Leavitt path algebras: algebraic properties

Gene Abrams University of Colorado Colorado Springs

The AMSI Workshop on Graph *C**-algebras, Leavitt path algebras and symbolic dynamics University of Western Sydney February 12, 2013

Gene Abrams

Leavitt path algebras: algebraic properties

Iniversity of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

Overview

1 Recap of Lecture 1

- **2** Ideals in $L_{\mathcal{K}}(E)$, and simplicity
- **3** Purely infinite simplicity
- 4 Connections to graph C*-algebras

Gene Abrams

- 2 Ideals in $L_{\mathcal{K}}(E)$, and simplicity
- 3 Purely infinite simplicity
- 4 Connections to graph C*-algebras

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

<ロ> <四> <四> <日> <日> <日</p>

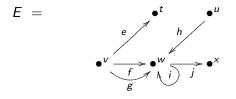
Start with a directed graph E, build its double graph \widehat{E} .

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

э

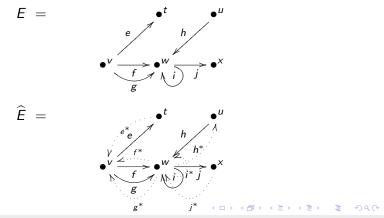
Start with a directed graph E, build its double graph \widehat{E} . Example:



Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Start with a directed graph E, build its double graph \widehat{E} . Example:



Gene Abrams

University of Colorado @ Colorado Springs

Construct the path algebra $K\widehat{E}$.

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E. (just at "regular" vertices)

Gene Abrams

University of Colorado @ Colorado Springs

-

イロト イポト イヨト イヨト

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E. (just at "regular" vertices)

Definition

The Leavitt path algebra of ${\cal E}$ with coefficients in ${\cal K}$

$$L_{\mathcal{K}}(E) = \mathcal{K}\widehat{E} / < (\mathcal{C}\mathcal{K}1), (\mathcal{C}\mathcal{K}2) >$$

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Leavitt path algebras: algebraic properties

Gene Abrams

Standard algebras arising as Leavitt path algebras

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \xrightarrow{\cdots} \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

$$E = \bullet^{v} \bigcirc x$$

Then $L_{\mathcal{K}}(E) \cong \mathcal{K}[x, x]$ - I.

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet v \\ \bullet v \\ y_n \end{array}}^{y_3} y_2$$

Then
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

э

Every element of $L_{\mathcal{K}}(E)$ can be written as

$$\sum_{i=1}^n k_i \alpha_i \beta_i^*$$

for some $n \in \mathbb{N}$, where: $k_i \in K$, and α_i, β_j are paths in E for which $r(\alpha_i) = r(\beta_i)$ (= $s(\beta_i^*)$).

 $L_{\mathcal{K}}(E)$ is \mathbb{Z} -graded, by setting

$$\deg(\alpha\beta^*) = \ell(\alpha) - \ell(\beta).$$

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

For *E* any graph, define the abelian monoid $(M_E, +)$:

 M_E is generated by $\{a_v | v \in E^0\}$

Relations in M_E are given by:

$$a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$$
 (at regular vertices)

Theorem

For any finite directed graph E,

```
\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.
```

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

2 Ideals in $L_{\mathcal{K}}(E)$, and simplicity

- 3 Purely infinite simplicity
- 4 Connections to graph C*-algebras

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

Some ideals in $L_{K}(E)$

We need some graph-theoretic notation and terms

1 $v, w \in E^0$. v connects to w in case either v = w, or: there is a path p in E for which s(p) = v, r(p) = w.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

Some ideals in $L_{K}(E)$

We need some graph-theoretic notation and terms

1 $v, w \in E^0$. v connects to w in case either v = w, or: there is a path p in E for which s(p) = v, r(p) = w.

2 $S \subseteq E^0$ is *hereditary* in case: if $v \in S$, and v connects to w, then $w \in S$.

> イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

Gene Abrams

Some ideals in $L_{\mathcal{K}}(E)$

We need some graph-theoretic notation and terms

1
$$v, w \in E^0$$
. v connects to w in case either $v = w$, or:
there is a path p in E for which $s(p) = v, r(p) = w$.

2
$$S \subseteq E^0$$
 is *hereditary* in case:
if $v \in S$, and v connects to w , then $w \in S$.

3 $S \subseteq E^0$ is saturated in case: For each regular vertex $v \in E^0$, if $r(s^{-1}(v)) \subseteq S$, then $v \in S$.

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Gene Abrams

Some ideals in $L_{\mathcal{K}}(E)$

Example: \emptyset and E^0 are always hereditary and saturated.

If these are the only such sets, we say E is *cofinal*.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

・ロン ・回と ・ヨン ・ ヨン

University of Colorado @ Colorado Springs

3

Some ideals in $L_{\mathcal{K}}(E)$

Example: \emptyset and E^0 are always hereditary and saturated.

