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Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector
space V has a basis. Moreover, if B and B’ are two bases for V,

then |B| = |B/|.
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Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector
space V has a basis. Moreover, if B and B’ are two bases for V,
then |B| = |B/|.

Note: V has a basis B = {by, b, ..., b} < V = @7 ;R as vector
spaces. So:

One result of Dimension Theorem, Rephrased:
O R=0™,R & m=n.
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually
spans V. Why are there any linearly independent subsets at all?
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually
spans V. Why are there any linearly independent subsets at all?

If 0 # v € V, then {v} is linearly independent.
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually
spans V. Why are there any linearly independent subsets at all?
If 0 # v € V, then {v} is linearly independent.

If kv =0, need to show k = 0. Butk#0:>%kv:0:>v:0,
contradiction.

Similar idea (multiply by the inverse of a nonzero element of K)
shows that a maximal linearly independent subset of V' actually
spans V.
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if Ris a ring, and ®7_ ;R = ®" ;R as R-modules, must
m=n? (“"module” = "left module”)

Question, Rephrased: If we take an R-module which has two
different bases, must the two bases contain the same number of
elements?
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if Ris a ring, and ®7_ ;R = ®" ;R as R-modules, must
m=n? (“"module” = "left module”)

Question, Rephrased: If we take an R-module which has two
different bases, must the two bases contain the same number of
elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or
having chain conditions, e.g. Z, M»(R), C(R) , ...
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if Ris a ring, and ®7_ ;R = ®" ;R as R-modules, must
m=n? (“"module” = "left module”)

Question, Rephrased: If we take an R-module which has two
different bases, must the two bases contain the same number of
elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or
having chain conditions, e.g. Z, M»(R), C(R) , ...

Example: Consider the ring S of linear transformations from an
infinite dimensional R-vector space V to itself.
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if Ris a ring, and ®7_ ;R = ®" ;R as R-modules, must
m=n? (“"module” = "left module”)

Question, Rephrased: If we take an R-module which has two

different bases, must the two bases contain the same number of
elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or
having chain conditions, e.g. Z, M»(R), C(R) , ...

Example: Consider the ring S of linear transformations from an
infinite dimensional R-vector space V to itself.

Think of V as ®22;R. Then think of S as REM(R).
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Brief history, and motivating examples

Intuitively, S and S @& S have a chance to be “the same”.

M +— (Odd numbered columns of M , Even numbered columns of M)

More formally: Let

100000 000000
000000 100000
010000 000000

y,—|0 00000 Y,—|0 10000
001000 000000
000000 001000
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X1 = Xo =

- Oo0o0o0co X
- oOoocoocooo
- oo o0cor O
- Oooocooo
- Ooocoor OO
- oOoocoocooo
- oOoocoocooo
SO0 00O+
- oOoooooo
- OocooroOo
- oOoocoocooo
- oOoocoor OO
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Brief history, and motivating examples

Then MY7 gives the Odd Columns of M, while
MY> gives the Even Columns of M.
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Brief history, and motivating examples

Then MY7 gives the Odd Columns of M, while
MY> gives the Even Columns of M.

So the previous intuitive map is, formally, M — (MY1, MY53).
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Brief history, and motivating examples

Then MY7 gives the Odd Columns of M, while
MY> gives the Even Columns of M.

So the previous intuitive map is, formally, M — (MY, MY>).

Similarly, we should be able to 'go back’ from pairs of matrices to
a single matrix, by interweaving the columns.
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Brief history, and motivating examples

Then MY7 gives the Odd Columns of M, while
MY> gives the Even Columns of M.

So the previous intuitive map is, formally, M — (MY1, MY53).
Similarly, we should be able to 'go back’ from pairs of matrices to
a single matrix, by interweaving the columns.

That is, more formally, (My, Mp) — M1 X1 + Mp Xy is a
reasonable way to associate a pair of matrices with a single one.
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Brief history, and motivating examples
Here's what's really going on. These equations are easy to verify:

Y1iX1 + Y2 Xo =1,
X1Y1 == X2Y2, and X1Y2 =0 :Xzyl.
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Brief history, and motivating examples
Here's what's really going on. These equations are easy to verify:

Y1iX1 + Y2 Xo =1,
X1Y1 == X2Y2, and X1Y2 =0 :Xzyl.

