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Definition of Leavitt path algebra

Start with a directed graph E , build its double graph Ê .

Construct the path algebra K Ê . Consider these relations in K Ê :

(CK1) e∗e = r(e); and f ∗e = 0 for f 6= e (for all edges e, f in E ).

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for each vertex v in E .

(just at “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Construct the path algebra K Ê . Consider these relations in K Ê :
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Matrices over Leavitt algebras

Let R = LC(1, n). So RR ∼= RRn as left R-modules.

So EndR(R) ∼= EndR(Rn) as rings.

In other words, R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

Let R = LC(1, n). So RR ∼= RRn as left R-modules.

So EndR(R) ∼= EndR(Rn) as rings.

In other words, R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

Let R = LC(1, n). So RR ∼= RRn as left R-modules.

So EndR(R) ∼= EndR(Rn) as rings.

In other words, R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

Let R = LC(1, n). So RR ∼= RRn as left R-modules.

So EndR(R) ∼= EndR(Rn) as rings.

In other words, R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

Let R = LC(1, n). So RR ∼= RRn as left R-modules.

So EndR(R) ∼= EndR(Rn) as rings.

In other words, R ∼= Mn(R) as rings.

Which then (for free) gives some additional isomorphisms, e.g.

R ∼= Mni (R)
for any i ≥ 1.

Also, RR ∼= RRn ∼= RR2n−1 ∼= RR3n−2 ∼= ..., which also in turn
yield ring isomorphisms

R ∼= Mn(R) ∼= M2n−1(R) ∼= M3n−2(R) ∼= ...

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

Question: Are there other matrix sizes d for which R ∼= Md(R)?
Answer: In general, yes.

For instance, if R = L(1, 4), then it’s not hard to show that
R ∼= M2(R) as rings (even though R � RR2 as modules).
Idea: These eight matrices inside M2(L(1, 4)) “work”:

X1 =

(
x1 0
x2 0

)
, X2 =

(
x3 0
x4 0

)
, X3 =

(
0 x1
0 x2

)
, X4 =

(
0 x3
0 x4

)
together with their duals

Y1 =

(
y1 y2
0 0

)
, Y2 =

(
y3 y4
0 0

)
, Y3 =

(
0 0
y1 y2

)
, Y4 =

(
0 0
y3 y4

)

E.g., Y1X1 + Y2X2 = e1,1, Y1X3 + Y2X4 = e1,2, etc ...
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Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if d |nt for some t ∈ N, then L(1, n) ∼= Md(L(1, n)).

On the other hand ...

If R = L(1, n), then the “type” of R is n − 1. (Think: “smallest
difference”). Bill Leavitt showed the following in his 1962 paper:

The type of Md(L(1, n)) is n−1
g .c.d .(d ,n−1) .

In particular, if g .c .d .(d , n − 1) > 1, then L(1, n) � Md(L(1, n)).

Conjecture: L(1, n) ∼= Md(L(1, n)) ⇔ g .c.d .(d , n − 1) = 1.

(Note: d |nt ⇒ g .c .d .(d , n − 1) = 1.)
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Matrices over Leavitt algebras

Smallest interesting pair: Is L(1, 5) ∼= M3(L(1, 5))?

In trying to mimic the d |nt case, we are led “naturally” to consider
these five matrices (and their duals) in M3(L(1, 5)):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x3
0 0 x4
0 0 x5


y1 y2 y3

0 0 0
0 0 0

 y4 y5 0
0 0 1
0 0 0

  0 0 0
0 0 0
y2
1 y1y2 y1y3

  0 0 0
0 0 0

y1y4 y1y5 y2

  0 0 0
0 0 0
y3 y4 y5



Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Matrices over Leavitt algebras

These ten matrices form a Leavitt R5-family in M3(L(1, 5)).

And we can generate much of M3(L(1, 5)), using these ten
matrices.

But we couldn’t see how to generate, for example, the matrix units
e1,3 and e3,1 inside M3(L(1, 5)).
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Matrices over Leavitt algebras

Breakthrough came from an analysis of isomorphisms between
more general Leavitt path algebras.

There are a few “graph moves” which preserve the isomorphism
classes of Leavitt path algebras.

“Shift” and ”outsplitting”.
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Matrices over Leavitt algebras

E = R5 = • eeqq
��
EE mm and R5(3) = • // • // • eeqq

��
EE mm

There exists a sequence of graphs

R5 = E1,E2, ...,E7 = R5(3)

for which Ei+1 is gotten from Ei by one of these two “graph
moves”.

