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Recap of Lecture 1

Start with a directed graph E , build its double graph Ê .
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Recap of Lecture 1

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e = r(e); and f ∗e = 0 for f 6= e (for all edges e, f in E ).

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for each vertex v in E .

(just at “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Standard algebras arising as Leavitt path algebras

E = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n).
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Recap of Lecture 1

Every element of LK (E ) can be written as

n∑
i=1

kiαiβ
∗
i

for some n ∈ N, where: ki ∈ K , and αi , βj are paths in E for which
r(αi ) = r(βi ) (= s(β∗i ) ).

LK (E ) is Z-graded, by setting

deg(αβ∗) = `(α)− `(β).
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Recap of Lecture 1

For E any graph, define the abelian monoid (ME ,+):

ME is generated by {av |v ∈ E 0}

Relations in ME are given by:

av =
∑

e∈s−1(v)

ar(e) (at regular vertices)

Theorem

For any row-finite directed graph E ,

V(LK (E )) ∼= ME .
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Some ideals in LK (E )

We need some graph-theoretic notation and terms

1 v ,w ∈ E 0. v connects to w in case either v = w , or:

there is a path p in E for which s(p) = v , r(p) = w .

2 S ⊆ E 0 is hereditary in case:

if v ∈ S , and v connects to w , then w ∈ S .

3 S ⊆ E 0 is saturated in case:

For each regular vertex v ∈ E 0, if r(s−1(v)) ⊆ S , then v ∈ S .
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Some ideals in LK (E )

Example: ∅ and E 0 are always hereditary and saturated.

If these are the only such sets, we say E is cofinal.

Example: In
•u •voo // •w

S = {u,w} is hereditary, but not saturated.

Example: In
•u •voo

ff

S = {u} is hereditary and saturated. (Saturated vacuously.)
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Ideals in LK (E )

Proposition: Let I be an ideal in LK (E ). Let S ⊆ E 0 be the set
I ∩ E 0. Then S is hereditary and saturated.

[Comment: The sets E 0 and E 1 play two roles here.]

Proof. Hereditary? Suppose •v e // •w , and v ∈ I . But

w = e∗e = e∗ · v · e ∈ I .

Saturated? Suppose each vertex to which the regular vertex v
connects is in I ; i.e., that r(s−1(v)) ⊆ I . But

v =
∑

e∈s−1(v)

ee∗ =
∑

e∈s−1(v)

e · r(e) · e∗ ∈ I .
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Graded ideals

Definition: If R = ⊕t∈ZRt is Z-graded, and I is a two-sided ideal
of R, then I is a graded ideal in case:

for each a ∈ I ,

if a =
n∑

t=1

at (where at ∈ Rt),

then at ∈ I for all 1 ≤ i ≤ t.
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Graded ideals

Non-Example: In K [x , x−1], consider I = 〈1 + x〉. Then I is not
graded, since neither 1 nor x is in I .

In the context of LK ( • xee ), this gives that I = 〈v + x〉 is
nongraded. Note that I = 〈v + x〉 contains no vertices.

Important Example: Let R be any graded ring. Suppose T is a
set of idempotents in R0. Then 〈T 〉 is a graded ideal.

In particular, if T is any subset of E 0, then 〈T 〉 is a graded ideal of
LK (E ).
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Graded ideals

Let HE denote the set of hereditary saturated subsets of E .

Let Idgr(LK (E )) denote the set of graded ideals of LK (E ).

Proposition Let E be a row-finite graph. Then there is an
order-preserving bijection

HE ←→ Idgr(LK (E )).

Idea of proof. If I is any ideal of LK (E ), then I ∩ E 0 ∈ H by
previous lemma. But if I is graded, one can show (induction) that
I = 〈I ∩ E 0〉.
Conversely, if H ∈ H, then one shows that the only vertices in 〈H〉
are already in H, so that H = 〈H〉 ∩ E 0. �
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Graded ideals

Note: This correspondence does not extend to non-row-finite
graphs, but there is a generalization.

