Leavitt path algebras: some (surprising?) connections

Gene Abrams
University of Colorado
Colorado Springs

The AMSI Workshop on Graph C*-algebras,
Leavitt path algebras and symbolic dynamics

University of Western Sydney February 14, 2013
Overview

1. Isomorphisms between matrix rings over the Leavitt algebras $L_K(1, n)$

2. Some classical questions, answered using Leavitt path algebras
Definition of Leavitt path algebra

Start with a directed graph E, build its double graph \hat{E}.

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum\{e \in E_1 | s(e) = v\}e^*e$ for each vertex v in E.

(just at “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K is $L_K(E) = K\hat{E}/<\text{(CK1)}, \text{(CK2)}>$.

Gene Abrams
University of Colorado @ Colorado Springs

Leavitt path algebras: some (surprising?) connections
Definition of Leavitt path algebra

Start with a directed graph E, build its double graph \hat{E}.

Construct the path algebra $K\hat{E}$. Consider these relations in $K\hat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E.

(just at “regular” vertices)
Definition of Leavitt path algebra

Start with a directed graph E, build its double graph \hat{E}.

Construct the path algebra $K\hat{E}$. Consider these relations in $K\hat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum \{e \in E^1 | s(e) = v\} ee^*$ for each vertex v in E.

(just at “regular” vertices)

Definition

The Leavitt path algebra of E with coefficients in K

$$L_K(E) = K\hat{E} / \langle (CK1), (CK2) \rangle$$
1. Isomorphisms between matrix rings over the Leavitt algebras $L_K(1,n)$

2. Some classical questions, answered using Leavitt path algebras
Matrices over Leavitt algebras

Let $R = L_{\mathbb{C}}(1, n)$. So $RR \cong R^n$ as left R-modules.
Matrices over Leavitt algebras

Let $R = L_{\mathbb{C}}(1, n)$. So $RR \cong R^n$ as left R-modules.

So $\text{End}_R(R) \cong \text{End}_R(R^n)$ as rings.
Matrices over Leavitt algebras

Let $R = L_C(1, n)$. So $R R \cong R R^n$ as left R-modules.

So $\text{End}_R(R) \cong \text{End}_R(R^n)$ as rings.

In other words, $R \cong M_n(R)$ as rings.
Let $R = L_{\mathbb{C}}(1, n)$. So $R R \cong R R^n$ as left R-modules.

So $\text{End}_R(R) \cong \text{End}_R(R^n)$ as rings.

In other words, $R \cong M_n(R)$ as rings.

Which then (for free) gives some additional isomorphisms, e.g.

$$R \cong M_{n^i}(R)$$

for any $i \geq 1$.
Matrices over Leavitt algebras

Let $R = L\mathbb{C}(1, n)$. So $RR \cong R^n$ as left R-modules.

So $\text{End}_R(R) \cong \text{End}_R(R^n)$ as rings.

In other words, $R \cong M_n(R)$ as rings.

Which then (for free) gives some additional isomorphisms, e.g.

$$R \cong M_{n^i}(R)$$

for any $i \geq 1$.

Also, $RR \cong R^n \cong R^{2n-1} \cong R^{3n-2} \cong \ldots$, which also in turn yield ring isomorphisms

$$R \cong M_n(R) \cong M_{2n-1}(R) \cong M_{3n-2}(R) \cong \ldots$$
Matrices over Leavitt algebras

Question: Are there other matrix sizes d for which $R \cong M_d(R)$?

Answer: In general, yes.
Matrices over Leavitt algebras

Question: Are there other matrix sizes d for which $R \cong M_d(R)$?

Answer: In general, yes.

For instance, if $R = L(1, 4)$, then it’s not hard to show that $R \cong M_2(R)$ as rings (even though $R \ncong R R^2$ as modules).

Idea: These eight matrices inside $M_2(L(1, 4))$ “work”:

$X_1 = \begin{pmatrix} x_1 & 0 \\ x_2 & 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} x_3 & 0 \\ x_4 & 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 0 & x_1 \\ 0 & x_2 \end{pmatrix}$, $X_4 = \begin{pmatrix} 0 & x_3 \\ 0 & x_4 \end{pmatrix}$

together with their duals

$Y_1 = \begin{pmatrix} y_1 & y_2 \\ 0 & 0 \end{pmatrix}$, $Y_2 = \begin{pmatrix} y_3 & y_4 \\ 0 & 0 \end{pmatrix}$, $Y_3 = \begin{pmatrix} 0 & 0 \\ y_1 & y_2 \end{pmatrix}$, $Y_4 = \begin{pmatrix} 0 & 0 \\ y_3 & y_4 \end{pmatrix}$

E.g., $Y_1X_1 + Y_2X_2 = e_{1,1}$, $Y_1X_3 + Y_2X_4 = e_{1,2}$, etc...
Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if $d | n^t$ for some $t \in \mathbb{N}$, then $L(1, n) \cong M_d(L(1, n))$.