So LK (R5) ∼= LK (E2) ∼= · · · ∼= LK (R5(3)) ∼= M3(R5).

Note: For 2 ≤ i ≤ 6 it is not immediately obvious how to view
LK (Ei ) in terms of a matrix ring over a Leavitt algebra.
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Matrices over Leavitt algebras

Original set of elements in M3(LK (1, 5)) (plus duals):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x3
0 0 x4
0 0 x5



Instead, the image of the set x1, ..., x5 in LK (1, 5) under the above
isomorphism is this set of elements in M3(LK (1, 5)):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x4
0 0 x3
0 0 x5


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Matrices over Leavitt algebras

Now consider this set, which we will call “The List”:

xd−1
1

x2xd−2
1 , x3xd−2

1 , ..., xnxd−2
1

x2xd−3
1 , x3xd−3

1 , ..., xnxd−3
1

...

x2x1, x3x1, ..., xnx1

x2, x3, ..., xn
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Matrices over Leavitt algebras

Lemma / Key Observation. The elements of The List satisfy:

yd−1
1 xd−1

1 +
d−2∑
i=0

n∑
j=2

y i
1yjxjx

i
1 = 1K .
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Matrices over Leavitt algebras

For integers n, d for which g.c.d.(d , n − 1) = 1, there is an
algorithm to partition {1, 2, ..., d} as S1 ∪ S2 in a specified way.

This induces a partition of {1, 2, ..., n} as Ŝ1 ∪ Ŝ2 by extending
mod d .

Proposition. It is possible to place the elements of The List in
the “to be specified” entries of the “to be completed” matrices in
such a way that each entry of the form xux t

1 for u ∈ Sk (k = 1, 2)
is placed in a row indexed by û where û ∈ Ŝk (k = 1, 2).
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Matrices over Leavitt algebras

Theorem

(A-, Ánh, Pardo; Crelle’s J. 2008)

L(1, n) ∼= Md(L(1, n)) ⇔ g .c.d .(d , n − 1) = 1.

More generally,

Md(L(1, n)) ∼= Md ′(L(1, n)) ⇔ g .c .d .(d , n−1) = g .c .d .(d ′, n−1).

Moreover, we can write down the isomorphisms explicitly.
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Matrices over Leavitt algebras

Computations when n = 5, d = 3.

gcd(3, 5− 1) = 1. Now 5 = 1 · 3 + 2, so that r = 2, r − 1 = 1, and
define s = d − (r − 1) = 3− 1 = 2.

Consider the sequence starting at 1, and increasing by s each step,
and interpret mod d (1 ≤ i ≤ d). This will necessarily give all
integers between 1 and d .

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 1, here we get

{1, 2, 3} = {1} ∪ {2, 3}.
Now extend these two sets mod 3 to all integers up to 5.

{1, 4} ∪ {2, 3, 5}

Gene Abrams University of Colorado @ Colorado SpringsUCCS
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Here are those matrices again:

Original set (plus duals):x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x3
0 0 x4
0 0 x5


Instead, this set (plus duals) works:x1 0 0
x2 0 0
x3 0 0

 x4 0 0
x5 0 0
0 1 0

 0 0 x1
2

0 0 x2x1
0 0 x3x1

 0 0 x4x1
0 0 x5x1
0 0 x2

 0 0 x4
0 0 x3
0 0 x5


The Partition for n = 5, d = 3: {1, 4} ∪ {2, 3, 5}.

“The List”: x2
1 , x2x1, x3x1, x4x1, x5x1, x2, x3, x4, x5.

The point is that {x2
1 , x4x1, x4} appear in row 1, while

{x2x1, x3x1, x5x1, x2, x3, x5} appear in either rows 2 or 3.
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Matrices over Leavitt algebras

Another Example of the Partition. Suppose n = 35, d = 13.
Then gcd(13, 35− 1) = 1, so we are in the desired situation. Now
35 = 2 · 13 + 9, so that r = 9, r − 1 = 8, and
s = d − (r − 1) = 13− 8 = 5. Then we consider the sequence
starting at 1, and increasing by s each step, and interpret mod d .

So here we get the sequence 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9.

Now break this set into two pieces: those integers up to and
including r − 1, and those after. Since r − 1 = 8, here we get

{1, 2, ..., 13} = {1, 3, 6, 8, 11} ∪ {2, 4, 5, 7, 9, 10, 12, 13}.

