# Leavitt path algebras: introduction, motivation, and basic properties

#### Gene Abrams University of Colorado Colorado Springs

#### The AMSI Workshop on Graph $C^*$ -algebras, Leavitt path algebras and symbolic dynamics

University of Western Sydney February 11, 2013

Gene Abrams

Iniversity of Colorado @ Colorado Springs





- 2 Multiplicative properties
- 3 Projective modules

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

#### **1** Leavitt path algebras: Introduction and Motivation

2 Multiplicative properties

3 Projective modules

Gene Abrams

University of Colorado @ Colorado Springs

One of the first theorems you saw as an undergraduate student:

**Dimension Theorem for Vector Spaces.** Every nonzero vector space *V* has a basis. Moreover, if  $\mathcal{B}$  and  $\mathcal{B}'$  are two bases for *V*, then  $|\mathcal{B}| = |\mathcal{B}'|$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

One of the first theorems you saw as an undergraduate student:

**Dimension Theorem for Vector Spaces.** Every nonzero vector space V has a basis. Moreover, if  $\mathcal{B}$  and  $\mathcal{B}'$  are two bases for V, then  $|\mathcal{B}| = |\mathcal{B}'|$ .

Note: V has a basis  $\mathcal{B} = \{b_1, b_2, ..., b_n\} \Leftrightarrow V \cong \bigoplus_{i=1}^n \mathbb{R}$  as vector spaces. So:

One result of Dimension Theorem, Rephrased:

 $\oplus_{i=1}^{n} \mathbb{R} \cong \oplus_{i=1}^{m} \mathbb{R} \iff m = n.$ 

Gene Abrams

< □ > < □ > < ≡ > < ≡ > < ≡ > ≡
University of Colorado @ Colorado Springs

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

**Idea**: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

Gene Abrams

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

**Idea**: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all? If  $0 \neq v \in V$ , then  $\{v\}$  is linearly independent.

イロト イポト イヨト イヨト

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

**Idea**: Show any maximal linearly independent subset of V actually spans V. Why are there *any* linearly independent subsets at all?

If  $0 \neq v \in V$ , then  $\{v\}$  is linearly independent.

If kv = 0, need to show k = 0. But  $k \neq 0 \Rightarrow \frac{1}{k}kv = 0 \Rightarrow v = 0$ , contradiction.

Similar idea (multiply by the inverse of a nonzero element of K) shows that a maximal linearly independent subset of V actually spans V.

Gene Abrams

Iniversity of Colorado @ Colorado Springs

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and  $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$  as R-modules, must m = n? ("module" = "left module")

**Question, Rephrased**: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

**Question**: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and  $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$  as R-modules, must m = n? ("module" = "left module")

**Question, Rephrased**: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

#### Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g.  $\mathbb{Z}$ ,  $M_2(\mathbb{R})$ ,  $C(\mathbb{R})$ , ...

Gene Abrams

・ロ・ ・四・ ・ヨ・ ・ ヨ・ University of Colorado @ Colorado Springs

3

-

#### Brief history, and motivating examples

**Question**: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and  $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$  as R-modules, must m = n? ("module" = "left module")

**Question.** Rephrased: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

#### Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g.  $\mathbb{Z}$ ,  $M_2(\mathbb{R})$ ,  $C(\mathbb{R})$ , ...

**Example**: Consider the ring S of linear transformations from an infinite dimensional  $\mathbb{R}$ -vector space V to itself.

**Question**: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and  $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$  as R-modules, must m = n? ("module" = "left module")

**Question, Rephrased**: If we take an *R*-module which has two different bases, must the two bases contain the same number of elements?

#### Answer: NO

But the answer is YES for many rings, e.g. commutative, or having chain conditions, e.g.  $\mathbb{Z}$ ,  $M_2(\mathbb{R})$ ,  $C(\mathbb{R})$ , ...

**Example**: Consider the ring *S* of linear transformations from an infinite dimensional  $\mathbb{R}$ -vector space *V* to itself.

Think of V as  $\bigoplus_{i=1}^{\infty} \mathbb{R}$ . Then think of S as  $\operatorname{RFM}(\mathbb{R})$ .

Gene Abrams

Iniversity of Colorado @ Colorado Springs

Intuitively, S and  $S \oplus S$  have a chance to be "the same".

 $M \mapsto$  (Odd numbered columns of M, Even numbered columns of M)

More formally: Let

$$Y_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} Y_{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト



Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
University of Colorado @ Colorado Springs

Then  $MY_1$  gives the Odd Columns of M, while  $MY_2$  gives the Even Columns of M.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Then  $MY_1$  gives the Odd Columns of M, while  $MY_2$  gives the Even Columns of M.

So the previous intuitive map is, formally,  $M \mapsto (MY_1, MY_2)$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Then  $MY_1$  gives the Odd Columns of M, while  $MY_2$  gives the Even Columns of M.

So the previous intuitive map is, formally,  $M \mapsto (MY_1, MY_2)$ .

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Then  $MY_1$  gives the Odd Columns of M, while  $MY_2$  gives the Even Columns of M.