If these are the only such sets, we say E is *cofinal*.

Example: In

 $S = \{u, w\}$ is hereditary, but not saturated.

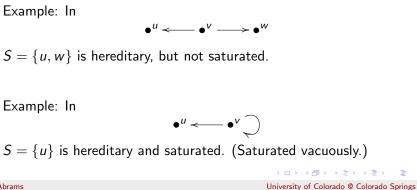
Gene Abrams

3

Some ideals in $L_{\kappa}(E)$

Example: \emptyset and E^0 are always hereditary and saturated.

If these are the only such sets, we say E is *cofinal*.



Gene Abrams

Ideals in $L_{\mathcal{K}}(E)$

Proposition: Let *I* be an ideal in $L_{\mathcal{K}}(E)$. Let $S \subseteq E^0$ be the set $I \cap E^0$. Then *S* is hereditary and saturated.

Gene Abrams

 Image: Colorado @ Colorado @ Colorado Springs

Ideals in $L_{\mathcal{K}}(E)$

Proposition: Let *I* be an ideal in $L_{\mathcal{K}}(E)$. Let $S \subseteq E^0$ be the set $I \cap E^0$. Then *S* is hereditary and saturated.

Proof. Hereditary? Suppose $\bullet^{v} \xrightarrow{e} \bullet^{w}$, and $v \in I$. But

$$w = e^* e = e^* \cdot v \cdot e \in I.$$

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Ideals in $L_{\kappa}(E)$

Proposition: Let *I* be an ideal in $L_K(E)$. Let $S \subseteq E^0$ be the set $I \cap E^0$. Then S is hereditary and saturated.

Proof. Hereditary? Suppose $\bullet^{v} \xrightarrow{e} \bullet^{w}$, and $v \in I$. But

$$w = e^* e = e^* \cdot v \cdot e \in I.$$

Saturated? Suppose each vertex to which the regular vertex vconnects is in I; i.e., that $r(s^{-1}(v)) \subset I$. But

$$v = \sum_{e \in s^{-1}(v)} ee^* = \sum_{e \in s^{-1}(v)} e \cdot r(e) \cdot e^* \in I.$$

University of Colorado @ Colorado Springs

-

Gene Abrams

Definition: If $R = \bigoplus_{t \in \mathbb{Z}} R_t$ is \mathbb{Z} -graded, and I is a two-sided ideal of R, then I is a graded ideal in case:

for each $a \in I$,

$$\text{ if } a = \sum_{t=1}^n a_t \quad (\text{where } a_t \in R_t), \\$$

then $a_t \in I$ for all $1 \le i \le t$.

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

3

イロン イロン イヨン イヨン

Non-Example: In $K[x, x^{-1}]$, consider $I = \langle 1 + x \rangle$. Then *I* is not graded, since neither 1 nor *x* is in *I*.

In the context of $L_{\mathcal{K}}(\bullet x)$, this gives that $I = \langle v + x \rangle$ is nongraded. Note that $I = \langle v + x \rangle$ contains no vertices.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Non-Example: In $K[x, x^{-1}]$, consider $I = \langle 1 + x \rangle$. Then I is not graded, since neither 1 nor x is in I.

In the context of $L_{\mathcal{K}}(\bullet)$ ×), this gives that $I = \langle v + x \rangle$ is nongraded. Note that $I = \langle v + x \rangle$ contains no vertices.

Important Example: Let R be any graded ring. Suppose T is a set of idempotents in R_0 . Then $\langle T \rangle$ is a graded ideal.

In particular, if T is any subset of E^0 , then $\langle T \rangle$ is a graded ideal of $L_{\kappa}(E)$.

Gene Abrams

-

Let \mathcal{H}_E denote the set of hereditary saturated subsets of E.

Let $\mathrm{Id}_{\mathrm{gr}}(\mathcal{L}_{\mathcal{K}}(\mathcal{E}))$ denote the set of graded ideals of $\mathcal{L}_{\mathcal{K}}(\mathcal{E})$.

Proposition Let E be a row-finite graph. Then there is an order-preserving bijection

$$\mathcal{H}_E \iff \mathrm{Id}_{\mathrm{gr}}(L_K(E)).$$

Idea of proof. If I is any ideal of $L_{\mathcal{K}}(E)$, then $I \cap E^0 \in \mathcal{H}$ by previous lemma. But if I is graded, one can show (induction) that $I = \langle I \cap E^0 \rangle$.

Conversely, if $H \in \mathcal{H}$, then one shows that the only vertices in $\langle H \rangle$ are already in H, so that $H = \langle H \rangle \cap E^0$.

Gene Abrams

イロト イポト イヨト イヨト

・ロン ・回と ・ヨン ・ ヨン

University of Colorado @ Colorado Springs

-

Graded ideals

Note: This correspondence does not extend to non-row-finite graphs, but there is a generalization.