Now extend these two sets mod 13 to all integers up to 35.

{1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 34} ∪

{2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 35}
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Matrices over Leavitt algebras

Does this elementary number theory seem familiar ??
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Matrices over Leavitt algebras

Corollary. (Matrices over the Cuntz C∗-algebras)

On
∼= Md(On) ⇔ g .c.d .(d , n − 1) = 1.

More generally,

Md(On) ∼= Md ′(On) ⇔ g .c .d .(d , n − 1) = g .c .d .(d ′, n − 1).

(And the isomorphisms are explicitly described.)
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Application to the theory of simple groups

Here is an important recent application of the isomorphism
theorem.

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group G+

n,r . These were introduced in:

G. Higman, “Finitely presented infinite simple groups”, Notes on
Pure Mathematics, 8, Department of Pure Mathematics, I.A.S.
Australian National University, Canberra, 1974.

Higman knew some conditions regarding isomorphisms between
these groups, but did not have a complete classification.
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Matrices over Leavitt algebras

Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Fix n. Consider the set of invertible elements Ur (n) in
Mr (LC(1, n)) for which u−1 = u∗, and for which each of the entries
of u is a sum of terms of the form yI xJ .
For example, let

u = y1x2 + y2y1x2
1 + y2

2 x2x1 ∈ LC(1, 2) = M1(LC(1, 2)).

Then u∗ = y2x1 + y2
1 x1x2 + y1y2x2

2 , and easily uu∗ = 1 = u∗u. so
that u ∈ U1(2) ⊆ U(M1(LC(1, 2))).

Now one shows that G+
n,r
∼= Ur (n), and that the explicit

isomorphisms provided in the A -, Ánh, Pardo result take Ur (n)
onto Us(n).
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1 Isomorphisms between matrix rings over the Leavitt algebras
LK (1, n)

2 Some classical questions, answered using Leavitt path algebras

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Leavitt path algebras: some (surprising?) connections



Isomorphisms between matrix rings over the Leavitt algebras LK (1, n) Some classical questions, answered using Leavitt path algebras

Ring theory reminders

1 R is von Neumann regular (or just regular) in case

∀a ∈ R ∃ x ∈ R with a = axa.

2 R is prime if the product of any two nonzero two-sided ideals
of R is nonzero.

3 R is primitive if R admits a faithful simple left R-module.

These are still valid for nonunital rings, in particular, for LK (E )
with E infinite.
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Connections and Applications: Kaplansky’s question

Lemma: Every primitive ring is prime.

Proof. Let M denote a simple faithful left R-module. Suppose
I · J = {0}. We want to show either I = {0} or J = {0}.

So (I · J)M = 0. If JM = {0} then J = {0} as M is faithful. So
suppose JM 6= 0. Then JM = M (as M is simple), so (I · J)M = 0
gives IM = 0, so I = {0} as M is faithful. �

But the converse is not true: e.g. {0} is a prime ideal of
A = K [x , x−1], but not primitive. (R has no simple faithful
modules.)
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Connections and Applications: Kaplansky’s question

Kaplansky, 1970: Is a regular prime ring necessarily primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example.

Theorem. (A-, K.M. Rangaswamy 2010) LK (E ) is von Neumann
regular ⇔ E is acyclic.

Theorem. (Aranda Pino, Pardo, Siles Molina) LK (E ) is prime ⇔
for each pair of vertices u, v in E there exists a vertex w in E for
which u ≥ w and v ≥ w .

Condition (MT3) or “Downward Directed”
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Connections and Applications: Kaplansky’s question

Theorem. (A-, Jason Bell, Ranga 2011) LK (E ) is primitive ⇔
1 LK (E ) is prime,
2 every cycle in E has an exit, and
3 there exists a countable set of vertices S in E for which every

vertex of E connects to an element of S .
(Countable Separation Property)

Idea of proof:

1. A unital ring R is left primitive if and only if there is a left ideal
M 6= R of R such that for every nonzero two-sided ideal I of R,
M + I = R.

2. Embed LK (E ) in a unital algebra LK (E )1 in the usual way;
primitivity is preserved.

3. Show that the lack of the CSP implies that no such left ideal
can exist in LK (E )1.
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Connections and Applications: Kaplansky’s question

It’s not hard to find acyclic graphs E for which LK (E ) is prime but
for which C.S.P. fails.

Example: X uncountable, S the set of finite subsets of X . Define
the graph E :

1 vertices indexed by S , and

2 edges induced by proper subset relationship.