So the previous intuitive map is, formally,  $M \mapsto (MY_1, MY_2)$ .

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

That is, more formally,  $(M_1, M_2) \mapsto M_1X_1 + M_2X_2$  is a reasonable way to associate a pair of matrices with a single one.

Gene Abrams

Iniversity of Colorado @ Colorado Springs

Here's what's really going on. These equations are easy to verify:

 $Y_1X_1 + Y_2X_2 = I$ ,  $X_1Y_1 = I = X_2Y_2$ , and  $X_1Y_2 = 0 = X_2Y_1$ .

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
University of Colorado @ Colorado Springs

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$
  
 $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$ 

Using these, we get inverse maps  $S \rightarrow S \oplus S$  and  $S \oplus S \rightarrow S$ :

$$M\mapsto (MY_1,MY_2)\mapsto MY_1X_1+MY_2X_2=M\cdot I=M,$$
 and

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$
  
 $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$ 

Using these, we get inverse maps  $S \rightarrow S \oplus S$  and  $S \oplus S \rightarrow S$ :

$$M\mapsto (MY_1,MY_2)\mapsto MY_1X_1+MY_2X_2=M\cdot I=M,$$
 and

$$(M_1, M_2) \mapsto M_1 X_1 + M_2 X_2$$
  
 $\mapsto ((M_1 X_1 + M_2 X_2) Y_1, (M_1 X_1 + M_2 X_2) Y_2) = (M_1, M_2)$ 

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇</li>
University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties

Using exactly the same idea, let R be ANY ring which contains four elements  $y_1, y_2, x_1, x_2$  satisfying

 $v_1 x_1 + v_2 x_2 = 1_R$ 

$$x_1y_1 = 1_R = x_2y_2$$
, and  $x_1y_2 = 0 = x_2y_1$ .

Then  $R \cong R \oplus R$ .

Gene Abrams

University of Colorado @ Colorado Springs

-

3

## Brief history, and motivating examples

Using exactly the same idea, let R be ANY ring which contains four elements  $y_1, y_2, x_1, x_2$  satisfying

 $y_1 x_1 + y_2 x_2 = 1_R$ 

$$x_1y_1=1_R=x_2y_2, \ \, \text{and} \ \ x_1y_2=0=x_2y_1.$$
 Then  $R\cong R\oplus R.$ 

Note for later: i.e.,  $\sum_{i=1}^{2} y_i x_i = 1_R$  and  $x_i y_i = \delta_{i,i} 1_R$ .

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

Gene Abrams

#### Remark: Here the sets $\{1_R\}$ and $\{x_1, x_2\}$ are each bases for R.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Remark: Here the sets  $\{1_R\}$  and  $\{x_1, x_2\}$  are each bases for R.

Actually, when  $R \cong R \oplus R$  as *R*-modules, then  $\bigoplus_{i=1}^{m} R \cong \bigoplus_{i=1}^{n} R$ for all  $m, n \in \mathbb{N}$ .

Gene Abrams

・ロン ・回 と ・ ヨ と ・ ヨ と … University of Colorado @ Colorado Springs

-

Natural question:

Does there exist *R* with, e.g.,  $R \cong R \oplus R \oplus R$ , but  $R \ncong R \oplus R$ ?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Natural question:

Does there exist *R* with, e.g.,  $R \cong R \oplus R \oplus R$ , but  $R \ncong R \oplus R$ ?

#### Theorem

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every  $m < n \in \mathbb{N}$  and field K there exists a K-algebra  $R = L_K(m, n)$  with  $\bigoplus_{i=1}^m R \cong \bigoplus_{i=1}^n R$ , and all isomorphisms between free left R-modules result precisely from this one. Moreover,  $L_K(m, n)$  is universal with this property.

Gene Abrams

Iniversity of Colorado @ Colorado Springs

The m = 1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n = 2 case that we saw above,  $R \cong R^n$  if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

The m = 1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n = 2 case that we saw above,  $R \cong R^n$  if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

 $L_{\mathcal{K}}(1, n)$  is the quotient

$$K < X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n > / < (\sum_{i=1}^n Y_i X_i) - 1_K; X_i Y_j - \delta_{i,j} 1_K >$$

Note:  $\operatorname{RFM}(K)$  is much bigger than  $L_K(1,2)$ .

Gene Abrams

University of Colorado @ Colorado Springs

As a result, we have this: Let S denote  $L_{\mathcal{K}}(1, n)$ . Then

$$S^a \cong S^b \iff a \equiv b \mod(n-1).$$

In particular,  $S \cong S^n$ , and n > 1 is minimal with this property.

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

## Building rings from combinatorial objects

**Here's a familiar idea**. Consider the set  $T = \{x^0, x^1, x^2, ....\}$ . Define multiplication on T in the usual way:  $x^i \cdot x^j = x^{i+j}$ . Consider formal symbols of the form

 $k_1t_1+k_2t_2+\cdots+k_nt_n$ 

where  $t_i \in T$ , and  $k_i \in \mathbb{R}$ . Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g.  $(kt)(k't') = kk'(t \cdot t')$ .

