Leavitt path algebras: introduction, motivation, and basic properties

Gene Abrams

Minicourse on Leavitt path algebras, Lecture 1

III Workshop on Dynamics, Numeration, Tilings and Graph Algebras (III FloripaDynSys)

Florianopolis - SC, Brazil, March 2017

Overview

- 1 Leavitt path algebras: Introduction and Motivation
- 2 Multiplicative properties
- 3 Projective modules

1 Leavitt path algebras: Introduction and Motivation

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.

Note: V has a basis $\mathcal{B} = \{b_1, b_2, ..., b_n\} \Leftrightarrow V \cong \bigoplus_{i=1}^n \mathbb{R}$ as vector spaces. So:

One result of Dimension Theorem, Rephrased:

$$\bigoplus_{i=1}^n \mathbb{R} \cong \bigoplus_{i=1}^m \mathbb{R} \iff m = n.$$

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If $0 \neq v \in V$, then $\{v\}$ is linearly independent.

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If $0 \neq v \in V$, then $\{v\}$ is linearly independent.

If kv = 0, need to show k = 0. But $k \neq 0 \Rightarrow \frac{1}{k}kv = 0 \Rightarrow v = 0$, contradiction.

Similar idea (multiply by the inverse of a nonzero element of K) shows that a maximal linearly independent subset of V actually spans V.

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^n R \cong \bigoplus_{i=1}^m R$ as R-modules, must m=n? ("module" = "left module")

Question, Rephrased: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^n R \cong \bigoplus_{i=1}^m R$ as R-modules, must m=n? ("module" = "left module")

Question, Rephrased: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \mathbb{Z} , $\mathrm{M}_2(\mathbb{R})$, $\mathcal{C}(\mathbb{R})$, ...

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^n R \cong \bigoplus_{i=1}^m R$ as R-modules, must m=n? ("module" = "left module")

Question, Rephrased: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \mathbb{Z} , $\mathrm{M}_2(\mathbb{R})$, $\mathcal{C}(\mathbb{R})$, ...

Example: Consider the ring S of linear transformations from an infinite dimensional \mathbb{R} -vector space V to itself.

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^n R \cong \bigoplus_{i=1}^m R$ as R-modules, must m=n? ("module" = "left module")

Question, Rephrased: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g. \mathbb{Z} , $\mathrm{M}_2(\mathbb{R})$, $\mathcal{C}(\mathbb{R})$, ...

Example: Consider the ring S of linear transformations from an infinite dimensional \mathbb{R} -vector space V to itself.

Think of V as $\bigoplus_{i=1}^{\infty} \mathbb{R}$. Then think of S as $RFM(\mathbb{R})$.

Intuitively, S and $S \oplus S$ have a chance to be "the same".

 $M \mapsto (\text{Odd numbered columns of } M, \text{Even numbered columns of } M)$

More formally: Let

$$Y_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \ddots \end{pmatrix} \quad Y_2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & \dots \\ \vdots & \ddots \end{pmatrix}$$

$$X_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \quad X_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots \end{pmatrix}$$

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

Then MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

That is, more formally, $(M_1, M_2) \mapsto M_1 X_1 + M_2 X_2$ is a reasonable way to associate a pair of matrices with a single one.

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$

$$X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$$

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$
 $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$

Using these, we get inverse maps $S \to S \oplus S$ and $S \oplus S \to S$:

$$M\mapsto (MY_1,MY_2)\mapsto MY_1X_1+MY_2X_2=M\cdot I=M,$$
 and

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$
 $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$

Using these, we get inverse maps $S \to S \oplus S$ and $S \oplus S \to S$:

$$M\mapsto (MY_1,MY_2)\mapsto MY_1X_1+MY_2X_2=M\cdot I=M,$$
 and

$$(M_1, M_2) \mapsto M_1 X_1 + M_2 X_2$$

 $\mapsto ((M_1 X_1 + M_2 X_2) Y_1, (M_1 X_1 + M_2 X_2) Y_2) = (M_1, M_2)$

Using exactly the same idea, let R be ANY ring which contains four elements y_1, y_2, x_1, x_2 satisfying

$$y_1x_1 + y_2x_2 = 1_R$$

$$x_1y_1 = 1_R = x_2y_2$$
, and $x_1y_2 = 0 = x_2y_1$.