Then LK (E ) is regular, prime, not primitive.

Note: Adjoining 1K in the usual way (Dorroh extension by K )
gives unital, regular, prime, not primitive algebras.

Remark: These examples are also “Cohn algebras”.
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Lie algebras arising from associative algebras

Definitions / Notation.

R an associative K -algebra.

For x , y ∈ R let [x , y ] denote xy − yx .

Let [R,R] denote the K -subspace of R spanned by
{[x , y ] | x , y ∈ R}.

[R,R] with [ − , − ] is a Lie K -algebra.
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Lie algebras arising from associative algebras: general ideas

Let L denote a Lie K -algebra. A subset I of L is called a Lie
K -ideal if I is a K -subspace of L and [L, I ] ⊆ I .

Important Observation: If K 1R ⊆ [R,R], then K 1R is a Lie
K -ideal of [R,R]. But we need not have K 1R ⊆ [R,R] in general.
(Cheap example: R commutative.)

Definition: The Lie K -algebra L is called simple if [L, L] 6= 0 and
the only Lie K -ideals of L are 0 and L.
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Lie algebras arising from associative algebras: general ideas

Question: For which graphs E and fields K is the Lie algebra
[LK (E ), LK (E )] simple?

Of great help here:

Theorem (Herstein, 1965). Let S be a simple associative
K -algebra. Assume either that char(S) 6= 2, or that S is not
4-dimensional over Z (S), where Z (S) is a field.

Let U be any proper Lie K -ideal of the Lie algebra [S ,S ].

Then U ⊆ Z (S) ∩ [S ,S ].
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Lie algebras arising from associative algebras: general ideas

Intuition ...

If the center Z (S) is ‘small’, then usually we have good control
over all the Lie ideals of the Lie algebra [S ,S ].

Main Consequence of Herstein’s Theorem: Let R be a unital
simple K -algebra which satisfies the hypotheses of Herstein’s
Theorem. Suppose that

1 [[R,R], [R,R]] 6= 0, and

2 Z (R) = K 1R .

Then [R,R] is a simple Lie K -algebra if and only if 1R /∈ [R,R].
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Step 1 towards: When is 1LK (E ) ∈ [LK (E ), LK (E )]?

Definition. Write E 0 = {vi | i ∈ I}.

For each i ∈ I , let εi ∈ Z(I ) denote the element with 1 as the i-th
coordinate and zeros elsewhere.

If vi is a regular vertex, for all j ∈ I let aij denote the number of
edges e ∈ E 1 such that s(e) = vi and r(e) = vj .

Define
Bi = (aij)j∈I − εi ∈ Z(I ).

( If vi is not a regular vertex, define Bi = (0)j∈I ∈ Z(I ). )
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Step 1 towards: When is 1LK (E ) ∈ [LK (E ), LK (E )]?

Example

•v1
** ** •v2oo

��
•v3
**

=={{{{{{{{
•v4oo

Then

B1 = (1, 1, 0, 0)− ε1 = (0, 1, 0, 0),
B2 = (1, 0, 0, 1)− ε2 = (1,−1, 0, 1),
B3 = (0, 1, 1, 0)− ε3 = (0, 1, 0, 0),
B4 = (0, 0, 1, 0)− ε4 = (0, 0, 1,−1).
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Step 2 towards: When is 1LK (E ) ∈ [LK (E ), LK (E )]?

Definition

Let K be a field, and let E be a directed graph. The Cohn path
K -algebra CK (E ) of E with coefficients in K is the path algebra
K Ê , modulo only the (CK1) relation

(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

Remark: Cohn path algebras might be interesting to study in their
own right ...

Let N ⊆ CK (E ) denote the ideal of CK (E ) generated by elements
of the form v −

∑
{e∈E1|s(e)=v} ee∗, where v ∈ E 0 is a regular

vertex.

So
LK (E ) ∼= CK (E )/N.
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Step 3 towards: When is 1LK (E ) ∈ [LK (E ), LK (E )]?

Using the “standard basis” available in CK (E ), we can define a
K -linear transformation

T : CK (E )→ K (I )

having

1 T ([x , y ]) = 0 for all x , y ∈ CK (E ),

2 T (vi ) = εi for all i ∈ I , and

3 T (w) ∈ spanK{Bi | i ∈ I} ⊆ K (I ) for all w ∈ N.
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Final step: When is 1LK (E ) ∈ [LK (E ), LK (E )]?

