
$x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in R;$
Leavitt path algebras: Examples

\[E = R_n = \]

Then \(L_K(E) \cong L_K(1, n) \).

Remember: \(L_K(1, n) \) has generators and relations:
\[x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in R; \quad \sum_{i=1}^{n} y_i x_i = 1_R, \text{ and } x_i y_j = \delta_{i,j} 1_R, \]
Leavitt path algebras: Examples

Then $L_K(E) \cong L_K(1, n)$.

Remember: $L_K(1, n)$ has generators and relations:
$x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in R; \sum_{i=1}^n y_i x_i = 1_R$, and $x_i y_j = \delta_{i,j} 1_R$.
while $L_K(R_n)$ has these SAME generators and relations, where we identify y_i^* with x_i.

Gene Abrams
University of Colorado @ Colorado Springs
Historical note, part 1

1962: Leavitt gives construction of $L_K(1, n)$.
Historical note, part 1

1962: Leavitt gives construction of $L_K(1, n)$.
1979: Cuntz gives construction of the C^*-algebras O_n.
Historical note, part 1

1962: Leavitt gives construction of $L_K(1, n)$.

1979: Cuntz gives construction of the C^*-algebras \mathcal{O}_n.

1980’s: Cuntz, Krieger, and others generalize the \mathcal{O}_n construction to directed graphs, and produce the graph C^*-algebras $C^*(E)$.

Note: The notation (CK1) and (CK2) refer to Cuntz and Krieger.
1962: Leavitt gives construction of $L_K(1,n)$.

1979: Cuntz gives construction of the C^*-algebras \mathcal{O}_n.

1980’s: Cuntz, Krieger, and others generalize the \mathcal{O}_n construction to directed graphs, and produce the graph C^*-algebras $C^*(E)$.

Note: The notation (CK1) and (CK2) refer to Cuntz and Krieger.

June 2004: Various algebraists attend the CBMS lecture series “Graph C^*-algebras: algebras we can see”, held at University of Iowa, given by Iain Raeburn.

Algebraic analogs of graph C^*-algebras are defined and investigated starting Fall 2004.
1	Leavitt path algebras: Introduction and Motivation
2	Multiplicative properties
3	Projective modules
Elements in $L_K(E)$

Notation: If $p = e_1 e_2 \cdots e_n$ is a directed path in E then $s(p)$ denotes $s(e_1)$, and $r(p)$ denotes $r(e_n)$.

Denote n by $\ell(p)$.

Lemma: Every element of $L_K(E)$ can be written as

$$\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$

for some $n \in \mathbb{N}$, where: $k_i \in K$, and α_i, β_j are paths in E for which $r(\alpha_i) = r(\beta_i) = s(\beta_i^*)$.

Idea: any expression with a \ast-term on the left reduces either to 0, or to the appropriate vertex.
Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.
Elements in $L_K(E)$

Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.

Lemma: $L_K(E)$ is unital if and only if E^0 is finite, in which case

$$1 = \sum_{v \in E^0} v.$$
Elements in $L_K(E)$

Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.

Lemma: $L_K(E)$ is unital if and only if E^0 is finite, in which case

$$1 = \sum_{v \in E^0} v.$$

If E^0 is infinite we get a set of enough idempotents in $L_K(E)$. (Module theory is still well-understood in this situation.)
$L_K(E)$ as a \mathbb{Z}-graded algebra

For each vertex v, and each edge e, define
\[\deg(v) = 0, \quad \deg(e) = 1, \quad \deg(e^*) = -1.\]

Extend this to terms of the form $\alpha \beta^*$ by setting
\[\deg(\alpha \beta^*) = \ell(\alpha) - \ell(\beta).\]

For $d \in \mathbb{Z}$, let $L_K(E)_d$ denote expressions of the form
\[\sum_{i=1}^{n} \alpha_i \beta_i^* \quad \text{where} \quad \deg(\alpha_i \beta_i^*) = d.\]

Then $L_K(E)_d$ is clearly a K-subspace of $L_K(E)$, and for all $d, d' \in \mathbb{Z}$ we can show: $L_K(E)_d \cdot L_K(E)_{d'} \subseteq L_K(E)_{d+d'}$.

$L_K(E)$ is “\mathbb{Z}-graded”.
More Examples of Leavitt path algebras.