Then $R \cong R \oplus R$.

Using exactly the same idea, let R be ANY ring which contains four elements y_1, y_2, x_1, x_2 satisfying

$$y_1x_1 + y_2x_2 = 1_R$$

$$x_1y_1 = 1_R = x_2y_2$$
, and $x_1y_2 = 0 = x_2y_1$.

Then $R \cong R \oplus R$.

Note for later: i.e., $\sum_{i=1}^{2} y_i x_i = 1_R$ and $x_i y_j = \delta_{i,j} 1_R$.

Remark: Here the sets $\{1_R\}$ and $\{x_1, x_2\}$ are each bases for R.

Remark: Here the sets $\{1_R\}$ and $\{x_1, x_2\}$ are each bases for R.

Actually, when $R \cong R \oplus R$ as R-modules, then $\bigoplus_{i=1}^{m} R \cong \bigoplus_{i=1}^{n} R$ for all $m, n \in \mathbb{N}$.

Natural question:

Does there exist R with, e.g., $R \cong R \oplus R \oplus R$, but $R \ncong R \oplus R$?

Natural question:

Does there exist R with, e.g., $R \cong R \oplus R \oplus R$, but $R \ncong R \oplus R$?

$\mathsf{Theorem}$

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every $m < n \in \mathbb{N}$ and field K there exists a K-algebra $R = L_K(m, n)$ with $\bigoplus_{i=1}^m R \cong \bigoplus_{i=1}^n R$, and all isomorphisms between free left R-modules result precisely from this one. Moreover, $L_K(m, n)$ is universal with this property.

The m=1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n=2 case that we saw above, $R \cong R^n$ if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

The m=1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n=2 case that we saw above, $R \cong R^n$ if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

 $L_K(1, n)$ is the quotient

$$K < X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n > / < (\sum_{i=1}^n Y_i X_i) - 1_K; X_i Y_j - \delta_{i,j} 1_K >$$

Note: RFM(K) is much bigger than $L_K(1,2)$.

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

In particular, $S \cong S^n$, and n > 1 is minimal with this property.

Leavitt path algebras: Introduction and Motivation

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

In particular, $S \cong S^n$, and n > 1 is minimal with this property.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and $n \ge 2$, $L_K(1, n)$ is simple.

(On the other hand, for $m \ge 2$, $L_K(m, n)$ is not simple.)

Remember, a ring *R* being *simple* means:

$$\forall \ 0 \neq r \in R, \exists \ \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^n \alpha_i r \beta_i = 1_R.$$

As a result, we have this: Let S denote $L_K(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

In particular, $S \cong S^n$, and n > 1 is minimal with this property.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964)

For every field K and $n \ge 2$, $L_K(1, n)$ is simple.

(On the other hand, for $m \ge 2$, $L_K(m, n)$ is not simple.)

Remember, a ring *R* being *simple* means:

$$\forall \ 0 \neq r \in R, \exists \ \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^n \alpha_i r \beta_i = 1_R.$$

Actually, $L_K(1, n)$ is VERY simple:

$$\forall \ 0 \neq r \in L_K(1,n), \exists \ \alpha, \beta \in L_K(1,n) \text{ with } \alpha r \beta = 1_{L_K(1,n)}.$$

Building rings from combinatorial objects

Here's a familiar idea. Consider the set $T = \{x^0, x^1, x^2,\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$. Consider formal symbols of the form

$$k_1t_1+k_2t_2+\cdots+k_nt_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g. $(kt)(k't') = kk'(t \cdot t')$.

Building rings from combinatorial objects

Here's a familiar idea. Consider the set $T = \{x^0, x^1, x^2,\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$. Consider formal symbols of the form

$$k_1t_1+k_2t_2+\cdots+k_nt_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g. $(kt)(k't') = kk'(t \cdot t')$.

Here KT is just the ring $\mathbb{R}[x]$ of polynomials with coefficients in \mathbb{R} .