Gene Abrams

University of Colorado @ Colorado Springs

3

イロン イロン イヨン イヨン

## Building rings from combinatorial objects

**Here's a familiar idea**. Consider the set  $T = \{x^0, x^1, x^2, ....\}$ . Define multiplication on T in the usual way:  $x^i \cdot x^j = x^{i+j}$ . Consider formal symbols of the form

 $k_1t_1+k_2t_2+\cdots+k_nt_n$ 

where  $t_i \in T$ , and  $k_i \in \mathbb{R}$ . Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g.  $(kt)(k't') = kk'(t \cdot t')$ .

Here KT is just the ring  $\mathbb{R}[x]$  of polynomials with coefficients in  $\mathbb{R}$ .

3

イロン イロン イヨン イヨン

э

#### Building rings from combinatorial objects

**Here's a familiar idea**. Consider the set  $T = \{x^0, x^1, x^2, ...\}$ . Define multiplication on T in the usual way:  $x^i \cdot x^j = x^{i+j}$ . Consider formal symbols of the form

 $k_1 t_1 + k_2 t_2 + \cdots + k_n t_n$ 

where  $t_i \in T$ , and  $k_i \in \mathbb{R}$ . Denote this set of symbols by KT. We can add and multiply two symbols of this form, as usual, e.g.  $(kt)(k't') = kk'(t \cdot t').$ 

Here KT is just the ring  $\mathbb{R}[x]$  of polynomials with coefficients in  $\mathbb{R}$ .

Also, e.g. if we impose the relation  $x^n = x^0$  on T, call the new semigroup  $\overline{T}$ , then  $\overline{T} = \{x^0, x^1, x^2, ..., x^{n-1}\}$ , and

$$\mathbb{R}\overline{T}\cong\mathbb{R}[x]/\langle x^n-1\rangle$$

Gene Abrams

University of Colorado @ Colorado Springs

# Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and 'multiplication' in K and S.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

# Building rings from combinatorial objects

This is a standard construction to produce rings:

Start with some binary operation on a set S, and some field K, and form the formal symbols as above. Add and multiply based on addition and 'multiplication' in K and S.

For instance:

matrix rings, group rings, multivariable polynomial rings, etc ... can all be thought of in this way.

イロト イポト イヨト イヨト
3

### General path algebras

Let E be a directed graph.  $E = (E^0, E^1, r, s)$ 

$$s(e) \bullet \xrightarrow{e} \bullet r(e)$$

The path algebra of E with coefficients in K is the K-algebra KS as above, where the underlying set S is the set of all directed paths in E (including vertices), and multiplication of paths is just concatenation. Denote by KE. In particular, in KE,

For each edge 
$$e$$
,  $s(e) \cdot e = e = e \cdot r(e)$ 

For each vertex v,  $v \cdot v = v$ 

University of Colorado @ Colorado Springs

Gene Abrams

Start with *E*, build its *double graph*  $\hat{E}$ .

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
 University of Colorado @ Colorado Springs

Start with *E*, build its *double graph*  $\hat{E}$ . Example:



Gene Abrams

University of Colorado @ Colorado Springs

3 B

Start with *E*, build its *double graph*  $\widehat{E}$ . Example:



Gene Abrams

University of Colorado @ Colorado Springs

Construct the path algebra  $K\widehat{E}$ .

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
 University of Colorado @ Colorado Springs

Construct the path algebra  $K\widehat{E}$ . Consider these relations in  $K\widehat{E}$ :

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Construct the path algebra  $K\widehat{E}$ . Consider these relations in  $K\widehat{E}$ :

(CK1)  $e^*e = r(e)$ ; and  $f^*e = 0$  for  $f \neq e$  (for all edges e, f in E).

(CK2)  $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$  for each vertex v in E.

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ⊇</li>
 University of Colorado @ Colorado Springs

Construct the path algebra  $K\widehat{E}$ . Consider these relations in  $K\widehat{E}$ :

(CK1)  $e^*e = r(e)$ ; and  $f^*e = 0$  for  $f \neq e$  (for all edges e, f in E).

(CK2)  $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$  for each vertex v in E.

(just at those vertices v which are not *sinks*, and which emit only finitely many edges: "regular" vertices)

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ </li>
 University of Colorado @ Colorado Springs

э.

# Building Leavitt path algebras

Construct the path algebra  $K\widehat{E}$ . Consider these relations in  $K\widehat{E}$ :

(CK1)  $e^*e = r(e)$ ; and  $f^*e = 0$  for  $f \neq e$  (for all edges e, f in E).

(CK2)  $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$  for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only finitely many edges: "regular" vertices)

#### Definition

The Leavitt path algebra of E with coefficients in K

$$L_{K}(E) = K\widehat{E} / < (CK1), (CK2) >$$

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

Some sample computations in  $L_{\mathbb{C}}(E)$  from the Example:



< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ </li>
 University of Colorado @ Colorado Springs

Gene Abrams

Some sample computations in  $L_{\mathbb{C}}(E)$  from the Example:



 $ff^* = \dots$  (no simplification) Note:  $(ff^*)^2 = f(f^*f)f^* = ff^*$ 

Gene Abrams

University of Colorado @ Colorado Springs

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Standard algebras arising as Leavitt path algebras:

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
 University of Colorado @ Colorado Springs

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then  $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

-

# Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \xrightarrow{\bullet^{v_{n-1}}} \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then  $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$ .

$$E = \bullet^{v} \bigcirc x$$

Then  $L_{\mathcal{K}}(E) \cong \mathcal{K}[x, x^{-1}]$ .