Mentioned above: If

\[
E = \bullet v_1 \xrightarrow{f_1} \bullet v_2 \xrightarrow{f_2} \bullet v_3 \ldots \ldots \bullet v_{n-1} \xrightarrow{f_{n-1}} \bullet v_n
\]

then \(L_K(E) \cong M_n(K) \).

Any expression \(p_u p_t^* \) has a unique start / end vertex, say \(v_i \) and \(v_j \).
Then the isomorphism \(L_K(E) \to M_n(K) \) is given by extending:

\[
p_u p_t^* \mapsto e_{i,j}.
\]

Note that we may wlog assume that each of \(p_u \) and \(p_t \) ends at \(v_n \).
More Examples of Leavitt path algebras.

Note also: the graph E contains no (directed) closed paths, contains exactly one sink (namely, v_n), and that there are exactly n paths which end in v_n (including the path of length 0).

Using this idea, we can generalize to the following.

Proposition: Suppose E is a finite graph which contains no (directed) closed paths. Let v_1, v_2, \ldots, v_t denote the sinks of E. (At least one must exist.) For each $1 \leq i \leq t$, let n_i denote the number of paths in E which end in v_i. Then

$$L_K(E) \cong \bigoplus_{i=1}^{t} M_{n_i}(K).$$
More Examples of Leavitt path algebras.

So the “finite, no (directed) closed paths” case gives algebras which are well-understood.

Note: If

\[E = \bullet \rightarrow \bullet \rightarrow \bullet \quad \text{and} \quad F = \bullet \rightarrow \bullet \leftarrow \bullet \]

then \(E \) and \(F \) are not isomorphic as graphs, but \(L_K(E) \cong L_K(F) \cong M_3(K) \).

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.
More Examples of Leavitt path algebras.

So the “finite, no (directed) closed paths” case gives algebras which are well-understood.

Note: If

\[
E = \bullet \rightarrow \bullet \rightarrow \bullet \quad \text{and} \quad F = \bullet \rightarrow \bullet \leftarrow \bullet
\]

then \(E\) and \(F\) are not isomorphic as graphs, but \(L_K(E) \cong L_K(F) \cong M_3(K)\).

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.

A fundamental question in Leavitt path algebras: Can we identify graphical connections between graphs \(E\) and \(F\) which will guarantee that \(L_K(E) \cong L_K(F)\)?
More Examples of Leavitt path algebras.

We use this same idea to produce more descriptions of Leavitt path algebras. Let $R_n(d)$ denote this graph:

$$
\begin{array}{c}
\bullet \quad w_1 \quad \rightarrow \quad \bullet \quad w_2 \quad \rightarrow \quad \cdots \quad \bullet \quad w_{d-1} \quad \rightarrow \quad \bullet \quad v \\
\end{array}
$$

Then $L_K(R_n(d)) \cong M_d(L_K(1,n))$. The idea is the same as before, but now at the end of each trip into the "end", you pick up an element of $L_K(1,n)$. For this result $n=1$ is included as well.
More Examples of Leavitt path algebras.

We use this same idea to produce more descriptions of Leavitt path algebras. Let $R_n(d)$ denote this graph:

![Graph Image]

Then

$$L_K(R_n(d)) \cong M_d(L_K(1, n)).$$

The idea is the same as before, but now at the end of each trip into the “end”, you pick up an element of $L_K(1, n)$. For this result $n = 1$ is included as well.
More Examples of Leavitt path algebras.

Even more generally:

Proposition: Let E be a finite graph, and $d \in \mathbb{N}$. Let S_dE be the graph constructed from E by taking the “straight line” graph of length d and appending it at each vertex of E. Then

$$L_K(S_dE) \cong M_n(L_K(E)).$$
More Examples of Leavitt path algebras.

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t vertices. Then $L_K(E) \cong M_t(K[x, x^{-1}])$.
More Examples of Leavitt path algebras.

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t vertices. Then $L_K(E) \cong M_t(K[x, x^{-1}])$.

More generally, if E is a graph which contains a single cycle c, and c has no “exits”, then

$$L_K(E) \cong M_{n(v)}(K[x, x^{-1}]),$$

where, if v denotes any (fixed) vertex of c, $n(v)$ is the number of distinct paths in E which end at v and do not contain c.
More Examples of Leavitt path algebras.

