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Brief history, and motivating examples

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector
space V has a basis. Moreover, if B and B′ are two bases for V ,
then |B| = |B′|.

Note: V has a basis B = {b1, b2, ..., bn} ⇔ V ∼= ⊕n
i=1R as vector

spaces. So:

One result of Dimension Theorem, Rephrased:
⊕n

i=1R ∼= ⊕m
i=1R ⇔ m = n.
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Brief history, and motivating examples

The same Dimension Theorem holds, with the identical proof, if K
is any division ring (i.e., any ring for which every nonzero element
has a multiplicative inverse).

Idea: Show any maximal linearly independent subset of V actually
spans V . Why are there any linearly independent subsets at all?

If 0 6= v ∈ V , then {v} is linearly independent.

If kv = 0, need to show k = 0. But k 6= 0⇒ 1
k kv = 0⇒ v = 0,

contradiction.

Similar idea (multiply by the inverse of a nonzero element of K )
shows that a maximal linearly independent subset of V actually
spans V .
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Brief history, and motivating examples

Question: Is the Dimension Theorem true for rings in general?
That is, if R is a ring, and ⊕n

i=1R ∼= ⊕m
i=1R as R-modules, must

m = n? (“module” = “left module”)

Question, Rephrased: If we take an R-module which has two
different bases, must the two bases contain the same number of
elements?

Answer: NO

But the answer is YES for many rings, e.g. commutative, or
having chain conditions, e.g. Z, M2(R), C (R) , ...

Example: Consider the ring S of linear transformations from an
infinite dimensional R-vector space V to itself.

Think of V as ⊕∞i=1R. Then think of S as RFM(R).
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Brief history, and motivating examples

Intuitively, S and S ⊕ S have a chance to be “the same”.

M 7→ (Odd numbered columns of M ,Even numbered columns of M)

More formally: Let

Y1 =



1 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...


Y2 =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
...

...
...

...
...

...


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X1 =



1 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...


X2 =



0 1 0 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...


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Brief history, and motivating examples

Then MY1 gives the Odd Columns of M, while
MY2 gives the Even Columns of M.

So the previous intuitive map is, formally, M 7→ (MY1,MY2).

Similarly, we should be able to ’go back’ from pairs of matrices to
a single matrix, by interweaving the columns.

That is, more formally, (M1,M2) 7→ M1X1 + M2X2 is a
reasonable way to associate a pair of matrices with a single one.
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Brief history, and motivating examples

Here’s what’s really going on. These equations are easy to verify:

Y1X1 + Y2X2 = I ,

X1Y1 = I = X2Y2, and X1Y2 = 0 = X2Y1.

Using these, we get inverse maps S → S ⊕ S and S ⊕ S → S :

M 7→ (MY1,MY2) 7→ MY1X1 + MY2X2 = M · I = M, and

(M1,M2) 7→ M1X1 + M2X2

7→ ( (M1X1 + M2X2)Y1, (M1X1 + M2X2)Y2 ) = (M1,M2)
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Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains
four elements y1, y2, x1, x2 satisfying

y1x1 + y2x2 = 1R ,

x1y1 = 1R = x2y2, and x1y2 = 0 = x2y1.

Then R ∼= R ⊕ R.

Note for later: i.e.,
∑2

i=1 yixi = 1R and xiyj = δi ,j1R .
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Brief history, and motivating examples

Remark: Here the sets {1R} and {x1, x2} are each bases for R.

Actually, when R ∼= R ⊕ R as R-modules, then ⊕m
i=1R ∼= ⊕n

i=1R
for all m, n ∈ N.
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Leavitt algebras

Natural question:

Does there exist R with, e.g., R ∼= R ⊕ R ⊕ R, but R � R ⊕ R?

Theorem

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every m < n ∈ N and field K there exists a K -algebra
R = LK (m, n) with ⊕m

i=1R ∼= ⊕n
i=1R, and all isomorphisms

between free left R-modules result precisely from this one.
Moreover, LK (m, n) is universal with this property.
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Leavitt algebras

The m = 1 situation of Leavitt’s Theorem is now somewhat
familiar. Similar to the n = 2 case that we saw above,

R ∼= Rn if and only if there exist

x1, x2, ..., xn, y1, y2, ..., yn ∈ R

for which
n∑

i=1

yixi = 1R and xiyj = δi ,j1R .