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

University of Colorado @ Colorado Springs

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ y_1 \\ y_n \end{array}}^{y_2} y_1$$

Then 
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \downarrow \\ y_n \end{array}}^{y_3} y_2$$

Then 
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

Remember:  $L_{\mathcal{K}}(1, n)$  has generators and relations:  $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$ ;

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ y_1 \\ y_n \end{array}}^{y_2} y_2$$

Then 
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

Remember:  $L_{\mathcal{K}}(1, n)$  has generators and relations:  $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$ ;  $\sum_{i=1}^n y_i x_i = 1_R$ , and  $x_i y_j = \delta_{i,j} 1_R$ ,

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶</li>
 University of Colorado @ Colorado Springs

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ y_1 \\ y_n \end{array}}^{y_2} y_2$$

Then 
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

Remember:  $L_{\mathcal{K}}(1, n)$  has generators and relations:  $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$ ;  $\sum_{i=1}^n y_i x_i = 1_R$ , and  $x_i y_j = \delta_{i,j} 1_R$ , while  $L_{\mathcal{K}}(R_n)$  has these SAME generators and relations, where we identify  $y_i^*$  with  $x_i$ .

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
 University of Colorado @ Colorado Springs

#### 1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$ .

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

- 1962: Leavitt gives construction of  $L_{\mathcal{K}}(1, n)$ .
- 1979: Cuntz gives construction of the C<sup>\*</sup>-algebras  $\mathcal{O}_n$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

- 1962: Leavitt gives construction of  $L_{\mathcal{K}}(1, n)$ .
- 1979: Cuntz gives construction of the C\*-algebras  $\mathcal{O}_n$ .
- 1980's: Cuntz, Krieger, and others generalize the  $\mathcal{O}_n$  construction to directed graphs, and produce the graph C\*-algebras C\*(E).

イロト イポト イヨト イヨト

- 1962: Leavitt gives construction of  $L_{\mathcal{K}}(1, n)$ .
- 1979: Cuntz gives construction of the C<sup>\*</sup>-algebras  $\mathcal{O}_n$ .
- 1980's: Cuntz, Krieger, and others generalize the  $\mathcal{O}_n$  construction to directed graphs, and produce the graph C\*-algebras C\*(E).
- June 2004: Various algebraists attend the CBMS lecture series

"Graph  $C^*$ -algebras: algebras we can see",

held at University of Iowa, given by Iain Raeburn.

Algebraic analogs of graph C\*-algebras are defined and investigated starting Fall 2004.

#### 1 Leavitt path algebras: Introduction and Motivation

#### 2 Multiplicative properties

3 Projective modules

 < □ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ

 University of Colorado @ Colorado Springs

Gene Abrams

Notation: If  $p = e_1 e_2 \cdots e_n$  is a directed path in E then s(p) denotes  $s(e_1)$ , and r(p) denotes  $r(e_n)$ . Denote n by  $\ell(p)$ .

**Lemma**: Every element of  $L_{\mathcal{K}}(E)$  can be written as

$$\sum_{i=1}^n k_i \alpha_i \beta_i^*$$

for some  $n \in \mathbb{N}$ , where:  $k_i \in K$ , and  $\alpha_i, \beta_j$  are paths in E for which  $r(\alpha_i) = r(\beta_i)$  (=  $s(\beta_i^*)$ ).

Idea: any expression with a \*-term on the left reduces either to 0, or to the appropriate vertex.

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

Remark: Elements of the form  $\alpha_i \beta_i^*$  are each nonzero in  $L_K(E)$  (as long as  $r(\alpha) = r(\beta)$ ), and they span, but they are not in general *K*-linearly independent.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Remark: Elements of the form  $\alpha_i \beta_i^*$  are each nonzero in  $L_K(E)$  (as long as  $r(\alpha) = r(\beta)$ ), and they span, but they are not in general *K*-linearly independent.

**Lemma**:  $L_{\mathcal{K}}(E)$  is unital if and only if  $E^0$  is finite, in which case

$$1=\sum_{v\in E^0}v.$$

In particular, the center of  $L_{\mathcal{K}}(E)$  is nonzero in case E is finite (since it at least contains  $\mathcal{K} \cdot 1$ ).

Gene Abrams

 Image: white the second se

Remark: Elements of the form  $\alpha_i \beta_i^*$  are each nonzero in  $L_K(E)$  (as long as  $r(\alpha) = r(\beta)$ ), and they span, but they are not in general *K*-linearly independent.