There are some non-standard (surprising?) isomorphisms between Leavitt path algebras. Let $E = R_3$, so that $S = L_K(E) \cong L_K(1, 3)$. Then as left S-modules we have $S^1 \cong S^3$. So $\text{End}_S(S) \cong \text{End}_S(S^3)$, which gives that, as rings,

$$S \cong M_3(S).$$

So using the previous Proposition, these two graphs have isomorphic Leavitt path algebras:

$$R_3 = \bullet \quad \text{and} \quad R_3(3) = \bullet \rightarrow \bullet \rightarrow \bullet$$

That is, $L_K(R_3) \cong L_K(R_3(3))$.
More Examples of Leavitt path algebras.

On the other hand, R_3 and

$$R_3(2) = \bullet \xrightarrow{} \bullet$$

do NOT have isomorphic Leavitt path algebras.

(Leavitt showed this in the 1962 paper.)
Morita equivalence

General definition: Let R and S be rings. R and S are *Morita equivalent* in case the module categories $R - \text{Mod}$ and $S - \text{Mod}$ are equivalent.
Morita equivalence

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R–Mod and S–Mod are equivalent.

Suppose R and S are unital. Then $R \sim_M S$
Morita equivalence

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories $R-Mod$ and $S-Mod$ are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

\iff there exist bimodules (with additional properties) $R_P S$ and $S_Q R$ with $P \otimes Q \cong R$ (as $R-R$-bimodules) and $Q \otimes P \cong S$ (as $S-S$-bimodules).
Morita equivalence

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R–Mod and S–Mod are equivalent.

Suppose R and S are unital. Then $R \sim_{M} S$

\iff there exist bimodules (with additional properties) $R P S$ and $S Q R$ with $P \otimes Q \cong R$ (as R–R-bimodules) and $Q \otimes P \cong S$ (as S–S-bimodules).

\iff there exists $n \in \mathbb{N}$, $e = e^2 \in M_n(S)$ for which $M_n(S)eM_n(S) = M_n(S)$ and $R \cong eM_n(S)e$.
Morita equivalence

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories $R - \text{Mod}$ and $S - \text{Mod}$ are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

\iff there exist bimodules (with additional properties) $R P_S$ and $S Q_R$ with $P \otimes Q \cong R$ (as $R - R$-bimodules) and $Q \otimes P \cong S$ (as $S - S$-bimodules).

\iff there exists $n \in \mathbb{N}$, $e = e^2 \in M_n(S)$ for which $M_n(S)eM_n(S) = M_n(S)$ and $R \cong eM_n(S)e$.

\iff $FM_N(R) \cong FM_N(S)$ as rings.
Morita equivalence

Note: In particular, R and $M_n(R)$ are always Morita equivalent.
Morita equivalence

Note: In particular, R and $M_n(R)$ are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and F, when is $L_K(E) \sim_M L_K(F)$?
Note: In particular, R and $M_n(R)$ are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and F, when is $L_K(E) \sim_M L_K(F)$?

Note that this is a courser equivalence relation on rings than isomorphism. So e.g. even though R_3 and $M_2(R_3)$ are not isomorphic, they are Morita equivalent (and therefore share many of the same properties).

Appropriate generalizations hold in case R and S have enough idempotents.
1. Leavitt path algebras: Introduction and Motivation

2. Multiplicative properties

3. Projective modules
The monoid $\mathcal{V}(R)$

Recall: P is a \textit{finitely generated projective} R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Example: In $R = M_2(\mathbb{R})$, $P = M_2(\mathbb{R})e_1$, $1 = (\ast \ 0 \ 0 \ast)$ is a finitely projective R-module. Note $P \not\cong R^n$ for any n.

Example: $L_K(E)$ contains projective modules of the form $L_K(E)p$ for each path p in E.

Gene Abrams
University of Colorado @ Colorado Springs
The monoid \(\mathcal{V}(R) \)

Recall: \(P \) is a \textit{finitely generated projective} \(R \)-module in case
\[
P \oplus Q \cong R^n \quad \text{for some } Q, \text{ some } n \in \mathbb{N}.
\]

Key example: \(R \) itself, or any \(R^n \).
The monoid $\mathcal{V}(R)$

Recall: P is a \textit{finitely generated projective} R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Key example: R itself, or any R^n.

Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1 - f) = R^1$.

Example: In $R = M_2(\mathbb{R})$, $P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ is a finitely projective R-module. Note $P \not\cong R^n$ for any n.
The monoid $\mathcal{V}(R)$

Recall: P is a *finitely generated projective* R-module in case

$P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Key example: R itself, or any R^n.

Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1 - f) = R^1$.

Example: In $R = M_2(\mathbb{R})$, $P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ is a finitely projective R-module. Note $P \not\cong R^n$ for any n.

Example: $L_K(E)$ contains projective modules of the form $L_K(E)pp^*$ for each path p in E.
The monoid $\mathcal{V}(R)$

$\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus, this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. $R = \mathbb{K}$, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \cong M \cong S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$.

So, in particular:

Example. $S = \text{Mod}(\mathbb{K})$, \mathbb{K} a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: $\mathcal{V}(R) \{[0]\}$ is a semigroup (i.e., is closed under \oplus).

Remark: Given a ring R, it is in general not easy to compute $\mathcal{V}(R)$.

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 1: introduction, motivation, and basic properties
The monoid $\mathcal{V}(R)$

$\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus, this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. $R = K$, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Remark: $\mathcal{V}(R) \{[0]\}$ is a semigroup (i.e., is closed under \oplus).

Remark: Given a ring R, it is in general not easy to compute $\mathcal{V}(R)$.

Gene Abrams
University of Colorado @ Colorado Springs

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 1: introduction, motivation, and basic properties
The monoid $\mathcal{V}(R)$

$\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus, this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. $R = K$, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim_{\mathcal{M}} S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$.

The monoid $\mathcal{V}(R)$

$\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus, this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. $R = K$, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim^M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$. So, in particular:

Example. $S = M_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$.

(But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: $\mathcal{V}(R)\{[0]\}$ is a semigroup (i.e., is closed under \oplus).

Remark: Given a ring R, it is in general not easy to compute $\mathcal{V}(R)$.
The monoid $\mathcal{V}(R)$

$\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus, this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. $R = K$, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \simeq_M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$. So, in particular:

Example. $S = M_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$.

(But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: $\mathcal{V}(R) \setminus \{[0]\}$ is a semigroup (i.e., is closed under \oplus).
The monoid \(\mathcal{V}(R) \)

\(\mathcal{V}(R) \) denotes the isomorphism classes of finitely generated projective (left) \(R \)-modules. With operation \(\oplus \), this becomes an abelian monoid. Note \(R \) itself plays a special role in \(\mathcal{V}(R) \).

Example. \(R = K \), a field. Then \(\mathcal{V}(R) \cong \mathbb{Z}^+ \).

Lemma: If \(R \sim_M S \), then \(\mathcal{V}(R) \cong \mathcal{V}(S) \). So, in particular:

Example. \(S = M_d(K) \), \(K \) a field. Then \(\mathcal{V}(S) \cong \mathbb{Z}^+ \).

(But note that the 'position' of \(S \) in \(\mathcal{V}(S) \) is different than the position of \(R \) in \(\mathcal{V}(R) \).)

Remark: \(\mathcal{V}(R) \setminus \{[0]\} \) is a semigroup (i.e., is closed under \(\oplus \)).

Remark: Given a ring \(R \), it is in general not easy to compute \(\mathcal{V}(R) \).
The monoid M_E

Here’s a ‘natural’ monoid arising from any directed graph E.
The monoid M_E

Here’s a ‘natural’ monoid arising from any directed graph E. Associate to E the abelian monoid $(M_E, +)$:

M_E is generated by $\{a_v | v \in E^0\}$

So $M_E = \{n_1 a_{v_1} + n_2 a_{v_2} + \cdots + n_t a_{v_t}\}$ with $n_i \in \mathbb{Z}^+$. Relations in M_E are given by: $a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$.
The monoid \(M_E \)

Example. Let \(F \) be the graph

![Graph Diagram]

So \(M_F \) consists of elements \(\{n_1a_1 + n_2a_2 + n_3a_3\} \) \((n_i \in \mathbb{Z}^+)\), subject to: \(a_1 = a_2 + a_3 \); \(a_2 = a_1 + a_3 \); \(a_3 = a_1 + a_2 \).
The monoid M_E

Example. Let F be the graph

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ ($n_i \in \mathbb{Z}^+$), subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