LK (1, n) is the quotient

K < X1,X2, ...,Xn,Y1,Y2, ...,Yn > / < (
n∑

i=1

YiXi )−1K ; XiYj−δi ,j1K >

Note: RFM(K ) is much bigger than LK (1, 2).
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Leavitt algebras

As a result, we have this: Let S denote LK (1, n). Then

Sa ∼= Sb ⇔ a ≡ b mod(n − 1).

In particular, S ∼= Sn, and n > 1 is minimal with this property.
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Building rings from combinatorial objects

Here’s a familiar idea. Consider the set T = {x0, x1, x2, ....}.
Define multiplication on T in the usual way: x i · x j = x i+j .
Consider formal symbols of the form

k1t1 + k2t2 + · · ·+ kntn

where ti ∈ T , and ki ∈ R. Denote this set of symbols by KT . We
can add and multiply two symbols of this form, as usual, e.g.
(kt)(k ′t ′) = kk ′(t · t ′).

Here KT is just the ring R[x ] of polynomials with coefficients in R.

Also, e.g. if we impose the relation xn = x0 on T , call the new
semigroup T , then T = {x0, x1, x2, ..., xn−1}, and

RT ∼= R[x ]/〈xn − 1〉
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Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S , and some field K ,
and form the formal symbols as above. Add and multiply based on
addition and ’multiplication’ in K and S .

For instance:

matrix rings, group rings, multivariable polynomial rings, etc ...

can all be thought of in this way.
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General path algebras

Let E be a directed graph. E = (E 0,E 1, r , s)

s(e)• e // •r(e)

The path algebra of E with coefficients in K is the K -algebra KS
as above, where the underlying set S is the set of all directed paths
in E (including vertices), and multiplication of paths is just
concatenation. Denote by KE . In particular, in KE ,

For each edge e, s(e) · e = e = e · r(e)

For each vertex v , v · v = v
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:

E = •t •u
h

~~||
||
||
||

•v

e

>>||||||||

f
//

g

==•w
i
QQ j

// •x

Ê = •t
e

��

•u
h

h∗~~||
||
||
||

•v

e∗
>>||||||||

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e = r(e); and f ∗e = 0 for f 6= e (for all edges e, f in E ).

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for each vertex v in E .

(just at those vertices v which are not sinks, and which emit only

finitely many edges: “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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e∗
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f
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g

==•w

LL

f ∗tt
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QQ
uu

i∗ j
// •x

j∗

WW

ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w (CK 1) hh∗ = u (CK 2)

ff ∗ = ... (no simplification) Note: (ff ∗)2 = f (f ∗f )f ∗ = ff ∗
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n).

Remember: LK (1, n) has generators and relations:
x1, x2, ..., xn, y1, y2, ..., yn ∈ R;

∑n
i=1 yixi = 1R , and xiyj = δi ,j1R ,

while LK (Rn) has these SAME generators and relations, where we
identify y∗i with xi .
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Historical note, part 1

1962: Leavitt gives construction of LK (1, n).

1979: Cuntz gives construction of the C∗-algebras On.

1980’s: Cuntz, Krieger, and others generalize the On construction
to directed graphs, and produce the graph C∗-algebras C ∗(E ).

June 2004: Various algebraists attend the CBMS lecture series

“Graph C ∗-algebras: algebras we can see”,

held at University of Iowa, given by Iain Raeburn.

Algebraic analogs of graph C∗-algebras are defined and investigated
starting Fall 2004.
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Elements in LK (E )

Notation: If p = e1e2 · · · en is a directed path in E then
s(p) denotes s(e1), and r(p) denotes r(en).

Denote n by `(p).

Lemma: Every element of LK (E ) can be written as

n∑
i=1

kiαiβ
∗
i

for some n ∈ N, where: ki ∈ K , and αi , βj are paths in E for which
r(αi ) = r(βi ) (= s(β∗i ) ).

Idea: any expression with a ∗-term on the left reduces either to 0,
or to the appropriate vertex.
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Elements in LK (E )

Remark: Elements of the form αiβ
∗
i are each nonzero in LK (E ) (as

long as r(α) = r(β)), and they span, but they are not in general
K -linearly independent.

Lemma: LK (E ) is unital if and only if E 0 is finite, in which case

1 =
∑
v∈E0

v .

In particular, the center of LK (E ) is nonzero in case E is finite
(since it at least contains K · 1).