So: If there is a nontrivial hereditary saturated subset of E, then $L_{K}(E)$ cannot be simple. For instance, if E is the graph

then $L_{\mathcal{K}}(E)$ is not simple, since $\langle \{u\} \rangle$ is a proper (graded) two-sided ideal.

Gene Abrams

So every graded ideal of $L_{\mathcal{K}}(E)$ is generated by idempotents (this is true for general graphs as well).

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ <
 University of Colorado @ Colorado Springs

So every graded ideal of $L_{\mathcal{K}}(E)$ is generated by idempotents (this is true for general graphs as well).

Corollary: For any graph E, the Jacobson radical $J(L_{\mathcal{K}}(E)) = \{0\}$. **Proof**: For \mathbb{Z} -graded rings, the Jacobson radical is a graded ideal. But for any ring, the Jacobson radical cannot contain nonzero idempotents.

Gene Abrams

イロト イポト イヨト イヨト University of Colorado @ Colorado Springs

3

So every graded ideal of $L_{\mathcal{K}}(E)$ is generated by idempotents (this is true for general graphs as well).

Corollary: For any graph *E*, the Jacobson radical $J(L_{\mathcal{K}}(E)) = \{0\}$. **Proof**: For \mathbb{Z} -graded rings, the Jacobson radical is a graded ideal. But for any ring, the Jacobson radical cannot contain nonzero idempotents.

R is a *prime ring* in case the product $I \cdot I'$ of two nonzero two-sided ideals of *R* is nonzero.

Gene Abrams

-

イロト イポト イヨト イヨト

So every graded ideal of $L_{\mathcal{K}}(E)$ is generated by idempotents (this is true for general graphs as well).

Corollary: For any graph *E*, the Jacobson radical $J(L_{\mathcal{K}}(E)) = \{0\}$. **Proof**: For \mathbb{Z} -graded rings, the Jacobson radical is a graded ideal. But for any ring, the Jacobson radical cannot contain nonzero idempotents.

R is a *prime ring* in case the product $I \cdot I'$ of two nonzero two-sided ideals of *R* is nonzero.

Corollary: $L_{\mathcal{K}}(E)$ is a prime ring if and only if each pair of vertices in *E* connects to a common vertex.

Proof: For \mathbb{Z} -graded rings, it is sufficient to show that the product of any two nonzero *graded* ideals is nonzero. Now look at elements of the product.

Gene Abrams

Simplicity of Leavitt path algebras

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$:

Gene Abrams

 Image: Colorado @ Colorado Springs

Simplicity of Leavitt path algebras

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$:

For which graphs *E* and fields *K* is $L_K(E)$ simple?

Gene Abrams

University of Colorado @ Colorado Springs

э

イロト イポト イヨト イヨト

Simplicity of Leavitt path algebras

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$: For which graphs E and fields K is $L_{K}(E)$ simple? Note $L_{\mathcal{K}}(E)$ is simple for $E = \bullet \longrightarrow \bullet$ since $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$ and for and for $E = R_n = \bigvee_{V \in V} y_1$ since $L_K(E) \cong L_K(1, n)$

but not simple for

$$E = R_1 = \bullet^{\mathsf{v}} \mathcal{N} \times \text{ since } L_{\mathcal{K}}(E) \cong \overset{\mathsf{K}}{\underset{\mathsf{o}}{\mathsf{r}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{\mathsf{r}}}} \overset{\mathsf{X}^{-1}}{\underset{\mathsf{o}}{}} \overset{\mathsf{X}^{-1}}}{\underset$$

University of Colorado @ Colorado Springs

Gene Abrams

Ideals in $L_{\mathcal{K}}(E)$

Note: In \bullet we obviously have $\mathcal{H}_E = \{\emptyset, E^0\}$. So there are no nontrivial **graded** ideals in $L_K(\bullet)$. So the absence of nontrivial hereditary saturated subsets is not sufficient to imply that the Leavitt path algebra is simple.

For comparison: Why do we get $\langle v + y_i \rangle = L(R_n)$ for $n \ge 2$?

< □ > < □ > < ≡ > < ≡ > < ≡ > ≡
 University of Colorado @ Colorado Springs

Gene Abrams

Ideals in $L_{\mathcal{K}}(E)$

Note: In \bullet we obviously have $\mathcal{H}_E = \{\emptyset, E^0\}$. So there are no nontrivial **graded** ideals in $L_K(\bullet)$. So the absence of nontrivial hereditary saturated subsets is not sufficient to imply that the Leavitt path algebra is simple.

For comparison: Why do we get $\langle v + y_i \rangle = L(R_n)$ for $n \ge 2$?