**Lemma**:  $L_{\mathcal{K}}(E)$  is unital if and only if  $E^0$  is finite, in which case

$$1=\sum_{v\in E^0}v.$$

In particular, the center of  $L_{\mathcal{K}}(E)$  is nonzero in case E is finite (since it at least contains  $\mathcal{K} \cdot 1$ ).

If  $E^0$  is infinite we get a set of enough idempotents in  $L_K(E)$ . (Module theory is still well-understood in this situation.)

Gene Abrams

Iniversity of Colorado @ Colorado Springs

# $L_{\mathcal{K}}(E)$ as a $\mathbb{Z}$ -graded algebra

For each vertex v, and each edge e, define

$$\deg(v) = 0, \ \deg(e) = 1, \ \deg(e^*) = -1.$$

Extend this to terms of the form  $\alpha\beta^*$  by setting

$$\deg(\alpha\beta^*) = \ell(\alpha) - \ell(\beta).$$

For  $d \in \mathbb{Z}$ , let  $L_{\mathcal{K}}(E)_d$  denote expressions of the form  $\sum_{i=1}^n \alpha_i \beta_i^* \text{ where } \deg(\alpha_i \beta_i^*) = d.$ 

Then  $L_{\mathcal{K}}(E)_d$  is clearly a *K*-subspace of  $L_{\mathcal{K}}(E)$ , and for all  $d, d' \in \mathbb{Z}$  we can show:  $L_{\mathcal{K}}(E)_d \cdot L_{\mathcal{K}}(E)_{d'} \subseteq L_{\mathcal{K}}(E)_{d+d'}$ .

$$L_{\mathcal{K}}(E)$$
 is " $\mathbb{Z}$ -graded".

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

Iniversity of Colorado @ Colorado Springs

Mentioned above: If

$$E = \bullet^{v_1} \xrightarrow{f_1} \bullet^{v_2} \xrightarrow{f_2} \bullet^{v_3} \xrightarrow{\cdots} \bullet^{v_{n-1}} \xrightarrow{f_{n-1}} \bullet^{v_n}$$

then  $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$ .

Any expression  $p_u p_t^*$  has a unique start / end vertex, say  $v_i$  and  $v_j$ . Then the isomorphism  $L_K(E) \to M_n(K)$  is given by extending:

$$p_u p_t^* \mapsto e_{i,j}.$$

Note that we may wlog assume that each of  $p_u$  and  $p_t$  ends at  $v_n$ .

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

University of Colorado @ Colorado Springs

Note also: the graph E contains no (directed) closed paths, contains exactly one sink (namely,  $v_n$ ), and that there are exactly n paths which end in  $v_n$  (including the path of length 0).

Using this idea, we can generalize to the following.

**Proposition**: Suppose *E* is a finite graph which contains no (directed) closed paths. Let  $v_1, v_2, ..., v_t$  denote the sinks of *E*. (At least one must exist.) For each  $1 \le i \le t$ , let  $n_i$  denote the number of paths in *E* which end in  $v_i$ . Then

$$L_{\mathcal{K}}(E) \cong \oplus_{i=1}^{t} \mathrm{M}_{n_{i}}(\mathcal{K}).$$

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

So the "finite, no (directed) closed paths" case gives algebras which are well-understood.

Note: If

 $E = \bullet \longrightarrow \bullet \longrightarrow \bullet$  and  $F = \bullet \longrightarrow \bullet \longleftarrow \bullet$ 

then *E* and *F* are not isomorphic as graphs, but  $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \cong M_3(\mathcal{K}).$ 

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶</li>
 University of Colorado @ Colorado Springs

So the "finite, no (directed) closed paths" case gives algebras which are well-understood.

Note: If

 $E = \bullet \longrightarrow \bullet \longrightarrow \bullet$  and  $F = \bullet \longrightarrow \bullet \longleftarrow \bullet$ 

then *E* and *F* are not isomorphic as graphs, but  $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \cong M_3(\mathcal{K}).$ 

So, nonisomorphic graphs might give rise to isomorphic Leavitt path algebras.

A fundamental question in Leavitt path algebras: Can we identify graphical connections between graphs E and F which will guarantee that  $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ ?

Gene Abrams

University of Colorado @ Colorado Springs

We use this same idea to produce more descriptions of Leavitt path algebras. Let  $R_n(d)$  denote this graph:



Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

We use this same idea to produce more descriptions of Leavitt path algebras. Let  $R_n(d)$  denote this graph:



Then

$$L_{\mathcal{K}}(R_n(d)) \cong M_d(L_{\mathcal{K}}(1, n)).$$

The idea is the same as before, but now at the end of each trip into the "end", you pick up an element of  $L_{\mathcal{K}}(1, n)$ . For this result n = 1 is included as well.

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Even more generally:

**Proposition**: Let *E* be a finite graph, and  $d \in \mathbb{N}$ . Let  $S_d E$  be the graph constructed from *E* by taking the "straight line" graph of length *d* and appending it at each vertex of *E*. Then

 $L_{\mathcal{K}}(S_d E) \cong M_n(L_{\mathcal{K}}(E)).$ 

Gene Abrams

University of Colorado @ Colorado Springs

< ロ > < 同 > < 三 > < 三 >

Using similar ideas:

**Proposition**: Let *E* be a graph consisting of a single cycle, with *t* vertices. Then  $L_{\mathcal{K}}(E) \cong M_t(\mathcal{K}[x, x^{-1}])$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト
#### More Examples of Leavitt path algebras.