Building rings from combinatorial objects

Here's a familiar idea. Consider the set $T = \{x^0, x^1, x^2,\}$. Define multiplication on T in the usual way: $x^i \cdot x^j = x^{i+j}$. Consider formal symbols of the form

$$k_1t_1+k_2t_2+\cdots+k_nt_n$$

where $t_i \in T$, and $k_i \in \mathbb{R}$. Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g. $(kt)(k't') = kk'(t \cdot t')$.

Here KT is just the ring $\mathbb{R}[x]$ of polynomials with coefficients in \mathbb{R} .

Also, e.g. if we impose the relation $x^n=x^0$ on T, call the new semigroup \overline{T} , then $\overline{T}=\{x^0,x^1,x^2,...,x^{n-1}\}$, and

$$\mathbb{R}\overline{T} \cong \mathbb{R}[x]/\langle x^n - 1 \rangle$$

Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and 'multiplication' in K and S.

Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and 'multiplication' in K and S.

For instance:

matrix rings, group rings, multivariable polynomial rings, etc ... can all be thought of in this way.

General path algebras

Let E be a directed graph. $E = (E^0, E^1, r, s)$

$$s(e) \bullet \xrightarrow{e} \bullet^{r(e)}$$

The path algebra of E with coefficients in K is the K-algebra KS as above, where the underlying set S is the set of all directed paths in E (including vertices), and multiplication of paths is just concatenation. Denote by KE. In particular, in KE,

For each edge
$$e$$
, $s(e) \cdot e = e = e \cdot r(e)$

For each vertex v, $v \cdot v = v$

Start with E, build its double graph \widehat{E} .

Start with E, build its double graph \widehat{E} . Example:

Start with E, build its double graph \widehat{E} . Example:

Construct the path algebra $K\widehat{E}$.

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1)
$$e^*e = r(e)$$
; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for each vertex v in E .

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1)
$$e^*e = r(e)$$
; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for each vertex v in E .

(just at those vertices v which are not sinks, and which emit only finitely many edges: "regular" vertices)

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1)
$$e^*e = r(e)$$
; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for each vertex v in E .

(just at those vertices v which are not sinks, and which emit only finitely many edges: "regular" vertices)

Definition

The Leavitt path algebra of E with coefficients in K

$$L_K(E) = K\widehat{E} / \langle (CK1), (CK2) \rangle$$

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:

$$ee^* + ff^* + gg^* = v$$
 $g^*g = w$ $g^*f = 0$
 $h^*h = w$ (CK1) $hh^* = u$ (CK2)

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:

$$\widehat{E} = \underbrace{\begin{pmatrix} e^* e & h & h \\ v & f^* & w & h^* \\ v & f^* & h^* \end{pmatrix}}_{g^*} \bullet^X$$

$$ee^* + ff^* + gg^* = v$$
 $g^*g = w$ $g^*f = 0$
 $h^*h = w$ (CK1) $hh^* = u$ (CK2)

$$ff^* = \dots$$
 (no simplification) Note: $(ff^*)^2 = f(f^*f)f^* = ff^*$

Standard algebras arising as Leavitt path algebras:

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_K(E) \cong M_n(K)$.

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{V_1} \xrightarrow{e_1} \bullet^{V_2} \xrightarrow{e_2} \bullet^{V_3} \cdots \bullet^{V_{n-1}} \xrightarrow{e_{n-1}} \bullet^{V_n}$$

Then $L_K(E) \cong M_n(K)$.

$$E = \bullet^{v} \bigcirc x$$

Then $L_K(E) \cong K[x, x^{-1}]$.

$$E = R_n = \bigvee_{v}^{y_2} y$$

Then $L_K(E) \cong L_K(1, n)$.

Then $L_K(E) \cong L_K(1, n)$.

Remember: $L_K(1, n)$ has generators and relations:

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R;$$

Then $L_K(E) \cong L_K(1, n)$.

Remember: $L_K(1, n)$ has generators and relations:

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R; \sum_{i=1}^n y_i x_i = 1_R$$
, and $x_i y_j = \delta_{i,j} 1_R$,

Then $L_K(E) \cong L_K(1, n)$.