For $i \neq j$,

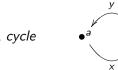
$$y_j^*(v + y_i)y_j = y_j^*vy_j + y_j^*y_iy_j = v + 0 = v$$

Iniversity of Colorado @ Colorado Springs

Gene Abrams

b

Some graph definitions



1. A cycle

Gene Abrams

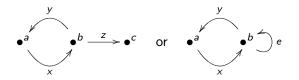
University of Colorado @ Colorado Springs

э

・ロト ・回ト ・ヨト ・ヨト

Some graph definitions

2. An exit for a cycle.



Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

<ロ> <四> <四> <日> <日> <日</p>

Simplicity of Leavitt path algebras

Theorem

(A -, Aranda Pino, 2005) $L_K(E)$ is simple if and only if:

1
$$\mathcal{H} = \{\emptyset, E^0\}, and$$

2 Every cycle in E has an exit.

(Condition (L)).

Gene Abrams

University of Colorado @ Colorado Springs

э

イロト イポト イヨト イヨト

Simplicity of Leavitt path algebras

Theorem

(A -, Aranda Pino, 2005) $L_K(E)$ is simple if and only if:

1
$$\mathcal{H} = \{\emptyset, E^0\}, and$$

2 Every cycle in E has an exit. (Con

(Condition (L)).

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

э

Note: No role played by K.

Gene Abrams

<ロ> <同> <同> < 回> < 回>

-

Simplicity of Leavitt path algebras

Idea of proof: (\Rightarrow) Mimic what Leavitt did.

Step 1: Show that, in this case, if there is an element in an ideal I which is of the form $\sum_{i=1}^{n} \alpha_i$ or $\sum_{i=1}^{n} \beta_i^*$, then the ideal must be of all of $L_{\mathcal{K}}(E)$.

Step 2: Show, by an induction argument, that the two conditions imply the existence of such an element in I.

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

Simplicity of Leavitt path algebras

Idea of proof: (\Rightarrow) Mimic what Leavitt did.

Step 1: Show that, in this case, if there is an element in an ideal I which is of the form $\sum_{i=1}^{n} \alpha_i$ or $\sum_{i=1}^{n} \beta_i^*$, then the ideal must be of all of $L_{\kappa}(E)$.

Step 2: Show, by an induction argument, that the two conditions imply the existence of such an element in I.

 (\Leftarrow) If \mathcal{H}_F contains nontrivial elements, then there are nontrivial (graded) ideals in $L_{\kappa}(E)$.

On the other hand, if there is a cycle in E which does NOT have an exit, then some piece of $L_{\mathcal{K}}(E)$ contains $\mathcal{K}[x, x^{-1}]$, which is not simple.

Gene Abrams

3

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

- 2 Ideals in $L_K(E)$, and simplicity
- 3 Purely infinite simplicity

Connections to graph C*-algebras

Gene Abrams

Leavitt's simplicity theorem for $L_{\mathcal{K}}(1, n)$, revisited.

Gene Abrams

University of Colorado @ Colorado Springs

3

<ロ> <同> <同> < 回> < 回>

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

Purely infinite simplicity

Leavitt's simplicity theorem for $L_{\mathcal{K}}(1, n)$, revisited.

A simple unital ring R is *purely infinite simple* if R is not a division ring, and for every $r \neq 0$ in R there exists α, β in R for which

$$\alpha r\beta = 1_R.$$

Equivalently, R is purely infinite simple if and only if R is simple, and each nonzero left ideal of R contains an idempotent e with the property that e = f + g with f, g nonzero orthogonal idempotents, for which $Re \cong Rf$.

Gene Abrams

Leavitt's simplicity theorem for $L_{\mathcal{K}}(1, n)$, revisited.

A simple unital ring R is *purely infinite simple* if R is not a division ring, and for every $r \neq 0$ in R there exists α, β in R for which

$$\alpha r\beta = 1_R.$$

Equivalently, R is purely infinite simple if and only if R is simple, and each nonzero left ideal of R contains an idempotent e with the property that e = f + g with f, g nonzero orthogonal idempotents, for which $Re \cong Rf$. (Extends to nonunital rings this way.)

Call such *e* an *infinite* idempotent.

-

<ロ> <同> <同> < 回> < 回>

Leavitt's simplicity theorem for $L_{\mathcal{K}}(1, n)$, revisited.

A simple unital ring R is *purely infinite simple* if R is not a division ring, and for every $r \neq 0$ in R there exists α, β in R for which

$$\alpha r\beta = 1_R.$$

Equivalently, R is purely infinite simple if and only if R is simple, and each nonzero left ideal of R contains an idempotent e with the property that e = f + g with f, g nonzero orthogonal idempotents, for which $Re \cong Rf$. (Extends to nonunital rings this way.)

Call such *e* an *infinite* idempotent.

Leavitt's theorem, restated:

For $n \ge 2$, $L_{\mathcal{K}}(1, n)$ is purely infinite simple.

Gene Abrams

・ロット 全部 マート・トロッ

Side note: $M_2(K)$ is simple, but not purely infinite simple.