Using these, we get inverse maps S - S®& Sand S& S — S:

M — (MY1, MY2) = MY1 Xy + MY2Xo =M -1 =M, and
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Brief history, and motivating examples
Here's what's really going on. These equations are easy to verify:

Y1iX1 + Y2 Xo =1,
X1Y1 == X2Y2, and X1Y2 =0 :Xzyl.

Using these, we get inverse maps S - S@Sand S S — S:
M — (MY1, MY3) — MY1X1 + MY>2Xo =M -1 =M, and

(My, M) — M1 X1 + Ma X
= ((MiXy + Mo Xo) Ye, (MiXy + Mo Xo) Yo ) = (My, M)
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Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains
four elements y1, y», x1, x> satisfying

yix1 + yaxo = 1g,

x1y1 = lp = xa2y2, and x1y» =0 = xoy1.

Then R R® R.
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Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains
four elements y1, y», x1, x> satisfying

yix1 + yaxo = 1g,

x1y1 = lp = xa2y2, and x1y» =0 = xoy1.

Then R R® R.

Note for later: i.e., Z,?:l yixi = 1gp and X;y; = 6;j1R.
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Brief history, and motivating examples

Remark: Here the sets {1g} and {x1, x>} are each bases for R.
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Brief history, and motivating examples

Remark: Here the sets {1g} and {x1, x>} are each bases for R.

Actually, when R = R @ R as R-modules, then ®7 R = &7 ;R
for all m,n € N.
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Leavitt algebras

Natural question:

Does there exist R with, e.g., RZRPRDR, but RZRE R?
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Leavitt algebras

Natural question:

Does there exist R with, e.g., RZRPRDR, but RZRE R?

Theorem

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every m < n € N and field K there exists a K-algebra

R = Lkx(m, n) with ®7 ;R = &!_|R, and all isomorphisms
between free left R-modules result precisely from this one.

Moreover, Lk (m, n) is universal with this property.
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Leavitt algebras

The m = 1 situation of Leavitt's Theorem is now somewhat
familiar. Similar to the n = 2 case that we saw above,

R = R" if and only if there exist

X15 X2y +5 Xny Y1, Y25 -3 ¥n € R

for which

n
Zy,-x,' = 1R and Xiyj = 5i,j1R~
i=1
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Leavitt algebras

The m = 1 situation of Leavitt's Theorem is now somewhat
familiar. Similar to the n = 2 case that we saw above,

R = R" if and only if there exist

X15 X2y +5 Xny Y1, Y25 -3 ¥n € R
for which

n
Zy,-x,' = 1R and Xiyj = 5i,j1R~

Lk(1, n) is the quotient

K < X1, Xo, o X, Y1, Yoy s Yo > | < ZYX) 1; X;Yj—0i 1k >
i=1
Note: RFM(K) is much bigger than Lk(1,2).
Gene Abrams University of Colorado @ Colorado Springs
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Leavitt algebras

As a result, we have this: Let S denote Lk(1,n). Then
$7~ 5% o a=bmod(n—1).

In particular, S = S”, and n > 1 is minimal with this property.
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Building rings from combinatorial objects

Here’s a familiar idea. Consider the set T = {x xtx2 )
Define multiplication on T in the usual way: x' - x/ = x +J
Consider formal symbols of the form

kiti + koto + - - - + kntp
where t; € T, and k; € R. Denote this set of symbols by KT. We

can add and multiply two symbols of this form, as usual, e.g.
(kt)(K't") = kK'(t - ).
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Building rings from combinatorial objects

Here’s a familiar idea. Consider the set T = {x xt X200
Define multiplication on T in the usual way: x' - x/ = x +J
Consider formal symbols of the form

kiti + kotao + -+ - + kntp
where t; € T, and k; € R. Denote this set of symbols by KT. We
can add and multiply two symbols of this form, as usual, e.g.
(kt)(K't") = kK'(t - ).