So: If there is a nontrivial hereditary saturated subset of E , then
LK (E ) cannot be simple. For instance, if E is the graph

•u •voo
ff

then LK (E ) is not simple, since 〈{u}〉 is a proper (graded)
two-sided ideal.
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Graded ideals

So every graded ideal of LK (E ) is generated by idempotents (this
is true for general graphs as well).

Corollary: For any graph E , the Jacobson radical J(LK (E )) = {0}.
Proof: For Z-graded rings, the Jacobson radical is a graded ideal.
But for any ring, the Jacobson radical cannot contain nonzero
idempotents.

R is a prime ring in case the product I · I ′ of two nonzero two-sided
ideals of R is nonzero.
Corollary: LK (E ) is a prime ring if and only if each pair of vertices
in E connects to a common vertex. (“downward directed”)

Proof: For Z-graded rings, it is sufficient to show that the product
of any two nonzero graded ideals is nonzero. Now look at elements
of the product.
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Simplicity of Leavitt path algebras

Here’s a natural question, especially in light of Bill Leavitt’s result
that LK (1, n) is simple for all n ≥ 2:

For which graphs E and fields K is LK (E ) simple?

Note LK (E ) is simple for

E = • // • // // • since LK (E ) ∼= Mn(K )

and for

and for E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ since LK (E ) ∼= LK (1, n)

but not simple for

E = R1 = •v xff since LK (E ) ∼= K [x , x−1]
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Ideals in LK (E )

Note: In • ee we obviously have HE = {∅,E 0}. So there are no
nontrivial graded ideals in LK ( • ee ). So the absence of
nontrivial hereditary saturated subsets is not sufficient to imply
that the Leavitt path algebra is simple, because we have seen that,
e.g., 〈v + x〉 is a nontrivial two-sided ideal.

For comparison: Why do we get 〈v + yi 〉 = LK (Rn) for n ≥ 2?

For i 6= j ,

y∗j (v + yi )yj = y∗j vyj + y∗j yiyj = v + 0 = v

Gene Abrams University of Colorado @ Colorado SpringsUCCS
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Some graph definitions

1. A cycle •a

x
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2. An exit for a cycle.
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Simplicity of Leavitt path algebras

Theorem

(A -, Aranda Pino) [7] LK (E ) is simple if and only if:

1 H = {∅,E 0}, and

2 Every cycle in E has an exit. (Condition (L)).

Note: No role played by K .
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Simplicity of Leavitt path algebras

Idea of proof: (⇒) Mimic what Leavitt did.

Step 1: Show that, in this case, if there is a nonzero element in an
ideal I which is of the form

∑n
i=1 αi or

∑n
i=1 β

∗
i , then the ideal

must be of all of LK (E ).

Step 2: Show, by an induction argument, that the two conditions
imply the existence of such an element in I .

(⇐) If HE contains nontrivial elements, then there are nontrivial
(graded) ideals in LK (E ).

On the other hand, if there is a cycle in E which does NOT have
an exit, then some piece of LK (E ) contains K [x , x−1], which is not
simple.

Gene Abrams University of Colorado @ Colorado SpringsUCCS

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 2: algebraic properties



Recap of Lecture 1 Ideals in LK (E), and simplicity Purely infinite simplicity Connections to graph C∗-algebras

Simplicity of Leavitt path algebras

Idea of proof: (⇒) Mimic what Leavitt did.

Step 1: Show that, in this case, if there is a nonzero element in an
ideal I which is of the form

∑n
i=1 αi or

∑n
i=1 β

∗
i , then the ideal

must be of all of LK (E ).

Step 2: Show, by an induction argument, that the two conditions
imply the existence of such an element in I .

(⇐) If HE contains nontrivial elements, then there are nontrivial
(graded) ideals in LK (E ).

On the other hand, if there is a cycle in E which does NOT have
an exit, then some piece of LK (E ) contains K [x , x−1], which is not
simple.