Theorem

If E 0 is finite (so that LK (E ) is unital), then

1LK (E) ∈ [LK (E ), LK (E )] ⇔ (1, . . . , 1) ∈ spanK{Bi | i ∈ I} ⊆ K (I ).
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A few known results which complete the picture.

1 K ∼= LK (•) is the only simple commutative Leavitt path
K -algebra. (So we call a simple Leavitt path algebra LK (E )
nontrivial in case LK (E ) 6∼= K .)

2 For any noncommutative R = LK (E ), [[R,R], [R,R]] 6= 0

3 The Simplicity Theorem for finite E

4 (The Centers Theorem for finite E ) If LK (E ) is simple, then
Z (LK (E )) = K 1LK (E).
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Simplicity of LK (E )

Now from Herstein’s Theorem, the Centers Theorem, and our
theorem about when 1LK (E) is (or is not) an element of
[LK (E ), LK (E )], we get

Theorem (A-, Mesyan 2012)

Let K be a field, and let E be a finite graph for which LK (E ) is a
nontrivial simple Leavitt path algebra. Write E 0 = {v1, . . . , vm},
and for each 1 ≤ i ≤ m let Bi be as above. Then

[LK (E ), LK (E )] is simple as a Lie K -algebra

if and only if

(1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}.
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

Previous example.
•v1
'' ))

•v2oo

��
•v3
''

=={{{{{{{{
•v4oo

B1 = (0, 1, 0, 0),B2 = (1,−1, 0, 1), B3 = (0, 1, 0, 0), B4 = (0, 0, 1,−1).

Is (1, 1, 1, 1) in spanK{B1,B2,B3,B4}? That is, can we find
k1, k2, k3, k4 ∈ K for which

(1, 1, 1, 1) = k1(0, 1, 0, 0)+k2(1,−1, 0, 1)+k3(0, 1, 0, 0)+k4(0, 0, 1,−1) ?
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

So we want to solve a system. Here’s the augmented matrix of the
system: 

0 1 0 0
... 1

1 −1 1 0
... 1

0 0 0 1
... 1

0 1 0 −1
... 1

 .
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

After row-reducing we get
0 1 0 0

... 1

1 −1 1 0
... 1

0 0 0 1
... 1

0 0 0 0
... 1

 .

The system has no solution (regardless of the characteristic of K ).
So [LK (E ), LK (E )] is simple for any field K .
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

More examples. Let P = {p1, p2, . . . , pt} be a finite set of
primes, let q = p1p2 · · · pt ∈ N, and let Eq be this graph.

•v1
** ** •v2oo

��
•v3
**

=={{{{{{{{
•v4oo (q+1)
tt

Here B1 = (0, 1, 0, 0),B2 = (1,−1, 0, 1),B3 = (0, 1, 0, 0), and
B4 = (0, 0, 1, q).

When is (1, 1, 1, 1) in spanK{B1,B2,B3,B4}?
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

Elementary row-operations on the augmented matrix yield:
1 −1 1 0

... 1

0 1 0 0
... 1

0 0 0 1
... 1

0 0 0 0
... −q

 .

So the system has solutions precisely when char(K ) divides q, i.e.,
when char(K ) ∈ {p1, p2, . . . , pt}. So by the Main Theorem,

[LK (Eq), LK (Eq)] is simple if and only if char(K ) is NOT in
{p1, p2, . . . , pt}.
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[LK (E ), LK (E )] simple ⇔ (1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}

So the characteristic of the field K plays a role here!

Remark. On the other end of the spectrum, we can also build
graphs where [LK (E ), LK (E )] is simple if and only if char(K ) IS in
{p1, p2, . . . , pt}.

Let q = p1p2 · · · pt ∈ N. Then using the previous result for
matrices over Leavitt algebras, the Lie K -algebra
[LK (1, q + 1), LK (1, q + 1)] is simple if and only if char(K ) ∈ P.
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Connections and Applications:
The realization question for von Neumann regular rings

Fundamental problem: (Goodearl, 1994) What monoids M
appear as V(R) for von Neumann regular R?

Theorem: (Ara / Brustenga, 2007) For any row-finite graph E
and field K there exists a von Neumann regular K -algebra QK (E )
for which LK (E ) embeds in QK (E ), and

V(LK (E )) ∼= V(QK (E )).

Corollary: the realization question has affirmative answer for
graph monoids ME .
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Thank you.
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