Using similar ideas:

**Proposition**: Let *E* be a graph consisting of a single cycle, with *t* vertices. Then  $L_{\mathcal{K}}(E) \cong M_t(\mathcal{K}[x, x^{-1}])$ .

More generally, if E is a graph which contains a single cycle c, and c has no exits, then

$$L_{\mathcal{K}}(E) \cong \mathrm{M}_{n(v)}(\mathcal{K}[x, x^{-1}]),$$

where, if v denotes any (fixed) vertex of c, n(v) is the number of distinct paths in E which end at v and do not contain c.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

#### More Examples of Leavitt path algebras.

There are some non-standard (surprising?) isomorphisms between Leavitt path algebras. Let  $E = R_3$ , so that  $S = L_K(E) \cong L_K(1,3)$ . Then as left S-modules we have  $S^1 \cong S^3$ . So  $\operatorname{End}_S(S) \cong \operatorname{End}_S(S^3)$ , which gives that, as rings,

 $S \cong M_3(S).$ 

So using the previous Proposition, these two graphs have isomorphic Leavitt path algebras:

 $R_3 = \bullet \underbrace{\frown}_{K} \text{ and } R_3(3) = \bullet \longrightarrow \bullet \underbrace{\frown}_{K} \bullet \underbrace{\bullet}_{K} \bullet \underbrace$ 

Gene Abrams

Iniversity of Colorado @ Colorado Springs

#### More Examples of Leavitt path algebras.

On the other hand,  $R_3$  and



do NOT have isomorphic Leavitt path algebras.

(Leavitt showed this in the 1962 paper.)

Gene Abrams

University of Colorado @ Colorado Springs

(日) (同) (三) (三)

General definition: Let R and S be rings. R and S are *Morita* equivalent in case the module categories R - Mod and S - Mod are equivalent.

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

General definition: Let R and S be rings. R and S are *Morita* equivalent in case the module categories R - Mod and S - Mod are equivalent.

Suppose R and S are unital. Then  $R \sim_M S$ 

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

General definition: Let R and S be rings. R and S are *Morita* equivalent in case the module categories R - Mod and S - Mod are equivalent.

Suppose R and S are unital. Then  $R \sim_M S$ 

 $\Leftrightarrow$  there exist bimodules (with additional properties)  $_{R}P_{S}$  and  $_{S}P_{R}$  with  $P \otimes Q \cong R$  (as R - R-bimodules) and  $Q \otimes P \cong S$  (as S - S-bimodules).

イロト イポト イヨト イヨト

-

# Morita equivalence

General definition: Let R and S be rings. R and S are *Morita* equivalent in case the module categories R - Mod and S - Modare equivalent.

Suppose R and S are unital. Then  $R \sim_M S$ 

 $\Leftrightarrow$  there exist bimodules (with additional properties)  $_{R}P_{S}$  and  $_{S}P_{R}$ with  $P \otimes Q \cong R$  (as R - R-bimodules) and  $Q \otimes P \cong S$  (as S - S-bimodules).

 $\Leftrightarrow$  there exists  $n \in \mathbb{N}$ ,  $e = e^2 \in M_n(S)$  for which  $R \cong eM_n(S)e$ 

Gene Abrams

University of Colorado @ Colorado Springs

-

# Morita equivalence

General definition: Let R and S be rings. R and S are *Morita* equivalent in case the module categories R - Mod and S - Modare equivalent.

Suppose R and S are unital. Then  $R \sim_M S$ 

 $\Leftrightarrow$  there exist bimodules (with additional properties)  $_{R}P_{S}$  and  $_{S}P_{R}$ with  $P \otimes Q \cong R$  (as R - R-bimodules) and  $Q \otimes P \cong S$  (as S - S-bimodules).

 $\Leftrightarrow$  there exists  $n \in \mathbb{N}$ ,  $e = e^2 \in M_n(S)$  for which  $R \cong eM_n(S)e$ 

$$\Leftrightarrow \operatorname{FM}_{\mathbb{N}}(R) \cong \operatorname{FM}_{\mathbb{N}}(S)$$
 as rings.

Gene Abrams

#### Note: In particular, R and $M_n(R)$ are always Morita equivalent.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Note: In particular, R and  $M_n(R)$  are always Morita equivalent.

So another reasonable question to here is to ask: For graphs *E* and *F*, when is  $L_{K}(E) \sim_{M} L_{K}(F)$ ?

Gene Abrams

University of Colorado @ Colorado Springs

3

Note: In particular, R and  $M_n(R)$  are always Morita equivalent.

So another reasonable question to here is to ask: For graphs *E* and *F*, when is  $L_{K}(E) \sim_{M} L_{K}(F)$ ?