Gene Abrams University of Colorado @ Colorado SpringsUCCS

III Floripa DynSys Minicourse on Leavitt path algebras. Lecture 2: algebraic properties



Recap of Lecture 1 Ideals in LK (E), and simplicity Purely infinite simplicity Connections to graph C∗-algebras

Simplicity of Leavitt path algebras

So the class of Leavitt path algebras yields many “new” simple
algebras, over and above the Leavitt algebras LK (1, n).
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Purely infinite simplicity

Leavitt’s simplicity theorem for LK (1, n), revisited.

Definition: A simple unital ring R is purely infinite simple if R is
not a division ring, and for every r 6= 0 in R there exists α, β in R
for which

αrβ = 1R .

Definition: An idempotent e ∈ R is called infinite in case
Re = Rf ⊕ Rg with f , g nonzero orthogonal idempotents, and
Re ∼= Rf .

Example: R = LK (1, n) for n ≥ 2. Then e = 1R is infinite, because
R = R1R = Ry1x1 ⊕ R(1R − y1x1), and it’s easy to show that
R1R ∼= Ry1x1.

Proposition: R is purely infinite simple if and only if R is simple,
and each nonzero left ideal of R contains an infinite idempotent.
(The definition extends to nonunital rings this way.)
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Purely infinite simplicity

Leavitt’s theorem, restated:

For n ≥ 2, LK (1, n) is purely infinite simple.
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Purely infinite simplicity

Side note: M2(K ) is simple, but not purely infinite simple.

Consider e.g., r =

(
0 1
0 0

)
. Then

(
a b
c d

)(
0 1
0 0

)(
a′ b′

c ′ d ′

)
=

(
ac ′ ad ′

cc ′ cd ′

)
6=
(

1 0
0 1

)

Of course we do have ...(
1 0
0 1

)
=

(
1 0
0 1

)(
0 1
0 0

)(
0 0
1 0

)
+

(
0 0
1 0

)(
0 1
0 0

)(
1 0
0 1

)
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Purely infinite simplicity

What’s going on in LK (1, n) that makes it different from M2(K )?

Here’s a representative computation in LK (1, 2). Pick, e.g.,
r = y1x1. Then

(x1 + x2) · r · (y1 + y2) = x1y1x1y1 + x1y1x1y2 + x2y1x1y1 + x2y1x1y2

= 1 + 0 + 0 + 0 = 1
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Purely infinite simplicity

Which Leavitt path algebras are purely infinite simple?

Theorem: E finite.

LK (E ) is purely infinite simple ⇔

LK (E ) is simple, and E contains a cycle ⇔

HE = {∅,E 0}, every cycle has an exit, and E has a cycle ⇔

ME \ {0} is a group ⇔ V(LK (E )) \ {[0]} is a group

Moreover, in this situation, we can easily calculate V(LK (E )) using
the Smith normal form of the matrix I − At

E .

Remark: It is a long but elementary task to show that ME \ {0} is
a group if and only if E has the three germane properties.
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Purely infinite simplicity

So we get a dichotomy in the simple Leavitt path algebras:

Those coming from graphs with cycles, and those coming from
graphs without cycles.

The only simple rings coming from graphs without cycles are
Mn(K ) for some n (by Lecture 1 result).

So the only simple Leavitt path algebras are Mn(K ) for some
n ∈ N, or are purely infinite simple.
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Other ring-theoretic properties of Leavitt path algebras

When is every ideal of LK (E ) graded?

This happens, e.g., in LK ( • qq ee ), but not in LK ( • ee ).

We say a vertex v has Condition (K) if v is either the base of no
cycles in E , or is the base of at least two simple closed paths in E .
We say E has Condition (K) in case every vertex of E has
Condition (K).

Proposition: Every ideal of LK (E ) is graded if and only if E has
Condition (K).

Idea: Roughly, if a vertex v does not have Condition (K), then if c
denotes the (unique) cycle based at v , the ideal 〈v + c〉 of LK (E )
behaves somewhat like the ideal 〈1 + x〉 of K [x , x−1].
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Other ring-theoretic properties of Leavitt path algebras

We know precisely the graphs E for which LK (E ) has various other
properties, e.g.:

1 one-sided chain conditions

2 von Neumann regular

3 exchange

( ⇔ Condition (K) )

4 two-sided chain conditions

5 primitive

Many more.
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One-sided chain conditions

Proposition. Suppose c is a cycle without exit, based at v . Then
vLK (E )v ∼= K [x , x−1].