If E 0 is infinite we get a set of enough idempotents in LK (E ).
(Module theory is still well-understood in this situation.)
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LK (E ) as a Z-graded algebra

For each vertex v , and each edge e, define

deg(v) = 0, deg(e) = 1, deg(e∗) = −1.

Extend this to terms of the form αβ∗ by setting

deg(αβ∗) = `(α)− `(β).

For d ∈ Z, let LK (E )d denote expressions of the form
n∑

i=1

αiβ
∗
i where deg(αiβ

∗
i ) = d .

Then LK (E )d is clearly a K -subspace of LK (E ), and for all
d , d ′ ∈ Z we can show: LK (E )d · LK (E )d ′ ⊆ LK (E )d+d ′ .

LK (E ) is “Z-graded”.
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More Examples of Leavitt path algebras.

Mentioned above: If

E = •v1 f1 // •v2 f2 // •v3 •vn−1
fn−1 // •vn

then LK (E ) ∼= Mn(K ).

Any expression pup∗t has a unique start / end vertex, say vi and vj .
Then the isomorphism LK (E )→ Mn(K ) is given by extending:

pup∗t 7→ ei ,j .

Note that we may wlog assume that each of pu and pt ends at vn.
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More Examples of Leavitt path algebras.

Note also: the graph E contains no (directed) closed paths,
contains exactly one sink (namely, vn), and that there are exactly n
paths which end in vn (including the path of length 0).

Using this idea, we can generalize to the following.

Proposition: Suppose E is a finite graph which contains no
(directed) closed paths. Let v1, v2, ..., vt denote the sinks of E . (At
least one must exist.) For each 1 ≤ i ≤ t, let ni denote the
number of paths in E which end in vi . Then

LK (E ) ∼= ⊕t
i=1Mni (K ).
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More Examples of Leavitt path algebras.

So the “finite, no (directed) closed paths” case gives algebras
which are well-understood.

Note: If

E = • // • // • and F = • // • •oo

then E and F are not isomorphic as graphs, but
LK (E ) ∼= LK (F ) ∼= M3(K ).

So, nonisomorphic graphs might give rise to isomorphic Leavitt
path algebras.

A fundamental question in Leavitt path algebras: Can we
identify graphical connections between graphs E and F which will
guarantee that LK (E ) ∼= LK (F )?
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More Examples of Leavitt path algebras.

We use this same idea to produce more descriptions of Leavitt
path algebras. Let Rn(d) denote this graph:

•w1 // •w2 // · · · •wd−1 // •v y1ff

y2

ss

y3

��

yn

QQ

Then
LK (Rn(d)) ∼= Md(LK (1, n)).

The idea is the same as before, but now at the end of each trip
into the “end”, you pick up an element of LK (1, n). For this result
n = 1 is included as well.
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More Examples of Leavitt path algebras.

Even more generally:

Proposition: Let E be a finite graph, and d ∈ N. Let SdE be the
graph constructed from E by taking the “straight line” graph of
length d and appending it at each vertex of E . Then

LK (SdE ) ∼= Mn(LK (E )).
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More Examples of Leavitt path algebras.

Using similar ideas:

Proposition: Let E be a graph consisting of a single cycle, with t
vertices. Then LK (E ) ∼= Mt(K [x , x−1]).

More generally, if E is a graph which contains a single cycle c , and
c has no exits, then

LK (E ) ∼= Mn(v)(K [x , x−1]),

where, if v denotes any (fixed) vertex of c , n(v) is the number of
distinct paths in E which end at v and do not contain c .
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More Examples of Leavitt path algebras.

There are some non-standard (surprising?) isomorphisms between
Leavitt path algebras. Let E = R3, so that S = LK (E ) ∼= LK (1, 3).
Then as left S-modules we have S1 ∼= S3. So
EndS(S) ∼= EndS(S3), which gives that, as rings,

S ∼= M3(S).

So using the previous Proposition, these two graphs have
isomorphic Leavitt path algebras:

R3 = • eeqq
��

and R3(3) = • // • // • eeqq
��

That is, LK (R3) ∼= LK (R3(3)).

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: introduction, motivation, and basic properties



Leavitt path algebras: Introduction and Motivation Multiplicative properties Projective modules

More Examples of Leavitt path algebras.

On the other hand, R3 and

R3(2) = • // • eeqq
��

do NOT have isomorphic Leavitt path algebras.

(Leavitt showed this in the 1962 paper.)
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Morita equivalence

General definition: Let R and S be rings. R and S are Morita
equivalent in case the module categories R −Mod and S −Mod
are equivalent.