Consider e.g.,
$$r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} ac' & ad' \\ cc' & cd' \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Of course we do have ...

$$\begin{pmatrix}1&0\\0&1\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}\begin{pmatrix}0&1\\0&0\end{pmatrix}\begin{pmatrix}0&0\\1&0\end{pmatrix}+\begin{pmatrix}0&0\\1&0\end{pmatrix}\begin{pmatrix}0&1\\0&0\end{pmatrix}\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

What's going on in $L_{\mathcal{K}}(1, n)$ that makes it different from $M_2(\mathcal{K})$?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

What's going on in $L_{\mathcal{K}}(1, n)$ that makes it different from $M_2(\mathcal{K})$?

Here's a representative computation in $L_{\mathcal{K}}(1,2)$. Pick, e.g., $r = y_1 x_1$. Then

 $(x_1 + x_2) \cdot r \cdot (y_1 + y_2) =$

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

What's going on in $L_{K}(1, n)$ that makes it different from $M_{2}(K)$?

Here's a representative computation in $L_{\mathcal{K}}(1,2)$. Pick, e.g., $r = y_1 x_1$. Then

 $(x_1 + x_2) \cdot r \cdot (y_1 + y_2) = x_1 y_1 x_1 y_1 + x_1 y_1 x_1 y_2 + x_2 y_1 x_1 y_1 + x_2 y_1 x_1 y_2$

University of Colorado @ Colorado Springs

3

Gene Abrams

What's going on in $L_{\mathcal{K}}(1, n)$ that makes it different from $M_2(\mathcal{K})$?

Here's a representative computation in $L_{\mathcal{K}}(1,2)$. Pick, e.g., $r = y_1 x_1$. Then

$$(x_1 + x_2) \cdot r \cdot (y_1 + y_2) = x_1 y_1 x_1 y_1 + x_1 y_1 x_1 y_2 + x_2 y_1 x_1 y_1 + x_2 y_1 x_1 y_2 = 1 + 0 + 0 + 0 = 1$$

Gene Abrams

University of Colorado @ Colorado Springs

3

Which Leavitt path algebras are purely infinite simple?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple,

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple, and E contains a cycle

Gene Abrams

University of Colorado @ Colorado Springs

э

イロト イポト イヨト イヨト

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple, and E contains a cycle \Leftrightarrow $\mathcal{H}_E = \{\emptyset, E^0\}$, every cycle has an exit, and E has a cycle

University of Colorado @ Colorado Springs

3

Gene Abrams

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple, and E contains a cycle \Leftrightarrow $\mathcal{H}_F = \{\emptyset, E^0\}$, every cycle has an exit, and E has a cycle \Leftrightarrow $M_E \setminus \{0\}$ is a group

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple, and E contains a cycle \Leftrightarrow $\mathcal{H}_E = \{\emptyset, E^0\}$, every cycle has an exit, and E has a cycle \Leftrightarrow $M_E \setminus \{0\}$ is a group

Moreover, in this situation, we can easily calculate $\mathcal{V}(L_{\mathcal{K}}(E))$ using the Smith normal form of the matrix $I - A_E$.

Remark: It is a long but elementary task to show that $M_E \setminus \{0\}$ is a group if and only if E has the three germane properties.

Gene Abrams

So we get a dichotomy in the simple Leavitt path algebras:

Those coming from graphs with cycles, and those coming from graphs without cycles.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ⊇
 University of Colorado @ Colorado Springs

So we get a dichotomy in the simple Leavitt path algebras:

Those coming from graphs with cycles, and those coming from graphs without cycles.

The only simple rings coming from graphs without cycles are $M_n(K)$ for some *n* (by Lecture 1 result).

So the only simple Leavitt path algebras are $M_n(K)$ for some $n \in \mathbb{N}$, or are purely infinite simple.

When is *every* ideal of $L_{\mathcal{K}}(E)$ graded?

This happens, e.g., in $L_{\mathcal{K}}(\bullet)$, but not in $L_{\mathcal{K}}(\bullet)$.

Gene Abrams

 Image: Colorado @ Colorado Springs

When is *every* ideal of $L_{\mathcal{K}}(E)$ graded?

This happens, e.g., in $L_{\mathcal{K}}(\bullet)$, but not in $L_{\mathcal{K}}(\bullet)$.

We say a vertex v has Condition (K) if v is either the base of no cycles in E, or is the base of at least two cycles in E. We say E has Condition (K) in case every vertex of E has Condition (K).

University of Colorado @ Colorado Springs

< ロ > < 同 > < 回 > < 回 >

Gene Abrams

When is *every* ideal of $L_{\mathcal{K}}(E)$ graded?

This happens, e.g., in $L_{\mathcal{K}}(\bullet)$, but not in $L_{\mathcal{K}}(\bullet)$.

We say a vertex v has Condition (K) if v is either the base of no cycles in E, or is the base of at least two cycles in E. We say E has Condition (K) in case every vertex of E has Condition (K).