It's not hard to get:
The monoid M_E

Example. Let F be the graph

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\} \ (n_i \in \mathbb{Z}^+)$,
subject to: $a_1 = a_2 + a_3; \ a_2 = a_1 + a_3; \ a_3 = a_1 + a_2$.
It's not hard to get: $M_F = \{0, \ a_1, \ a_2, \ a_3, \ a_1 + a_2 + a_3\}$.
The monoid M_E

Example. Let F be the graph

![Graph Diagram]

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ ($n_i \in \mathbb{Z}^+$), subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

It’s not hard to get: $M_F = \{0, a_1, a_2, a_3, a_1 + a_2 + a_3\}$.

We see that the semigroup $M_F \setminus \{0\}$ is actually a group, $\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
The monoid $\mathcal{V}(L_K(E))$

Example:

$$E = R_n = \begin{array}{c}
y_1 \\
y_2 \\
y_3 \\
y_n
\end{array}$$

Then M_E is the set of symbols of the form

$$n_1 a_v \ (n_1 \in \mathbb{Z}^+)$$

subject to the relation: $a_v = na_v$
The monoid $\mathcal{V}(L_K(E))$

Example:

$$E = R_n = \begin{array}{c}
\text{\begin{array}{c} y_3 \\
y_2 \\
y_1 \\
y_n
\end{array}}
\end{array}$$

Then M_E is the set of symbols of the form

$$n_1 a_v \quad (n_1 \in \mathbb{Z}^+)$$

subject to the relation: \(a_v = na_v \)

So here, $M_E = \{0, a_v, 2a_v, \ldots, (n - 1)a_v\}$.

Again we have a situation where the semigroup $M_E \setminus \{0\}$ is a group, \(\cong \mathbb{Z}_{n-1} \).
A graph E is \textit{row-finite} if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no “infinite emitters”.)
The monoid $\mathcal{V}(L_K(E))$

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no “infinite emitters”.)

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007) [36]

For any row-finite directed graph E,

$$\mathcal{V}(L_K(E)) \cong M_E.$$
The monoid $\mathcal{V}(L_K(E))$

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no “infinite emitters”.)

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007) [36]
For any row-finite directed graph E,

$$\mathcal{V}(L_K(E)) \cong M_E.$$

Moreover, there is an appropriate universal property that $L_K(E)$ satisfies.
The monoid $\mathcal{V}(L_K(E))$

A graph E is *row-finite* if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no “infinite emitters”.)

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007) \cite{ara2007}

For any row-finite directed graph E,

$$\mathcal{V}(L_K(E)) \cong M_E.$$

Moreover, there is an appropriate universal property that $L_K(E)$ satisfies.

Aside: The proof uses a deep result by G. Bergman \cite{bergman1978}.
The monoid $\mathcal{V}(L_K(E))$

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$\mathcal{V}(S) = \{0, S, S^2, \ldots, S^{n-1}\}.$$
The monoid $\mathcal{V}(L_K(E))$

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$\mathcal{V}(S) = \{0, S, S^2, \ldots, S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.
The monoid $\mathcal{V}(L_K(E))$

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$\mathcal{V}(S) = \{0, S, S^2, \ldots, S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It’s clear that $L_K(1, n) \cong L_K(1, n') \iff n = n'$.
The monoid $\mathcal{V}(L_K(E))$

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$\mathcal{V}(S) = \{0, S, S^2, \ldots, S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It’s clear that $L_K(1, n) \cong L_K(1, n') \iff n = n'$. But we also get:

$$L_K(1, n) \sim_M L_K(1, n') \iff n = n'.$$
Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

1) the “quotient of a path algebra” approach, and
2) the “universal algebra which supports M_E as its \mathcal{V}-monoid” approach.

These were developed in parallel.

The two approaches together have complemented each other in the development of the subject.
What’s ahead?

Lecture 2: (Wednesday) Some theorems of the form

\[L_K(E) \text{ has ring-theoretic property } \mathcal{P} \iff E \text{ has graph-theoretic property } \mathcal{Q}. \]

In particular, we’ll consider the ideal structure of \(L_K(E) \).
Also: connections / similarities with graph C*-algebras.

Lecture 3: (Friday) Some applications of, generalizations of, and open questions in Leavitt path algebras.