Here KT is just the ring R[x] of polynomials with coefficients in R.
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Building rings from combinatorial objects

Here’s a familiar idea. Consider the set T = {x xt X200
Define multiplication on T in the usual way: x' - x/ = x +J
Consider formal symbols of the form

kiti + kotao + -+ - + kntp
where t; € T, and k; € R. Denote this set of symbols by KT. We
can add and multiply two symbols of this form, as usual, e.g.
(kt)(K't") = kK'(t - ).

Here KT is just the ring R[x] of polynomials with coefficients in R.

Also, e.g. if we impose the relation x” = x® on T, call the new
semigroup T, then T = {x% x!, x2,...,x""1}, and

RT = R[x]/(x" — 1)
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Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K,
and form the formal symbols as above. Add and multiply based on
addition and 'multiplication’ in K and S.
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Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K,
and form the formal symbols as above. Add and multiply based on
addition and 'multiplication’ in K and S.

For instance:
matrix rings, group rings, multivariable polynomial rings, etc ...

can all be thought of in this way.
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General path algebras

Let E be a directed graph. E = (EY, E*, r,s)

The path algebra of E with coefficients in K is the K-algebra KS
as above, where the underlying set S is the set of all directed paths
in E (including vertices), and multiplication of paths is just
concatenation. Denote by KE. In particular, in KE,

For each edge e, s(e)-e=e=-¢e-r(e)

For each vertex v, v-v=v

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation

Building Leavitt path algebras

Start with E, build its double graph E.
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Building Leavitt path algebras

Start with E, build its double graph E. Example:

s

.
s f aNi) J
Y

E =

Gene Abrams University of Colorado @ Colorado Springs
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Building Leavitt path algebras

Start with E, build its double graph E. Example:

E =
/ /
'Y ’-——> oV s J
\E/ I\\I/
E =
/ /
'Y ’-——> oV
\\\J I\\/ :
'g* e
Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation

Building Leavitt path algebras

Construct the path algebra KE.

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation

Building Leavitt path algebras

Construct the path algebra KE. Consider these relations in KE:
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Building Leavitt path algebras

Construct the path algebra KE. Consider these relations in KE:
(CK1) e*e=r(e); and f*e =0 for f # e (for all edges e, f in E).

(CK2) v =23 recri|s(e)=y} €€" for each vertex v in E.
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Building Leavitt path algebras

Construct the path algebra KE. Consider these relations in KE:
(CK1) e*e=r(e); and f*e =0 for f # e (for all edges e, f in E).

(CK2) v =23 recri|s(e)=y} €€" for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only
finitely many edges:  “regular” vertices)
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Building Leavitt path algebras

Construct the path algebra KE. Consider these relations in KE:
(CK1) e*e=r(e); and f*e =0 for f # e (for all edges e, f in E).

(CK2) v =23 recri|s(e)=y} €€" for each vertex v in E.
(just at those vertices v which are not sinks, and which emit only

finitely many edges:  “regular” vertices)

Definition
The Leavitt path algebra of E with coefficients in K

Lx(E) = KE /| < (CK1),(CK2) >

Gene Abrams University of Colorado @ Colorado Springs
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Leavitt path algebras: Examples

Some sample computations in Lg(E) from the Example:

E =
. “——>.
,_5,
g* i
ee* + ff* + gg* = glg=w g'f=

v
hh=w (CK1) hh* = u (CK2)

Gene Abrams University of Colorado @ Colorado Springs
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Leavitt path algebras: Examples

Some sample computations in Lg(E) from the Example:

//

.“——>.
1\1 I";'

E =

ee" +fF+gg*=v gfg=w g'f=0
h*h=w (CK1) hh*=u (CK2)

ff* = ... (no simplification) Note: (ff*)? = f(f*f)f* = ff*

Gene Abrams University of Colorado @ Colorado Springs
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E— o1 L g2 2 qvs . gVn-1 Enml gVn
Then Lg(E) = My(K).
Gene Abrams University of Colorado @ Colorado Springs
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E— oIl _ . g _2_qus . gun-1 "7l qvn
Then Lg(E) = My(K).
E = .V D X
Then Li(E) = K[x,x1].
Gene Abrams University of Colorado @ Colorado Springs
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Leavitt path algebras: Examples

¥3
E:Rn: 7".V§YI

Yn

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation

Leavitt path algebras: Examples

¥3
E:Rn: 7".V§YI

Yn

Then Lx(E) = Lk(1,n).