Proposition: Every ideal of $L_{K}(E)$ is graded if and only if E has Condition (K).

Idea: Roughly, if a vertex v does not have Condition (K), then if c denotes the (unique) cycle based at v, the ideal $\langle v + c \rangle$ of $L_{\mathcal{K}}(E)$ behaves somewhat like the ideal $\langle 1 + x \rangle$ of $\mathcal{K}[x, x^{-1}]$.

Gene Abrams

回 と く ヨ と く ヨ と

We know precisely the graphs *E* for which $L_{\mathcal{K}}(E)$ has various other properties, e.g.:

- **1** one-sided chain conditions
- 2 von Neumann regular
- 3 exchange

Gene Abrams

 Image: white of the second second

We know precisely the graphs *E* for which $L_{\mathcal{K}}(E)$ has various other properties, e.g.:

- **1** one-sided chain conditions
- 2 von Neumann regular
- **3** exchange (\Leftrightarrow Condition (K))

Gene Abrams

 < □ > < ⊡ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</td>

 University of Colorado @ Colorado Springs

University of Colorado @ Colorado Springs

э

Other ring-theoretic properties of Leavitt path algebras

We know precisely the graphs *E* for which $L_{\mathcal{K}}(E)$ has various other properties, e.g.:

- **1** one-sided chain conditions
- 2 von Neumann regular
- **3** exchange (\Leftrightarrow Condition (K))
- 4 two-sided chain conditions
- 5 primitive

Many more.

Gene Abrams

One-sided chain conditions

Proposition. Suppose c is a cycle without exit, based at v. Then $vL_{\mathcal{K}}(E)v \cong \mathcal{K}[x, x^{-1}].$

Proof. The only paths in *E* which start and end at *v* consist of *c*, repeated some number of times. Also, $cc^* = v$ (by no exits). So elements of $vL_{\mathcal{K}}(E)v = \sum_{i=m}^{n} k_i c^i$, where c^i is defined as $(c^*)^{-i}$ for i < 0.

Gene Abrams

One-sided chain conditions

Proposition. *E* finite. Then $R = L_{\mathcal{K}}(E)$ is (one-sided) artinian if and only if *E* is acyclic.

Proof. If *E* is acyclic then $R \cong \bigoplus_{i=1}^{t} M_i(K)$ (by Lecture 1), which is well known to be artinian.

Gene Abrams

University of Colorado @ Colorado Springs

э

イロト イポト イヨト イヨト

$L_{\mathcal{K}}(E)$ Artinian $\Leftrightarrow E$ acyclic

Conversely, suppose E contains a cycle c, based at v.

Case 1: Suppose c has no exit. Then $vL_{\mathcal{K}}(E)v \cong \mathcal{K}[x, x^{-1}]$, which is not artinian. So $L_{\mathcal{K}}(E)$ is not artinian.

Gene Abrams

University of Colorado @ Colorado Springs

э

イロト イポト イヨト イヨト

$L_{\kappa}(E)$ Artinian $\Leftrightarrow E$ acyclic

Conversely, suppose E contains a cycle c, based at v.

Case 1: Suppose c has no exit. Then $vL_{\mathcal{K}}(E)v \cong \mathcal{K}[x, x^{-1}]$, which is not artinian. So $L_{\mathcal{K}}(E)$ is not artinian.

Case 2: Suppose c has an exit, call it e. W.I.o.g we may assume that s(e) = v. Note $c^*e = 0$. Now

$$Rcc^* \supseteq Rc^2(c^*)^2 \supseteq Rc^3(c^*)^3 \supseteq \cdots$$

Containment? $c^{i+1}(c^*)^{i+1} = c^{i+1}(c^*)^{i+1} \cdot c^i(c^*)^i$. Proper? If $c^{i}(c^{*})^{i} = r \cdot c^{i+1}(c^{*})^{i+1}$ then multiply by $c^{i}e$ on the right to get $c^i e = r \cdot c^{i+1} c^* e = 0$, a contradiction.

> University of Colorado @ Colorado Springs

3

Gene Abrams

イロン 不同 とくほう イロン

University of Colorado @ Colorado Springs

3

One-sided chain conditions

Proposition. *E* finite. Then $R = L_{\mathcal{K}}(E)$ is (one-sided) noetherian if and only if no cycle in *E* has an exit.

Proof. If no cycle in E has an exit, then (using ideas similar to the acyclic case),

 $R \cong (\oplus_{i=1}^{t} \mathcal{M}_{i}(\mathcal{K})) \oplus (\oplus_{j=1}^{u} \mathcal{M}_{j}(\mathcal{K}[x, x^{-1}])),$

which is well known to be noetherian.

Gene Abrams

One-sided chain conditions

Proposition. *E* finite. Then $R = L_{\mathcal{K}}(E)$ is (one-sided) noetherian if and only if no cycle in *E* has an exit.