Note that this is a courser equivalence relation on rings than isomorphism. So e.g. even though  $R_3$  and  $M_2(R_3)$  are not isomorphic, they are Morita equivalent (and therefore share many of the same properties).

Appropriate generalizations hold in case R and S have enough idempotents.

#### 1 Leavitt path algebras: Introduction and Motivation

2 Multiplicative properties

3 Projective modules

Gene Abrams

University of Colorado @ Colorado Springs

(a)

# Recall: *P* is a *finitely generated projective R*-module in case $P \oplus Q \cong R^n$ for some *Q*, some $n \in \mathbb{N}$ .

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

#### Recall: P is a *finitely generated projective* R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$ . Key example: R itself, or any $R^n$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Recall: P is a finitely generated projective R-module in case  $P \oplus Q \cong R^n$  for some Q, some  $n \in \mathbb{N}$ . Key example: R itself, or any  $R^n$ . Additional examples: Rf where f is idempotent (i.e.,  $f^2 = f$ ), since  $Rf \oplus R(1 - f) = R^1$ . Example:  $\ln R = M_2(\mathbb{R}), P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$  is a finitely

projective *R*-module. Note  $P \ncong R^n$  for any *n*.

Gene Abrams

✓ □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇</li>
University of Colorado @ Colorado Springs

3

# The monoid $\mathcal{V}(R)$

Recall: P is a finitely generated projective R-module in case  $P \oplus Q \cong \mathbb{R}^n$  for some Q, some  $n \in \mathbb{N}$ . Key example: R itself, or any  $R^n$ . Additional examples: Rf where f is idempotent (i.e.,  $f^2 = f$ ), since  $Rf \oplus R(1-f) = R^1$ . Example: In  $R = M_2(\mathbb{R})$ ,  $P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$  is a finitely

projective *R*-module. Note  $P \ncong R^n$  for any *n*.

Example:  $L_{\mathcal{K}}(E)$  contains projective modules of the form  $L_{\kappa}(E)ee^*$  for each edge e of E.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

 $\mathcal{V}(R)$  denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation  $\oplus$ , this becomes an abelian monoid. Note *R* itself plays a special role in  $\mathcal{V}(R)$ .

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ </li>
University of Colorado @ Colorado Springs

 $\mathcal{V}(R)$  denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation  $\oplus$ , this becomes an abelian monoid. Note *R* itself plays a special role in  $\mathcal{V}(R)$ .

**Example.** R = K, a field. Then  $\mathcal{V}(R) \cong \mathbb{Z}^+$ .

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

 $\mathcal{V}(R)$  denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation  $\oplus$ , this becomes an abelian monoid. Note *R* itself plays a special role in  $\mathcal{V}(R)$ .

**Example.** R = K, a field. Then  $\mathcal{V}(R) \cong \mathbb{Z}^+$ .

Lemma: If  $R \sim_M S$ , then  $\mathcal{V}(R) \cong \mathcal{V}(S)$ .

Gene Abrams

University of Colorado @ Colorado Springs

 $\mathcal{V}(R)$  denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation  $\oplus$ , this becomes an abelian monoid. Note *R* itself plays a special role in  $\mathcal{V}(R)$ .

**Example.** R = K, a field. Then  $\mathcal{V}(R) \cong \mathbb{Z}^+$ .

Lemma: If  $R \sim_M S$ , then  $\mathcal{V}(R) \cong \mathcal{V}(S)$ . So, in particular:

**Example.**  $S = M_d(K)$ , K a field. Then  $\mathcal{V}(S) \cong \mathbb{Z}^+$ . ( But note that the 'position' of S in  $\mathcal{V}(S)$  is different than the position of R in  $\mathcal{V}(R)$ . )

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇</li>
University of Colorado @ Colorado Springs

 $\mathcal{V}(R)$  denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation  $\oplus$ , this becomes an abelian monoid. Note *R* itself plays a special role in  $\mathcal{V}(R)$ .

**Example.** R = K, a field. Then  $\mathcal{V}(R) \cong \mathbb{Z}^+$ .

Lemma: If  $R \sim_M S$ , then  $\mathcal{V}(R) \cong \mathcal{V}(S)$ . So, in particular:

**Example.**  $S = M_d(K)$ , K a field. Then  $\mathcal{V}(S) \cong \mathbb{Z}^+$ . ( But note that the 'position' of S in  $\mathcal{V}(S)$  is different than the position of R in  $\mathcal{V}(R)$ .)

**Remark**: Given a ring R, it is in general not easy to compute  $\mathcal{V}(R)$ .

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇</li>
University of Colorado @ Colorado Springs

#### Here's a 'natural' monoid arising from any directed graph E.

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

э

# The monoid $M_F$

Here's a 'natural' monoid arising from any directed graph E. Associate to E the abelian monoid  $(M_E, +)$ :

$$\begin{aligned} &M_E \text{ is generated by } \{a_v | v \in E^0\} \\ &\text{ So } M_E = \{n_1 a_{v_1} + n_2 a_{v_2} + \dots + n_t a_{v_t}\} \text{ with } n_i \in \mathbb{Z}^+. \end{aligned}$$

Relations in  $M_E$  are given by:  $a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$ .