Remember: $L_K(1, n)$ has generators and relations:

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R; \ \sum_{i=1}^n y_i x_i = 1_R, \ \text{and} \ x_i y_j = \delta_{i,j} 1_R,$$

while $L_K(R_n)$ has these SAME generators and relations, where we identify y_i^* with x_i .

1962: Leavitt gives construction of $L_K(1, n)$.

1962: Leavitt gives construction of $L_K(1, n)$.

1979: Cuntz gives construction of the C^* -algebras \mathcal{O}_n .

1962: Leavitt gives construction of $L_K(1, n)$.

1979: Cuntz gives construction of the C^* -algebras \mathcal{O}_n .

1980's: Cuntz, Krieger, and others generalize the \mathcal{O}_n construction to directed graphs, and produce the graph C^* -algebras $C^*(E)$.

Note: The notation (CK1) and (CK2) refer to Cuntz and Krieger.

1962: Leavitt gives construction of $L_K(1, n)$.

1979: Cuntz gives construction of the C^* -algebras \mathcal{O}_n .

1980's: Cuntz, Krieger, and others generalize the \mathcal{O}_n construction to directed graphs, and produce the graph C^* -algebras $C^*(E)$.

Note: The notation (CK1) and (CK2) refer to Cuntz and Krieger.

June 2004: Various algebraists attend the CBMS lecture series "Graph C*-algebras: algebras we can see",

held at University of Iowa, given by Iain Raeburn.

Algebraic analogs of graph C^* -algebras are defined and investigated starting Fall 2004.

1 Leavitt path algebras: Introduction and Motivation

2 Multiplicative properties

3 Projective modules

Notation: If $p = e_1 e_2 \cdots e_n$ is a directed path in E then s(p) denotes $s(e_1)$, and r(p) denotes $r(e_n)$.

Denote n by $\ell(p)$.

Lemma: Every element of $L_K(E)$ can be written as

$$\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$$

for some $n \in \mathbb{N}$, where: $k_i \in K$, and α_i, β_j are paths in E for which $r(\alpha_i) = r(\beta_i)$ (= $s(\beta_i^*)$).

Idea: any expression with a *-term on the left reduces either to 0, or to the appropriate vertex.

Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.

Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.

Lemma: $L_K(E)$ is unital if and only if E^0 is finite, in which case

$$1 = \sum_{v \in E^0} v.$$

Remark: Elements of the form $\alpha_i \beta_i^*$ are each nonzero in $L_K(E)$ (as long as $r(\alpha) = r(\beta)$), and they span, but they are not in general K-linearly independent.

Lemma: $L_K(E)$ is unital if and only if E^0 is finite, in which case

$$1=\sum_{v\in E^0}v.$$

If E^0 is infinite we get a set of enough idempotents in $L_K(E)$. (Module theory is still well-understood in this situation.)

$L_K(E)$ as a \mathbb{Z} -graded algebra

For each vertex v, and each edge e, define

$$\deg(v) = 0, \ \deg(e) = 1, \ \deg(e^*) = -1.$$

Extend this to terms of the form $\alpha\beta^*$ by setting

$$\deg(\alpha\beta^*) = \ell(\alpha) - \ell(\beta).$$

For $d \in \mathbb{Z}$, let $L_K(E)_d$ denote expressions of the form

$$\sum_{i=1}^{n} \alpha_i \beta_i^* \text{ where } \deg(\alpha_i \beta_i^*) = d.$$

Then $L_K(E)_d$ is clearly a K-subspace of $L_K(E)$, and for all $d, d' \in \mathbb{Z}$ we can show: $L_K(E)_d \cdot L_K(E)_{d'} \subseteq L_K(E)_{d+d'}$.

$$L_K(E)$$
 is " \mathbb{Z} -graded".

Mentioned above: If

$$E = \bullet^{v_1} \xrightarrow{f_1} \bullet^{v_2} \xrightarrow{f_2} \bullet^{v_3} \xrightarrow{\cdots} \bullet^{v_{n-1}} \xrightarrow{f_{n-1}} \bullet^{v_n}$$

then $L_K(E) \cong \mathrm{M}_n(K)$.