Proof. If no cycle in E has an exit, then (using ideas similar to the acyclic case),

$$R \cong (\oplus_{i=1}^{t} \mathrm{M}_{i}(K)) \oplus (\oplus_{j=1}^{u} \mathrm{M}_{j}(K[x, x^{-1}])),$$

which is well known to be noetherian.

Conversely, suppose E contains a cycle c with an exit, again assume based at v. Then similar to above, we consider

$$R(v-cc^*) \subsetneq R(v-c^2(c^*)^2) \subsetneq R(v-c^3(c^*)^3) \subsetneq \cdots$$

Proper containments follow as above.

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

- 2 Ideals in $L_{\mathcal{K}}(E)$, and simplicity
- 3 Purely infinite simplicity
- 4 Connections to graph C*-algebras

Gene Abrams

David Pask has this morning defined the graph C*-algebra $C^*(E)$ associated with the directed graph E.

There are obvious similarities between $L_{\mathbb{C}}(E)$ and $C^*(E)$.

Gene Abrams

University of Colorado @ Colorado Springs

3

イロト イポト イヨト イヨト

David Pask has this morning defined the graph C*-algebra $C^*(E)$ associated with the directed graph E.

There are obvious similarities between $L_{\mathbb{C}}(E)$ and $C^*(E)$. (And some unfortunate notational differences.)

Gene Abrams

University of Colorado @ Colorado Springs

3

<ロ> <同> <同> < 回> < 回>

David Pask has this morning defined the graph C*-algebra $C^*(E)$ associated with the directed graph E.

There are obvious similarities between $L_{\mathbb{C}}(E)$ and $C^*(E)$. (And some unfortunate notational differences.)

Assume for now that E is finite. With appropriate notation, and (CK1), (CK2) in mind,

$$C^*(E) = \overline{\operatorname{span}}(\{S_\mu S_{\nu^*}\}).$$

For us, the best way to think of the relationship between $L_{\mathbb{C}}(E)$ and $C^*(E)$ is

$$\mathcal{L}_{\mathbb{C}}(E) = \operatorname{span}_{\mathbb{C}}(\{S_{\mu}S_{\nu^*}\}) \subseteq \overline{\operatorname{span}}_{\mathbb{C}}(\{S_{\mu}S_{\nu^*}\}) = C^*(E).$$

So $L_{\mathbb{C}}(E)$ may be viewed as a \mathbb{C} -subalgebra of $C^*(E)$, closed under *, and dense in $C^*(E)$.

Gene Abrams

University of Colorado @ Colorado Springs

Some relationships between $L_{\mathbb{C}}(E)$ and $C^*(E)$.

1 $L_{\mathbb{C}}(E) = C^*(E)$ if and only if E is acyclic.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Some relationships between $L_{\mathbb{C}}(E)$ and $C^*(E)$.

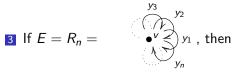
Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Some relationships between $L_{\mathbb{C}}(E)$ and $C^*(E)$.



$$L_{\mathbb{C}}(1,n) = L_{\mathbb{C}}(E) \subsetneq C^*(E) = \mathcal{O}_n,$$

the Cuntz algebra of order n.

Gene Abrams

Leavitt path algebras: algebraic properties

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Any C*-algebra A wears two hats:

- 1 view A as a ring, or
- view the ring-theoretic structure of A from a topological/analytic viewpoint.

Example: The (algebraic) simplicity of the C^* -algebra as a ring (no nontrivial two-sided ideals), or the (topological) simplicity as a topological ring (no nontrivial closed two-sided ideals).

In general, such properties need not coincide. But for graph C*-algebras of finite graphs, they often do. AND, these properties often coincide with the corresponding (algebraic) properties of $L_{\mathbb{C}}(E)$.

-

イロト イポト イヨト イヨト

Simplicity:

Algebraic: No nontrivial two-sided ideals.

Analytic: No nontrivial closed two-sided ideals.

 $L_{\mathbb{C}}(E)$ is simple if and only if *E* is cofinal and has Condition (L). $C^*(E)$ is (topologically) simple if and only if *E* is cofinal and has Condition (L).

For any unital C*-algebra A, A is topologically simple if and only if A is algebraically simple.

Result: These are equivalent for any finite graph *E*:

1
$$L_{\mathbb{C}}(E)$$
 is simple

- **2** $C^*(E)$ is (topologically) simple
- 3 $C^*(E)$ is (algebraically) simple
 - 4 E is cofinal, and satisfies Condition (L). < □ > < @ > < ≥ > < ≥ > ≥ < > < <

Gene Abrams

University of Colorado @ Colorado Springs

▲ @ ▶ < ∃ ▶</p>

University of Colorado @ Colorado Springs

Connections to graph C*-algebras.