Conjecture: $L(1, n) \cong M_d(L(1, n)) \iff g \cdot c \cdot d \cdot (d, n-1) = 1$.

(Note: $d | n^t \implies g \cdot c \cdot d \cdot (d, n-1) = 1$.)
Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if \(d \mid n^t\) for some \(t \in \mathbb{N}\), then \(L(1, n) \cong M_d(L(1, n))\).

On the other hand ...

If \(R = L(1, n)\), then the “type” of \(R\) is \(n - 1\). (Think: “smallest difference”). Bill Leavitt showed the following in his 1962 paper:

The type of \(M_d(L(1, n))\) is \(\frac{n-1}{g.c.d.(d,n-1)}\).

In particular, if \(g.c.d.(d, n - 1) > 1\), then \(L(1, n) \not\cong M_d(L(1, n))\).
Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if \(d|n^t \) for some \(t \in \mathbb{N} \), then \(L(1, n) \cong M_d(L(1, n)) \).

On the other hand ...

If \(R = L(1, n) \), then the “type” of \(R \) is \(n - 1 \). (Think: “smallest difference”). Bill Leavitt showed the following in his 1962 paper:

The type of \(M_d(L(1, n)) \) is \(\frac{n-1}{\text{g.c.d.}(d,n-1)} \).

In particular, if \(\text{g.c.d.}(d,n-1) > 1 \), then \(L(1, n) \not\cong M_d(L(1, n)) \).

Conjecture: \(L(1, n) \cong M_d(L(1, n)) \iff \text{g.c.d.}(d,n-1) = 1 \).
Matrices over Leavitt algebras

In general, using this same idea, we can show that:

if $d|n^t$ for some $t \in \mathbb{N}$, then $L(1, n) \cong M_d(L(1, n))$.

On the other hand ...

If $R = L(1, n)$, then the “type” of R is $n - 1$. (Think: “smallest difference”). Bill Leavitt showed the following in his 1962 paper:

The type of $M_d(L(1, n))$ is $\frac{n-1}{\text{g.c.d.}(d,n-1)}$.

In particular, if $\text{g.c.d.}(d, n - 1) > 1$, then $L(1, n) \ncong M_d(L(1, n))$.

Conjecture: $L(1, n) \cong M_d(L(1, n)) \iff g.c.d.(d, n - 1) = 1$.

(Note: $d|n^t \Rightarrow g.c.d.(d, n - 1) = 1.$)
Matrices over Leavitt algebras

Smallest interesting pair: Is $L(1, 5) \cong M_3(L(1, 5))$?

In trying to mimic the $d|n^t$ case, we are led “naturally” to consider these five matrices (and their duals) in $M_3(L(1, 5))$:

$$
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5
\end{pmatrix}
$$

$$
\begin{pmatrix}
 y_1 & y_2 & y_3 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
 y_4 & y_5 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 y_1^2 & y_1y_2 & y_1y_3
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 y_1y_4 & y_1y_5 & y_2
\end{pmatrix},
\begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 y_3 & y_4 & y_5
\end{pmatrix}
$$
Matrices over Leavitt algebras

These ten matrices form a Leavitt R_5-family in $M_3(L(1, 5))$.
Matrices over Leavitt algebras

These ten matrices form a Leavitt R_5-family in $M_3(L(1, 5))$. And we can generate *much of* $M_3(L(1, 5))$, using these ten matrices.
Matrices over Leavitt algebras

These ten matrices form a Leavitt R_5-family in $M_3(L(1, 5))$. And we can generate *much of* $M_3(L(1, 5))$, using these ten matrices.

But we couldn’t see how to generate, for example, the matrix units $e_{1,3}$ and $e_{3,1}$ inside $M_3(L(1, 5))$.
Matrices over Leavitt algebras

Breakthrough came from an analysis of isomorphisms between more general Leavitt path algebras.

There are a few “graph moves” which preserve the isomorphism classes of Leavitt path algebras.

“Shift” and ”outsplittting”.
Isomorphisms between matrix rings over the Leavitt algebras $L_K(1, n)$

Matrices over Leavitt algebras

There exists a sequence of graphs

$$R_5 = E_1, E_2, ..., E_7 = R_5(3)$$

for which E_{i+1} is gotten from E_i by one of these two "graph moves".
Matrices over Leavitt algebras

\[E = R_5 = \begin{array}{c}
\bullet \\
\end{array} \quad \text{and} \quad R_5(3) = \begin{array}{c}
\bullet \\
\rightarrow \\
\bullet \\
\end{array} \]

There exists a sequence of graphs

\[R_5 = E_1, E_2, \ldots, E_7 = R_5(3) \]

for which \(E_{i+1} \) is gotten from \(E_i \) by one of these two “graph moves”.