Any expression $p_u p_t^*$ has a unique start / end vertex, say v_i and v_j . Then the isomorphism $L_K(E) \to \mathrm{M}_n(K)$ is given by extending:

$$p_u p_t^* \mapsto e_{i,j}$$
.

Note that we may wlog assume that each of p_u and p_t ends at v_n .

Note also: the graph E contains no (directed) closed paths, contains exactly one sink (namely, v_n), and that there are exactly n paths which end in v_n (including the path of length 0).

Using this idea, we can generalize to the following.

Proposition: Suppose E is a finite graph which contains no (directed) closed paths. Let $v_1, v_2, ..., v_t$ denote the sinks of E. (At least one must exist.) For each $1 \le i \le t$, let n_i denote the number of paths in E which end in v_i . Then

$$L_{\mathcal{K}}(E) \cong \bigoplus_{i=1}^{t} \mathrm{M}_{n_{i}}(\mathcal{K}).$$

So the "finite, no (directed) closed paths" case gives algebras which are well-understood.

Note: If

$$E = \bullet \longrightarrow \bullet \longrightarrow \bullet$$
 and $F = \bullet \longrightarrow \bullet \longleftarrow \bullet$

then E and F are not isomorphic as graphs, but $L_K(E) \cong L_K(F) \cong \mathrm{M}_3(K)$.

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.

So the "finite, no (directed) closed paths" case gives algebras which are well-understood.

Note: If

$$E = \bullet \longrightarrow \bullet \longrightarrow \bullet$$
 and $F = \bullet \longrightarrow \bullet \longleftarrow \bullet$

then E and F are not isomorphic as graphs, but $L_K(E) \cong L_K(F) \cong \mathrm{M}_3(K)$.

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.

A fundamental question in Leavitt path algebras: Can we identify graphical connections between graphs E and F which will guarantee that $L_K(E) \cong L_K(F)$?

We use this same idea to produce more descriptions of Leavitt path algebras. Let $R_n(d)$ denote this graph:

We use this same idea to produce more descriptions of Leavitt path algebras. Let $R_n(d)$ denote this graph:

Then

$$L_K(R_n(d)) \cong \mathrm{M}_d(L_K(1,n)).$$

The idea is the same as before, but now at the end of each trip into the "end", you pick up an element of $L_K(1, n)$. For this result n = 1 is included as well.

Even more generally:

Proposition: Let E be a finite graph, and $d \in \mathbb{N}$. Let S_dE be the graph constructed from E by taking the "straight line" graph of length d and appending it at each vertex of E. Then

$$L_{\mathcal{K}}(S_d E) \cong \mathrm{M}_n(L_{\mathcal{K}}(E)).$$

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t vertices. Then $L_K(E) \cong \mathrm{M}_t(K[x,x^{-1}])$.

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t vertices. Then $L_K(E) \cong \mathrm{M}_t(K[x,x^{-1}])$.

More generally, if E is a graph which contains a single cycle c, and c has no "exits", then

$$L_{\mathcal{K}}(E) \cong \mathrm{M}_{n(v)}(\mathcal{K}[x,x^{-1}]),$$

where, if v denotes any (fixed) vertex of c, n(v) is the number of distinct paths in E which end at v and do not contain c.

There are some non-standard (surprising?) isomorphisms between Leavitt path algebras. Let $E=R_3$, so that $S=L_K(E)\cong L_K(1,3)$. Then as left S-modules we have $S^1\cong S^3$. So $\operatorname{End}_S(S)\cong\operatorname{End}_S(S^3)$, which gives that, as rings,

$$S\cong \mathrm{M}_3(S).$$

So using the previous Proposition, these two graphs have isomorphic Leavitt path algebras:

$$R_3 = \bullet$$
 and $R_3(3) = \bullet \longrightarrow \bullet \longrightarrow \bullet$

That is, $L_K(R_3) \cong L_K(R_3(3))$.