Remember: Lk(1, n) has generators and relations:
X1y X2y vy Xny Y15 Y25 000y ¥ € R;
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Leavitt path algebras: Examples

¥3
E:Rn: 7".V§YI

Yn

Then Lx(E) = Lk(1,n).

Remember: Lk(1, n) has generators and relations:
X1y X2, oy Xny Y1, Y2, - ¥n € Ry D211 yixi = 1g, and xjy; = 6; 1R,
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Leavitt path algebras: Examples

¥3
L/ ¥2

Yn

E=R,=

Then Lx(E) = Lk(1,n).

Remember: Lk(1, n) has generators and relations:
X1y X2, oy Xny Y1, Y2, - ¥n € Ry D211 yixi = 1g, and xjy; = 6; 1R,

while Lx(R,) has these SAME generators and relations, where we
identify y with x;.

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation

Historical note, part 1

1962: Leavitt gives construction of Lk (1, n).
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Historical note, part 1

1962: Leavitt gives construction of Lk (1, n).

1979: Cuntz gives construction of the C*-algebras O,,.
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Historical note, part 1

1962: Leavitt gives construction of Lk (1, n).
1979: Cuntz gives construction of the C*-algebras O,,.

1980's: Cuntz, Krieger, and others generalize the O, construction
to directed graphs, and produce the graph C*-algebras C*(E).
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Historical note, part 1

1962: Leavitt gives construction of Lk (1, n).
1979: Cuntz gives construction of the C*-algebras O,,.

1980's: Cuntz, Krieger, and others generalize the O, construction
to directed graphs, and produce the graph C*-algebras C*(E).

June 2004: Various algebraists attend the CBMS lecture series
“Graph C*-algebras: algebras we can see”,

held at University of lowa, given by lain Raeburn.

Algebraic analogs of graph C*-algebras are defined and investigated
starting Fall 2004.

Gene Abrams University of Colorado @ Colorado Springs
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Multiplicative properties

Multiplicative properties
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Multiplicative properties

Elements in Lx(E)

Notation: If p = eje>--- e, is a directed path in E then
s(p) denotes s(e1), and r(p) denotes r(e,).

Denote n by ¢(p).

Lemma: Every element of Lk (E) can be written as

Zn: kiaiBf
i=1

for some n € N, where: k; € K, and «;, 3; are paths in E for which
r(ai) = r(Bi) (= s(57) )-

Idea: any expression with a x-term on the left reduces either to 0,
or to the appropriate vertex.

Gene Abrams University of Colorado @ Colorado Springs
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Elements in Lx(E)

Remark: Elements of the form «;f3} are each nonzero in Lx(E) (as
long as r(a) = r(53)), and they span, but they are not in general
K-linearly independent.

Gene Abrams University of Colorado @ Colorado Springs
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Elements in Lx(E)

Remark: Elements of the form «;f3} are each nonzero in Lx(E) (as
long as r(a) = r(53)), and they span, but they are not in general
K-linearly independent.

Lemma: Lk(E) is unital if and only if E? is finite, in which case
1= Z V.
veEo

In particular, the center of Lk (E) is nonzero in case E is finite
(since it at least contains K - 1).
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Elements in Lx(E)

Remark: Elements of the form «;f3} are each nonzero in Lx(E) (as
long as r(a) = r(53)), and they span, but they are not in general
K-linearly independent.

Lemma: Lk(E) is unital if and only if E? is finite, in which case
1= Z V.
veEo

In particular, the center of Lk (E) is nonzero in case E is finite
(since it at least contains K - 1).

If EO is infinite we get a set of enough idempotents in L (E).
(Module theory is still well-understood in this situation.)

Gene Abrams University of Colorado @ Colorado Springs
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Multiplicative properties

Lk(E) as a Z-graded algebra

For each vertex v, and each edge e, define
deg(v) =0, deg(e) =1, deg(e*) = —1.