So \(L_K(R_5) \cong L_K(E_2) \cong \cdots \cong L_K(R_5(3)) \cong M_3(R_5) \).

Note: For \(2 \leq i \leq 6 \) it is not immediately obvious how to view \(L_K(E_i) \) in terms of a matrix ring over a Leavitt algebra.
Matrices over Leavitt algebras

Original set of elements in $M_3(L_K(1, 5))$ (plus duals):

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2 x_1 \\
 0 & 0 & x_3 x_1 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4 x_1 \\
 0 & 0 & x_5 x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]
Matrices over Leavitt algebras

Original set of elements in $M_3(L_K(1,5))$ (plus duals):

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]

Instead, the image of the set x_1, \ldots, x_5 in $L_K(1,5)$ under the above isomorphism is this set of elements in $M_3(L_K(1,5))$:

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\quad
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]
Matrices over Leavitt algebras

Now consider this set, which we will call “The List”:

\[x_1^{d-1}, x_2x_1^{d-2}, x_3x_1^{d-2}, \ldots, x_n x_1^{d-2} \]
\[x_2 x_1^{d-3}, x_3 x_1^{d-3}, \ldots, x_n x_1^{d-3} \]
\[\vdots \]
\[x_2 x_1, x_3 x_1, \ldots, x_n x_1 \]
\[x_2, x_3, \ldots, x_n \]
Lemma / Key Observation. The elements of The List satisfy:

$$y_1^{d-1}x_1^{d-1} + \sum_{i=0}^{d-2} \sum_{j=2}^{n} y_1^i y_j x_j x_1^i = 1_K.$$
Matrices over Leavitt algebras

For integers n, d for which $\gcd(d, n - 1) = 1$, there is an algorithm to partition $\{1, 2, ..., d\}$ as $S_1 \cup S_2$ in a specified way.

This induces a partition of $\{1, 2, ..., n\}$ as $\hat{S}_1 \cup \hat{S}_2$ by extending mod d.
Matrices over Leavitt algebras

For integers \(n, d \) for which \(\gcd(d, n - 1) = 1 \), there is an algorithm to partition \(\{1, 2, ..., d\} \) as \(S_1 \cup S_2 \) in a specified way.

This induces a partition of \(\{1, 2, ..., n\} \) as \(\hat{S}_1 \cup \hat{S}_2 \) by extending mod \(d \).

Proposition. It is possible to place the elements of The List in the “to be specified” entries of the “to be completed” matrices in such a way that each entry of the form \(x_u x_1^t \) for \(u \in S_k \) \((k = 1, 2)\) is placed in a row indexed by \(\hat{u} \) where \(\hat{u} \in \hat{S}_k \) \((k = 1, 2)\).
Matrices over Leavitt algebras

Theorem

\[(A-, Ánh, Pardo; Crelle’s J. 2008)\]

\[L(1, n) \cong M_d(L(1, n)) \iff \text{g.c.d.}(d, n - 1) = 1.\]
Matrices over Leavitt algebras

Theorem

\((A-, Ánh, Pardo; Crelle’s J. 2008)\)

\[L(1, n) \cong M_d(L(1, n)) \iff \text{g.c.d.}(d, n-1) = 1. \]

More generally,

\[M_d(L(1, n)) \cong M_{d'}(L(1, n)) \iff \text{g.c.d.}(d, n-1) = \text{g.c.d.}(d', n-1). \]
Matrices over Leavitt algebras

Theorem

(A-, Ánh, Pardo; Crelle’s J. 2008)

\[L(1, n) \cong M_d(L(1, n)) \iff \gcd(d, n-1) = 1. \]

More generally,

\[M_d(L(1, n)) \cong M_{d'}(L(1, n)) \iff \gcd(d, n-1) = \gcd(d', n-1). \]

Moreover, we can write down the isomorphisms explicitly.
Matrices over Leavitt algebras

Computations when $n = 5, d = 3$.

$\gcd(3, 5 - 1) = 1$. Now $5 = 1 \cdot 3 + 2$, so that $r = 2, r - 1 = 1$, and define $s = d - (r - 1) = 3 - 1 = 2$.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \leq i \leq d$). This will necessarily give all integers between 1 and d.
Matrices over Leavitt algebras

Computations when $n = 5$, $d = 3$.

$\gcd(3, 5 - 1) = 1$. Now $5 = 1 \cdot 3 + 2$, so that $r = 2$, $r - 1 = 1$, and define $s = d - (r - 1) = 3 - 1 = 2$.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \leq i \leq d$). This will necessarily give all integers between 1 and d.