The \mathcal{V} -monoid:

Algebraic: For a ring R, $\mathcal{V}(R)$ is the monoid of isomorphism classes of finitely generated left R-modules, with operation \oplus . Analytic: For an operator algebra A, $\mathcal{V}_{MvN}(A)$ is the monoid of Murray - von Neumann equivalence classes of projections in FM(A).

Whenever A is a C*-algebra, then $\mathcal{V}(A)$ agrees with $\mathcal{V}_{MvN}(A)$.

Gene Abrams

The \mathcal{V} -monoid:

Algebraic: For a ring R, $\mathcal{V}(R)$ is the monoid of isomorphism classes of finitely generated left R-modules, with operation \oplus .

Analytic: For an operator algebra A, $\mathcal{V}_{MvN}(A)$ is the monoid of Murray - von Neumann equivalence classes of projections in FM(A).

Whenever A is a C^{*}-algebra, then $\mathcal{V}(A)$ agrees with $\mathcal{V}_{MvN}(A)$.

Result: For any finite graph E and any field K, the following monoids are isomorphic.

The graph monoid M_E
 V(L_K(E))
 V(C*(E))
 V_{MvN}(C*(E)).

Gene Abrams

Purely infinite simplicity:

Algebraic: R is purely infinite simple in case R is simple and every nonzero right ideal of R contains an infinite idempotent.

Analytic: The simple C*-algebra A is called purely infinite (simple) if for every positive $x \in A$, the subalgebra \overline{xAx} contains an infinite projection.

For graph C*-algebras, $C^*(E)$ is (algebraically) purely infinite simple if and only if $C^*(E)$ is (topologically) purely infinite simple.

(日) (同) (三) (三)

Purely infinite simplicity:

Algebraic: R is purely infinite simple in case R is simple and every nonzero right ideal of R contains an infinite idempotent.

Analytic: The simple C*-algebra A is called purely infinite (simple) if for every positive $x \in A$, the subalgebra xAx contains an infinite projection.

For graph C*-algebras, $C^*(E)$ is (algebraically) purely infinite simple if and only if $C^*(E)$ is (topologically) purely infinite simple. *Result*: These are equivalent:

- **1** $L_{\mathbb{C}}(E)$ is purely infinite simple.
- 2 $C^*(E)$ is (topologically) purely infinite simple.
- **3** $C^*(E)$ is (algebraically) purely infinite simple.
- **4** E is cofinal, every cycle in E has an exit, and every vertex in
 - E connects to a cycle.

Gene Abrams

イロト イポト イヨト イヨト University of Colorado @ Colorado Springs

3

There are other properties for which this happens, e.g.:

- 1 exchange
- 2 primitivity
- 3 stable rank (*)

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Some differences

But there are some notable differences.

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Some differences

But there are some notable differences.

Primeness:

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Some differences

But there are some notable differences.

Primeness: Let $E = \bullet$

Then $L_{\mathbb{C}}(E) = \mathbb{C}[x, x^{-1}]$ is prime (it's an integral domain), but $C^*(E) = C(\mathbb{T})$ is not prime (it's not hard to write down nonzero continuous functions on the circle which are orthogonal.)

Gene Abrams

Some differences

But there are some notable differences.

Primeness: Let $E = \bullet$

Then $L_{\mathbb{C}}(E) = \mathbb{C}[x, x^{-1}]$ is prime (it's an integral domain), but $C^*(E) = C(\mathbb{T})$ is not prime (it's not hard to write down nonzero continuous functions on the circle which are orthogonal.)

Tensor products: (Recently discovered)

 $\mathcal{O}_2\otimes\mathcal{O}_2\cong\mathcal{O}_2, \text{ but } L_{\mathbb{C}}(1,2)\otimes L_{\mathbb{C}}(1,2)\ncong L_{\mathbb{C}}(1,2)$

Gene Abrams

 < □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ

 University of Colorado @ Colorado Springs

Connections to C*-algebras

Proposition: For finite graphs E, F:

 $L_{K}(E) \otimes L_{K}(F) \cong L_{K}(G)$ for some graph $G \Leftrightarrow$

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Connections to C*-algebras

Proposition: For finite graphs E, F:

 $L_{\mathcal{K}}(E) \otimes L_{\mathcal{K}}(F) \cong L_{\mathcal{K}}(G)$ for some graph $G \Leftrightarrow E$ or F is acyclic.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Connections to C*-algebras

The Isomorphism Conjecture:

If $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$, must we have $C^*(E) \cong C^*(F)$?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

<ロ> <四> <四> <日> <日> <日</p>

University of Colorado @ Colorado Springs

Connections to C*-algebras

The Isomorphism Conjecture:

If
$$L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$$
, must we have $C^*(E) \cong C^*(F)$?

This has been established in case *E* has $L_{\mathbb{C}}(E)$ simple. Not known in general.

Gene Abrams

Looking ahead

In the third Introductory lecture, we'll look at situations where Leavitt path algebras have made contributions to other areas of study in algebra.

э

<ロ> <同> <同> < 回> < 回>