Extend this to terms of the form a8* by setting
deg(ap™) = l(a) — £(B).
For d € Z, let Lk(E)q4 denote expressions of the form
Z a;fB;7 where deg(a;f7) =d.
i=1

Then Lk (E)q is clearly a K-subspace of Lk (E), and for all
d, d" € 7 we can show: LK(E)d . LK(E)dl C LK(E)d+dl.
Lk (E) is "“Z-graded”.
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Multiplicative properties

More Examples of Leavitt path algebras.

Mentioned above: If

fi f fn—1

E—= 01 — > 02—~ 5 @3 ..........@n—1 "5 o'n

then Lx(E) = M,(K).

Any expression p,p; has a unique start / end vertex, say v; and v;.
Then the isomorphism Li(E) — M,(K) is given by extending:

pupPi — € j-

Note that we may wlog assume that each of p, and p; ends at v,,.
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Multiplicative properties

More Examples of Leavitt path algebras.

Note also: the graph E contains no (directed) closed paths,
contains exactly one sink (namely, v,), and that there are exactly n
paths which end in v, (including the path of length 0).

Using this idea, we can generalize to the following.

Proposition: Suppose E is a finite graph which contains no
(directed) closed paths. Let vi, va, ..., v+ denote the sinks of E. (At
least one must exist.) For each 1 </ <'t, let n; denote the
number of paths in E which end in v;. Then

Li(E) = &%y M,, (K).
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Multiplicative properties

More Examples of Leavitt path algebras.

So the “finite, no (directed) closed paths” case gives algebras
which are well-understood.

Note: If

E: o ———>0 —>0 and F: O ——0<— 0

then E and F are not isomorphic as graphs, but
LK(E) = LK(F) = M3(K)

So, nonisomorphic graphs might give rise to isomorphic Leavitt
path algebras.
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Multiplicative properties

More Examples of Leavitt path algebras.

So the “finite, no (directed) closed paths” case gives algebras
which are well-understood.

Note: If

E: o ———>0 —>0 and F: O ——0<— 0

then E and F are not isomorphic as graphs, but
LK(E) = LK(F) = M3(K)

So, nonisomorphic graphs might give rise to isomorphic Leavitt
path algebras.

A fundamental question in Leavitt path algebras: Can we
identify graphical connections between graphs E and F which will
guarantee that Lx(E) = Lx(F)?
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More Examples of Leavitt path algebras.

We use this same idea to produce more descriptions of Leavitt
path algebras. Let R,(d) denote this graph:
3

. Y2
oWl g2 o ... @Wd-1 5 ¢V %1

Yn
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More Examples of Leavitt path algebras.

We use this same idea to produce more descriptions of Leavitt
path algebras. Let R,(d) denote this graph:

¥3
. Y2
oWl g2 o ... @Wd-1 5 ¢V %1

Yn

Then
Lx(Rna(d)) = My(Lk(1, n)).

The idea is the same as before, but now at the end of each trip
into the “end”, you pick up an element of Lx(1,n). For this result
n =1 is included as well.
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Multiplicative properties

More Examples of Leavitt path algebras.

Even more generally:

Proposition: Let E be a finite graph, and d € N. Let S4E be the
graph constructed from E by taking the “straight line” graph of
length d and appending it at each vertex of E. Then

L (Sq4E) = Mp(Lk(E)).
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Multiplicative properties

More Examples of Leavitt path algebras.

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t
vertices. Then Lk (E) = M:(K][x,x1]).
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Multiplicative properties

More Examples of Leavitt path algebras.

Using similar ideas:
Proposition: Let E be a graph consisting of a single cycle, with t
vertices. Then Lk (E) = M:(K][x,x1]).

More generally, if E is a graph which contains a single cycle ¢, and
¢ has no exits, then

Li(E) = M) (Klx, x71),

where, if v denotes any (fixed) vertex of ¢, n(v) is the number of
distinct paths in E which end at v and do not contain c.

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



Multiplicative properties

More Examples of Leavitt path algebras.