イロン イロン イヨン イヨン University of Colorado @ Colorado Springs

Gene Abrams

**Example.** Let *F* be the graph



So  $M_F$  consists of elements  $\{n_1a_1 + n_2a_2 + n_3a_3\}$   $(n_i \in \mathbb{Z}^+)$ , subject to:  $a_1 = a_2 + a_3$ ;  $a_2 = a_1 + a_3$ ;  $a_3 = a_1 + a_2$ .

University of Colorado @ Colorado Springs

(a)

Gene Abrams

**Example.** Let *F* be the graph



So  $M_F$  consists of elements  $\{n_1a_1 + n_2a_2 + n_3a_3\}$   $(n_i \in \mathbb{Z}^+)$ , subject to:  $a_1 = a_2 + a_3$ ;  $a_2 = a_1 + a_3$ ;  $a_3 = a_1 + a_2$ . It's not hard to get:

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

University of Colorado @ Colorado Springs

(a)

**Example.** Let *F* be the graph



So  $M_F$  consists of elements  $\{n_1a_1 + n_2a_2 + n_3a_3\}$   $(n_i \in \mathbb{Z}^+)$ , subject to:  $a_1 = a_2 + a_3$ ;  $a_2 = a_1 + a_3$ ;  $a_3 = a_1 + a_2$ . It's not hard to get:  $M_F = \{0, a_1, a_2, a_3, a_1 + a_2 + a_3\}$ . In particular,  $M_F \setminus \{0\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ .

Gene Abrams

University of Colorado @ Colorado Springs

Example:

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ y_2 \\ y_1 \\ y_n \end{array}}_{y_n}$$

Then  $M_E$  is the set of symbols of the form

$$\mathit{n_1a_v}~(\mathit{n_1}\in\mathbb{Z}^+)$$

subject to the relation:  $a_v = na_v$ 

Gene Abrams

Leavitt path algebras: introduction, motivation, and basic properties

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Example:

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ y_2 \\ y_1 \\ y_n \end{array}}_{y_n}$$

Then  $M_E$  is the set of symbols of the form

$$\mathit{n_1a_v}~(\mathit{n_1}\in\mathbb{Z}^+)$$

subject to the relation:  $a_v = na_v$ 

So here, 
$$M_E = \{0, a_v, 2a_v, ..., (n-1)a_v\}$$
.  
In particular,  $M_E \setminus \{0\} \cong \mathbb{Z}_{n-1}$ .

Gene Abrams

✓ □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
University of Colorado @ Colorado Springs

▲□▶▲圖▶★≧▶★≧▶ ≧ 約९(

University of Colorado @ Colorado Springs

Leavitt path algebras: introduction, motivation, and basic properties

Gene Abrams

#### Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007) For any row-finite directed graph E,

 $\mathcal{V}(L_{\mathcal{K}}(E)) \cong M_{\mathcal{F}}.$ 

Moreover,  $L_K(E)$  is universal with this property.

Gene Abrams

University of Colorado @ Colorado Springs

3

One (very nontrivial) consequence: Let S denote  $L_{K}(1, n)$ . Then

$$\mathcal{V}(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

One (very nontrivial) consequence: Let S denote  $L_{K}(1, n)$ . Then

$$\mathcal{V}(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

One (very nontrivial) consequence: Let S denote  $L_{K}(1, n)$ . Then

$$\mathcal{V}(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It's clear that  $L_{\mathcal{K}}(1,n) \cong L_{\mathcal{K}}(1,n') \Leftrightarrow n = n'$ .

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</li>
University of Colorado @ Colorado Springs

One (very nontrivial) consequence: Let S denote  $L_{K}(1, n)$ . Then

$$\mathcal{V}(S) = \{0, S, S^2, ..., S^{n-1}\}.$$

Another nice consequence: The class of Leavitt path algebras consists of algebras other than those arising in the context of Leavitt algebras.

Yet another: It's clear that  $L_{\mathcal{K}}(1,n) \cong L_{\mathcal{K}}(1,n') \Leftrightarrow n = n'$ . But we also get:

$$L_{\mathcal{K}}(1,n) \sim_{\mathcal{M}} L_{\mathcal{K}}(1,n') \Leftrightarrow n = n'.$$

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶</li>
University of Colorado @ Colorado Springs

## Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

1) the "quotient of a path algebra" approach, and

2) the "universal algebra which supports  $M_E$  as its  $\mathcal{V}$ -monoid" approach.

These were developed in parallel.

The two approaches together have complemented each other in the development of the subject.

## What's ahead?

#### Lecture 2: (Tuesday) Some theorems of the form

 $L_{\mathcal{K}}(E)$  has ring-theoretic property  $\mathcal{P} \Leftrightarrow E$  has graph-theoretic property  $\mathcal{Q}$ .

In particular, we'll consider the ideal structure of  $L_{\kappa}(E)$ . Also: connections / similarities with graph C\*-algebras.

**Lecture 3**: (Thursday) Contributions made by the study of Leavitt path algebras to various questions throughout algebra.

Gene Abrams