On the other hand, R_3 and

$$R_3(2) = \bullet \longrightarrow \bullet$$

do NOT have isomorphic Leavitt path algebras.

(Leavitt showed this in the 1962 paper.)

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R-Mod and S-Mod are equivalent.

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R-Mod and S-Mod are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R-Mod and S-Mod are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

 \Leftrightarrow there exist bimodules (with additional properties) $_RP_S$ and $_SQ_R$ with $P\otimes Q\cong R$ (as R-R-bimodules) and $Q\otimes P\cong S$ (as S-S-bimodules).

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R-Mod and S-Mod are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

 \Leftrightarrow there exist bimodules (with additional properties) $_RP_S$ and $_SQ_R$ with $P\otimes Q\cong R$ (as R-R-bimodules) and $Q\otimes P\cong S$ (as S-S-bimodules).

 \Leftrightarrow there exists $n \in \mathbb{N}$, $e = e^2 \in \mathrm{M}_n(S)$ for which $\mathrm{M}_n(S) e \mathrm{M}_n(S) = \mathrm{M}_n(S)$ and $R \cong e \mathrm{M}_n(S) e$.

General definition: Let R and S be rings. R and S are Morita equivalent in case the module categories R-Mod and S-Mod are equivalent.

Suppose R and S are unital. Then $R \sim_M S$

- \Leftrightarrow there exist bimodules (with additional properties) $_RP_S$ and $_SQ_R$ with $P\otimes Q\cong R$ (as R-R-bimodules) and $Q\otimes P\cong S$ (as S-S-bimodules).
- \Leftrightarrow there exists $n \in \mathbb{N}$, $e = e^2 \in \mathrm{M}_n(S)$ for which $\mathrm{M}_n(S) e \mathrm{M}_n(S) = \mathrm{M}_n(S)$ and $R \cong e \mathrm{M}_n(S) e$.
- $\Leftrightarrow \operatorname{FM}_{\mathbb{N}}(R) \cong \operatorname{FM}_{\mathbb{N}}(S)$ as rings.

Note: In particular, R and $M_n(R)$ are always Morita equivalent.

Note: In particular, R and $M_n(R)$ are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and F, when is $L_K(E) \sim_M L_K(F)$?

Note: In particular, R and $M_n(R)$ are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and F, when is $L_K(E) \sim_M L_K(F)$?

Note that this is a courser equivalence relation on rings than isomorphism. So e.g. even though R_3 and $\mathrm{M}_2(R_3)$ are not isomorphic, they are Morita equivalent (and therefore share many of the same properties).

Appropriate generalizations hold in case R and S have enough idempotents.

1 Leavitt path algebras: Introduction and Motivation

2 Multiplicative properties

3 Projective modules

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Key example: R itself, or any R^n .

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Key example: R itself, or any R^n .

Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1 - f) = R^1$.

Example: In $R = \mathrm{M}_2(\mathbb{R})$, $P = \mathrm{M}_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ is a finitely projective R-module. Note $P \ncong R^n$ for any n.

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$.

Key example: R itself, or any R^n .

Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1 - f) = R^1$.

Example: In $R = \mathrm{M}_2(\mathbb{R})$, $P = \mathrm{M}_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ is a finitely projective R-module. Note $P \ncong R^n$ for any n.

Example: $L_K(E)$ contains projective modules of the form $L_K(E)pp^*$ for each path p in E.

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim_M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$.

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim_M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$. So, in particular:

Example. $S = \mathrm{M}_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim_M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$. So, in particular:

Example. $S = \mathrm{M}_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: $V(R) \setminus \{[0]\}$ is a semigroup (i.e., is closed under \oplus).

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) R-modules. With operation \oplus , this becomes an abelian monoid. Note R itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Lemma: If $R \sim_M S$, then $\mathcal{V}(R) \cong \mathcal{V}(S)$. So, in particular:

Example. $S = \mathrm{M}_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: $V(R) \setminus \{[0]\}$ is a semigroup (i.e., is closed under \oplus).

Remark: Given a ring R, it is in general not easy to compute $\mathcal{V}(R)$.