Suppose R and S are unital. Then R ∼M S

⇔ there exist bimodules (with additional properties) RPS and SPR

with P ⊗ Q ∼= R (as R − R-bimodules) and Q ⊗ P ∼= S (as
S − S-bimodules).

⇔ there exists n ∈ N, e = e2 ∈ Mn(S) for which R ∼= eMn(S)e

⇔ FMN(R) ∼= FMN(S) as rings.
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Morita equivalence

Note: In particular, R and Mn(R) are always Morita equivalent.

So another reasonable question to here is to ask: For graphs E and
F , when is LK (E ) ∼M LK (F )?

Note that this is a courser equivalence relation on rings than
isomorphism. So e.g. even though R3 and M2(R3) are not
isomorphic, they are Morita equivalent (and therefore share many
of the same properties).

Appropriate generalizations hold in case R and S have enough
idempotents.
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The monoid V(R)

Recall: P is a finitely generated projective R-module in case
P ⊕ Q ∼= Rn for some Q, some n ∈ N.

Key example: R itself, or any Rn.

Additional examples: Rf where f is idempotent (i.e., f 2 = f ),
since Rf ⊕ R(1− f ) = R1.

Example: In R = M2(R), P = M2(R)e1,1 =

(
∗ 0
∗ 0

)
is a finitely

projective R-module. Note P � Rn for any n.

Example: LK (E ) contains projective modules of the form
LK (E )ee∗ for each edge e of E .
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The monoid V(R)

V(R) denotes the isomorphism classes of finitely generated
projective (left) R-modules. With operation ⊕, this becomes an
abelian monoid. Note R itself plays a special role in V(R).

Example. R = K , a field. Then V(R) ∼= Z+.

Lemma: If R ∼M S , then V(R) ∼= V(S). So, in particular:

Example. S = Md(K ), K a field. Then V(S) ∼= Z+.
( But note that the ’position’ of S in V(S) is different than the
position of R in V(R). )

Remark: Given a ring R, it is in general not easy to compute
V(R).
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The monoid ME

Here’s a ‘natural’ monoid arising from any directed graph E .

Associate to E the abelian monoid (ME ,+):

ME is generated by {av |v ∈ E 0}
So ME = {n1av1 + n2av2 + · · ·+ ntavt} with ni ∈ Z+.

Relations in ME are given by: av =
∑

e∈s−1(v) ar(e).
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The monoid ME

Example. Let F be the graph

1

�� $$
3

EE

22 2rr

dd

So MF consists of elements {n1a1 + n2a2 + n3a3} (ni ∈ Z+),

subject to: a1 = a2 + a3; a2 = a1 + a3; a3 = a1 + a2.

It’s not hard to get: MF = {0, a1, a2, a3, a1 + a2 + a3}.
In particular, MF \ {0} ∼= Z2 × Z2.
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The monoid V(LK (E ))

Example:

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then ME is the set of symbols of the form

n1av (n1 ∈ Z+)

subject to the relation: av = nav

So here, ME = {0, av , 2av , ..., (n − 1)av}.
In particular, ME \ {0} ∼= Zn−1.
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The monoid V(LK (E ))

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007)
For any row-finite directed graph E ,

V(LK (E )) ∼= ME .

Moreover, LK (E ) is universal with this property.
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The monoid V(LK (E ))

One (very nontrivial) consequence: Let S denote LK (1, n). Then

V(S) = {0, S , S2, ...,Sn−1}.

Another nice consequence: The class of Leavitt path algebras
consists of algebras other than those arising in the context of
Leavitt algebras.

Yet another: It’s clear that LK (1, n) ∼= LK (1, n′)⇔ n = n′. But we
also get:

LK (1, n) ∼M LK (1, n′) ⇔ n = n′.
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Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

1) the “quotient of a path algebra” approach, and

2) the “universal algebra which supports ME as its V-monoid”
approach.

These were developed in parallel.

The two approaches together have complemented each other in
the development of the subject.
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What’s ahead?

Lecture 2: (Tuesday) Some theorems of the form

LK (E ) has ring-theoretic property P ⇔
E has graph-theoretic property Q.

In particular, we’ll consider the ideal structure of LK (E ).

Also: connections / similarities with graph C∗-algebras.

Lecture 3: (Thursday) Contributions made by the study of Leavitt
path algebras to various questions throughout algebra.
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