There are some non-standard (surprising?) isomorphisms between
Leavitt path algebras. Let E = R3, so that S = Lx(E) = Lk(1,3).
Then as left S-modules we have S = S3. So

Ends(S) = Ends(S?), which gives that, as rings,

S = M;s(S).

So using the previous Proposition, these two graphs have
isomorphic Leavitt path algebras:

R3 :(% and R3(3) = OHO*;\%

That is, LK(R3) = LK(R3(3)).
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Multiplicative properties

More Examples of Leavitt path algebras.

On the other hand, R3 and

Ry(2) = 45%

do NOT have isomorphic Leavitt path algebras.
(Leavitt showed this in the 1962 paper.)
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Multiplicative properties

Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R — Mod and S — Mod
are equivalent.
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Multiplicative properties

Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R — Mod and S — Mod
are equivalent.

Suppose R and S are unital. Then R~y S
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Multiplicative properties

Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R — Mod and S — Mod
are equivalent.

Suppose R and S are unital. Then R~y S

& there exist bimodules (with additional properties) gPs and sPg
with P ® Q = R (as R — R-bimodules) and Q ® P = S (as
S — S-bimodules).
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Multiplicative properties

Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R — Mod and S — Mod
are equivalent.

Suppose R and S are unital. Then R~y S

& there exist bimodules (with additional properties) gPs and sPg
with P ® Q = R (as R — R-bimodules) and Q ® P = S (as
S — S-bimodules).

& there exists n € N, e = €2 € M,(S) for which R =2 eM,(S)e
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Multiplicative properties

Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R — Mod and S — Mod
are equivalent.

Suppose R and S are unital. Then R~y S

& there exist bimodules (with additional properties) gPs and sPg
with P ® Q = R (as R — R-bimodules) and Q ® P = S (as
S — S-bimodules).

& there exists n € N, e = €2 € M,(S) for which R =2 eM,(S)e
< FMp(R) = FMy(S) as rings.
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Multiplicative properties

Morita equivalence

Note: In particular, R and M,(R) are always Morita equivalent.
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Multiplicative properties

Morita equivalence

Note: In particular, R and M,(R) are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and
F, when is Lx(E) ~p Lx(F)?
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Multiplicative properties

Morita equivalence

Note: In particular, R and M,(R) are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and
F, when is Lx(E) ~p Lx(F)?

Note that this is a courser equivalence relation on rings than
isomorphism. So e.g. even though R3; and Mj(R3) are not
isomorphic, they are Morita equivalent (and therefore share many
of the same properties).

Appropriate generalizations hold in case R and S have enough
idempotents.
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Projective modules

Projective modules
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P® Q= R" for some @, some n € N.
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P® Q= R" for some @, some n € N.

Key example: R itself, or any R".
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P® Q= R" for some Q, some n € N.

Key example: R itself, or any R".

Additional examples: Rf where f is idempotent (i.e., f2 = f),
since Rf ® R(1 — f) = RY.

Example: In R = M(R), P = Ma(R)ey; = (: 8> is a finitely

projective R-module. Note P 22 R" for any n.
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P® Q= R" for some Q, some n € N.

Key example: R itself, or any R".

Additional examples: Rf where f is idempotent (i.e., f2 = f),
since Rf ® R(1 — f) = RY.

Example: In R = M(R), P = Ma(R)ey; = (: 8> is a finitely
projective R-module. Note P 22 R" for any n.
Example: Lk (E) contains projective modules of the form

Lk (E)ee* for each edge e of E.
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation @, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Gene Abrams University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties



The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation @, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K, a field. Then V(R) = Z™.
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation @, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K, a field. Then V(R) = Z™.

Lemma: If R~y S, then V(R) = V(S).
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation @, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K, a field. Then V(R) = Z™.

Lemma: If R ~py S, then V(R) =2 V(S). So, in particular:

Example. S = My(K), K a field. Then V(S) = Z™.
( But note that the 'position’ of S in V(S) is different than the
position of R in V(R). )
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation @, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K, a field. Then V(R) = Z™.