Proof. The only paths in E which start and end at v consist of c ,
repeated some number of times. Also, cc∗ = v (by no exits). So
elements of vLK (E )v =

∑n
i=m kic

i , where c i is defined as (c∗)−i

for i < 0.
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One-sided chain conditions

Proposition. E finite. Then R = LK (E ) is (one-sided) artinian if
and only if E is acyclic.

Proof. If E is acyclic then R ∼= ⊕t
i=1Mi (K ) (by Lecture 1), which

is well known to be artinian.
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LK (E ) Artinian ⇔ E acyclic

Conversely, suppose E contains a cycle c , based at v .

Case 1: Suppose c has no exit. Then vLK (E )v ∼= K [x , x−1], which
is not artinian. So LK (E ) is not artinian.

Case 2: Suppose c has an exit, call it e. W.l.o.g we may assume
that s(e) = v . Note c∗e = 0. Now

Rcc∗ ) Rc2(c∗)2 ) Rc3(c∗)3 ) · · ·

Containment? c i+1(c∗)i+1 = c i+1(c∗)i+1 · c i (c∗)i .

Proper? If c i (c∗)i = r · c i+1(c∗)i+1 then multiply by c ie on the
right to get c ie = r · c i+1c∗e = 0, a contradiction.
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is not artinian. So LK (E ) is not artinian.

Case 2: Suppose c has an exit, call it e. W.l.o.g we may assume
that s(e) = v . Note c∗e = 0. Now

Rcc∗ ) Rc2(c∗)2 ) Rc3(c∗)3 ) · · ·

Containment? c i+1(c∗)i+1 = c i+1(c∗)i+1 · c i (c∗)i .

Proper? If c i (c∗)i = r · c i+1(c∗)i+1 then multiply by c ie on the
right to get c ie = r · c i+1c∗e = 0, a contradiction.
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One-sided chain conditions

Proposition. E finite. Then R = LK (E ) is (one-sided) noetherian
if and only if no cycle in E has an exit.

Proof. If no cycle in E has an exit, then (using ideas similar to the
acyclic case),

R ∼= (⊕t
i=1Mi (K ))⊕ (⊕u

j=1Mj(K [x , x−1])),

which is well known to be noetherian.

Conversely, suppose E contains a cycle c with an exit, again
assume based at v . Then similar to above, we consider

R(v − cc∗) ( R(v − c2(c∗)2) ( R(v − c3(c∗)3) ( · · ·

Proper containments follow as above.
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Connections to graph C ∗-algebras.

Since around the year 2000, operator algebraists have investigated
the C ∗-algebra C ∗(E ) associated with a directed graph E . [47]

There are obvious similarities between LC(E ) and C ∗(E ).

(And
some unfortunate notational differences.)

Assume for now that E is finite. With appropriate notation, and
(CK1), (CK2) in mind,

C ∗(E ) = span({SµS∗ν}).

For us, the best way to think of the relationship between LC(E )
and C ∗(E ) is

LC(E ) = spanC({SµS∗ν}) ⊆ spanC({SµS∗ν}) = C ∗(E ).

So LC(E ) may be viewed as a C-subalgebra of C ∗(E ), closed under
∗, and dense in C ∗(E ).
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Connections to graph C ∗-algebras

Some relationships between LC(E ) and C ∗(E ).

1 LC(E ) = C ∗(E ) if and only if E is acyclic.

2 If E = • ee then

C[x , x−1] = LC(E ) ( C ∗(E ) = C (T).

3 If E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ , then

LC(1, n) = LC(E ) ( C ∗(E ) = On,

the Cuntz algebra of order n.
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Connections to graph C ∗-algebras

Any C ∗-algebra A wears two hats:

1 view A as a ring, or

2 view the ring-theoretic structure of A from a
topological/analytic viewpoint.