Here's a 'natural' monoid arising from any directed graph E.

Here's a 'natural' monoid arising from any directed graph E.

Associate to E the abelian monoid $(M_E, +)$:

$$M_E$$
 is generated by $\{a_v|v\in E^0\}$
So $M_E=\{n_1a_{v_1}+n_2a_{v_2}+\cdots+n_ta_{v_t}\}$ with $n_i\in\mathbb{Z}^+$.

Relations in M_E are given by: $a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$.

Example. Let *F* be the graph

So
$$M_F$$
 consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

Example. Let *F* be the graph

So
$$M_F$$
 consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

It's not hard to get:

Example. Let *F* be the graph

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $\{n_i \in \mathbb{Z}^+\}$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$. It's not hard to get: $M_F = \{0, a_1, a_2, a_3, a_1 + a_2 + a_3\}$.

Example. Let *F* be the graph

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

It's not hard to get: $M_F = \{0, a_1, a_2, a_3, a_1 + a_2 + a_3\}.$

We see that the semigroup $M_F \setminus \{0\}$ is actually a *group*,

$$\cong \mathbb{Z}_2 \times \mathbb{Z}_2$$
.

Example:

$$E = R_n = \bigvee_{y_0}^{y_3} y_2$$

Then M_E is the set of symbols of the form

$$n_1 a_{\scriptscriptstyle V} \ (n_1 \in \mathbb{Z}^+)$$

subject to the relation: $a_v = na_v$

Example:

$$E = R_n = \bigvee_{y_n}^{y_3} y_2$$

Then M_E is the set of symbols of the form

$$n_1a_v$$
 $(n_1\in\mathbb{Z}^+)$

subject to the relation: $a_v = na_v$

So here,
$$M_E = \{0, a_v, 2a_v, ..., (n-1)a_v\}.$$

Again we have a situation where the semigroup $M_E \setminus \{0\}$ is a group, $\cong \mathbb{Z}_{n-1}$.

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no "infinite emitters".)

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no "infinite emitters".)

$\mathsf{Theorem}$

(P. Ara, M.A. Moreno, E. Pardo, 2007) [36] For any row-finite directed graph E,

$$\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.$$

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no "infinite emitters".)

$\mathsf{Theorem}$

(P. Ara, M.A. Moreno, E. Pardo, 2007) [36] For any row-finite directed graph E,

$$\mathcal{V}(L_K(E)) \cong M_E$$
.

Moreover, there is an appropriate universal property that $L_K(E)$ satisfies.

A graph E is row-finite if $|s^{-1}(v)| < \infty$ for all $v \in E^0$. (In other words, if E contains no "infinite emitters".)

$\mathsf{Theorem}$

(P. Ara, M.A. Moreno, E. Pardo, 2007) [36] For any row-finite directed graph E,

$$\mathcal{V}(L_K(E)) \cong M_E$$
.

Moreover, there is an appropriate universal property that $L_K(E)$ satisfies.

Aside: The proof uses a deep result by G. Bergman [49].

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$V(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$V(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$V(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It's clear that $L_K(1, n) \cong L_K(1, n') \Leftrightarrow n = n'$.

One (very nontrivial) consequence: Let S denote $L_K(1, n)$. Then

$$V(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It's clear that $L_K(1, n) \cong L_K(1, n') \Leftrightarrow n = n'$. But we also get:

$$L_K(1,n) \sim_M L_K(1,n') \Leftrightarrow n = n'.$$

Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

- 1) the "quotient of a path algebra" approach, and
- 2) the "universal algebra which supports M_E as its V-monoid" approach.

These were developed in parallel.

The two approaches together have complemented each other in the development of the subject.

What's ahead?

Lecture 2: (Wednesday) Some theorems of the form

 $L_K(E)$ has ring-theoretic property $\mathcal{P} \Leftrightarrow E$ has graph-theoretic property \mathcal{Q} .

In particular, we'll consider the ideal structure of $L_K(E)$. Also: connections / similarities with graph C^* -algebras.

Lecture 3: (Friday) Some applications of, generalizations of, and open questions in Leavitt path algebras.