Lemma: If R ~py S, then V(R) =2 V(S). So, in particular:

Example. S = My(K), K a field. Then V(S) = Z™.
( But note that the 'position’ of S in V(S) is different than the
position of R in V(R). )

Remark: Given a ring R, it is in general not easy to compute
V(R).
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Projective modules

The monoid Mg

Here's a ‘natural’ monoid arising from any directed graph E.
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Projective modules

The monoid Mg

Here's a ‘natural’ monoid arising from any directed graph E.

Associate to E the abelian monoid (Mg, +):

Mg is generated by {a,|v € E°}
So Mg = {ma,, + may, + -+ na,,} with n; € Z+.

Relations in Mg are given by: a, = ZeES*l(v) ar(e)-
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Projective modules

The monoid Mg

Example. Let F be the graph

So Mk consists of elements {nya; + npax + nzaz} (n; € Z),

subject to: a1 = ap + a3; ap = a1+ a3; a3 = a1 + ao.
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Projective modules

The monoid Mg

Example. Let F be the graph

So Mk consists of elements {nya; + npax + nzaz} (n; € Z),

subject to: a1 = ap + a3; ap = a1+ a3; a3 = a1 + ao.

It's not hard to get:
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Projective modules

The monoid Mg

Example. Let F be the graph

So Mk consists of elements {nya; + npax + nzaz} (n; € Z),

subject to: a1 = ap + a3; ap = a1+ a3; a3 = a1 + ao.

It's not hard to get: Mg = {0, a1, ap, a3, a1 + a» + as}.
In particular, Mg \ {0} = Zy x Zo.
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The monoid V(Lk(E))

Example:
y3

. Y2
N
E=R,= ':ZL;\)Q
14
7 Yn
Then Mg is the set of symbols of the form

ma, (m €7Z")

subject to the relation: a, = na,
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The monoid V(Lk(E))

Example:
y3

. Y2
N
E=R,= ':ZL;\)Q
14
7 Yn
Then Mg is the set of symbols of the form

ma, (m €7Z")

subject to the relation: a, = na,

So here, Mg = {0, a,,2a,,...,(n— 1)a, }.
In particular, Mg \ {0} = Z,_;.
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The monoid V(Lk(E))
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Projective modules

The monoid V(Lk(E))

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007)
For any row-finite directed graph E,

V(Lk(E)) = M.

Moreover, Lk (E) is universal with this property.
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The monoid V(Lk(E))

One (very nontrivial) consequence: Let S denote Lk(1,n). Then

V(S)=1{0, S, §2,...,5"1}.
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The monoid V(Lk(E))

One (very nontrivial) consequence: Let S denote Lk(1,n). Then

V(S)=1{0, S, §2,...,5"1}.

Another nice consequence: The class of Leavitt path algebras
consists of algebras other than those arising in the context of
Leavitt algebras.
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The monoid V(Lk(E))

One (very nontrivial) consequence: Let S denote Lk(1,n). Then

V(S)=1{0, S, §2,...,5"1}.

Another nice consequence: The class of Leavitt path algebras
consists of algebras other than those arising in the context of
Leavitt algebras.

Yet another: It's clear that Lx(1,n) = Lx(1,n") < n=1'.
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The monoid V(Lk(E))

One (very nontrivial) consequence: Let S denote Lk(1,n). Then

V(S)=1{0, S, §2,...,5"1}.

Another nice consequence: The class of Leavitt path algebras
consists of algebras other than those arising in the context of
Leavitt algebras.

Yet another: It's clear that Lx(1,n) = Lk(1,n") < n=n'. But we
also get:
L(1,n) ~y Lk(1,0") & n=n
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Projective modules

Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

1) the “quotient of a path algebra” approach, and

2) the “universal algebra which supports Mg as its V-monoid”
approach.

These were developed in parallel.

The two approaches together have complemented each other in
the development of the subject.
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Projective modules

What's ahead?

Lecture 2: (Tuesday) Some theorems of the form

Lk (E) has ring-theoretic property P <
E has graph-theoretic property Q.

In particular, we'll consider the ideal structure of Lk(E).

Also: connections / similarities with graph C*-algebras.

Lecture 3: (Thursday) Contributions made by the study of Leavitt
path algebras to various questions throughout algebra.
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