Example: The (algebraic) simplicity of the C ∗-algebra as a ring (no
nontrivial two-sided ideals), or the (topological) simplicity as a
topological ring (no nontrivial closed two-sided ideals).

In general, such properties need not coincide. But for graph
C ∗-algebras of finite graphs, they often do. AND, these properties
often coincide with the corresponding (algebraic) properties of
LC(E ).
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Connections to graph C ∗-algebras.

Simplicity:

Algebraic: No nontrivial two-sided ideals.
Analytic: No nontrivial closed two-sided ideals.

LC(E ) is simple if and only if E is cofinal and has Condition (L).

C ∗(E ) is (topologically) simple if and only if E is cofinal and has
Condition (L).

For any unital C ∗-algebra A, A is topologically simple if and only if
A is algebraically simple.

Result: These are equivalent for any finite graph E :

1 LC(E ) is simple
2 C ∗(E ) is (topologically) simple
3 C ∗(E ) is (algebraically) simple
4 E is cofinal, and satisfies Condition (L).
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Connections to graph C ∗-algebras.

The V-monoid:
Algebraic: For a ring R, V(R) is the monoid of isomorphism
classes of finitely generated left R-modules, with operation ⊕.

Analytic: For an operator algebra A, VMvN(A) is the monoid of
Murray - von Neumann equivalence classes of projections in
FMN(A).

Whenever A is a C ∗-algebra, then V(A) agrees with VMvN(A).

Result: For any finite graph E , these monoids are isomorphic:

1 The graph monoid ME

2 V(LK (E ))

3 V(C ∗(E ))

4 VMvN(C ∗(E )).

Note: V(LK (E )) ∼= V(C ∗(E )) is very nontrivial; [36]
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Connections to graph C ∗-algebras.

Purely infinite simplicity:
Algebraic: R is purely infinite simple in case R is simple and every
nonzero right ideal of R contains an infinite idempotent.

Analytic: The simple C ∗-algebra A is called purely infinite (simple)
if for every positive x ∈ A, the subalgebra xAx contains an infinite
projection.
For graph C ∗-algebras, C ∗(E ) is (algebraically) purely infinite
simple if and only if C ∗(E ) is (topologically) purely infinite simple.

Result: These are equivalent:

1 LC(E ) is purely infinite simple.
2 C ∗(E ) is (topologically) purely infinite simple.
3 C ∗(E ) is (algebraically) purely infinite simple.
4 E is cofinal, every cycle in E has an exit, and every vertex in

E connects to a cycle.
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Connections to graph C ∗-algebras.

There are other properties for which this happens, e.g.:

1 exchange

2 primitivity

3 stable rank (*)
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Some differences

But there are some notable differences.

Primeness: Let E = • ee
Then LC(E ) = C[x , x−1] is prime (it’s an integral domain), but
C ∗(E ) = C (T) is not prime (it’s not hard to write down nonzero
continuous functions on the circle which are orthogonal.)

Tensor products:

O2 ⊗O2
∼= O2, but LC(1, 2)⊗ LC(1, 2) � LC(1, 2)
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Connections to C ∗-algebras

Proposition: For finite graphs E ,F :

LK (E )⊗ LK (F ) ∼= LK (G ) for some graph G ⇔

E or F is acyclic.
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Connections to C ∗-algebras

The Isomorphism Conjecture:

If LC(E ) ∼= LC(F ), must we have C ∗(E ) ∼= C ∗(F )?

This had been established (2010) in case E has LC(E ) simple.

This is now the Isomorphism Theorem (for E 0 finite).

“The complete classification of unital graph C ∗-algebras:
geometric and strong”,

Eilers, Restorff, Ruiz, Sørensen posted on arXiv November 2016.
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Looking ahead

In the third introductory lecture (Friday), we’ll look at:

- situations where Leavitt path algebras have been used to make
contributions in other areas,

- generalizations of Leavitt path algebras and related constructions,
and

- current / future lines of research, and some still-open questions
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