So here we get the sequence $1, 3, 2$.
Matrices over Leavitt algebras

Computations when $n = 5, d = 3$.

$\gcd(3, 5 - 1) = 1$. Now $5 = 1 \cdot 3 + 2$, so that $r = 2$, $r - 1 = 1$, and define $s = d - (r - 1) = 3 - 1 = 2$.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \leq i \leq d$). This will necessarily give all integers between 1 and d.

So here we get the sequence $1, 3, 2$.

Now break this set into two pieces: those integers up to and including $r - 1$, and those after. Since $r - 1 = 1$, here we get

$$\{1, 2, 3\} = \{1\} \cup \{2, 3\}.$$
Matrices over Leavitt algebras

Computations when $n = 5, d = 3$.

$\gcd(3, 5 - 1) = 1$. Now $5 = 1 \cdot 3 + 2$, so that $r = 2, r - 1 = 1$, and define $s = d - (r - 1) = 3 - 1 = 2$.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \leq i \leq d$). This will necessarily give all integers between 1 and d.

So here we get the sequence $1, 3, 2$.

Now break this set into two pieces: those integers up to and including $r - 1$, and those after. Since $r - 1 = 1$, here we get

$$\{1, 2, 3\} = \{1\} \cup \{2, 3\}.$$

Now extend these two sets mod 3 to all integers up to 5.

$$\{1, 4\} \cup \{2, 3, 5\}$$
Here are those matrices again:

Original set (plus duals):

\[
\begin{bmatrix}
x_1 & 0 & 0 \\
x_2 & 0 & 0 \\
x_3 & 0 & 0 \\
x_4 & 0 & 0 \\
x_5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & x_1^2 \\
0 & 0 & x_2 x_1 \\
0 & 0 & x_3 x_1 \\
0 & 0 & x_4 x_1 \\
0 & 0 & x_5 x_1 \\
0 & 0 & x_2 \\
0 & 0 & x_3 \\
0 & 0 & x_4 \\
0 & 0 & x_5 \\
\end{bmatrix}
\]

Instead, this set (plus duals) works:

\[
\begin{bmatrix}
x_1 & 0 & 0 \\
x_2 & 0 & 0 \\
x_3 & 0 & 0 \\
x_4 & 0 & 0 \\
x_5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & x_1^2 \\
0 & 0 & x_2 x_1 \\
0 & 0 & x_3 x_1 \\
0 & 0 & x_4 x_1 \\
0 & 0 & x_5 x_1 \\
0 & 0 & x_2 \\
0 & 0 & x_3 \\
0 & 0 & x_4 \\
0 & 0 & x_5 \\
\end{bmatrix}
\]

The Partition for \(n = 5, d = 3 \):

\{1, 4\} \cup \{2, 3, 5\}.

"The List":

\[x_2 x_1, x_2 x_1 x_1, x_3 x_1, x_4 x_1, x_5 x_1, x_2 x_1, x_3 x_1, x_5 x_1, x_2, x_3, x_5, x_2, x_3, x_5, x_2, x_3, x_5, x_2, x_3, x_5.\]

The point is that \{x_2 x_1, x_4 x_1, x_4\} appear in row 1, while \{x_2 x_1, x_3 x_1, x_5 x_1, x_2, x_3, x_5\} appear in either rows 2 or 3.
Here are those matrices again: Original set (plus duals):

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0
\end{pmatrix}, \begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1
\end{pmatrix}, \begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2
\end{pmatrix}, \begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5
\end{pmatrix}
\]
Here are those matrices again: Original set (plus duals):

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]

Instead, this set (plus duals) works:

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4 \\
 0 & 0 & x_3 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]
Here are those matrices again: Original set (plus duals):

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_3 \\
 0 & 0 & x_4 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]

Instead, this set (plus duals) works:

\[
\begin{pmatrix}
 x_1 & 0 & 0 \\
 x_2 & 0 & 0 \\
 x_3 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x_4 & 0 & 0 \\
 x_5 & 0 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_1^2 \\
 0 & 0 & x_2x_1 \\
 0 & 0 & x_3x_1 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4x_1 \\
 0 & 0 & x_5x_1 \\
 0 & 0 & x_2 \\
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & x_4 \\
 0 & 0 & x_3 \\
 0 & 0 & x_5 \\
\end{pmatrix}
\]

The Partition for \(n = 5, d = 3 \): \(\{1, 4\} \cup \{2, 3, 5\} \).

"The List": \(x_1^2, x_2x_1, x_3x_1, x_4x_1, x_5x_1, x_2, x_3, x_4, x_5 \).

The point is that \(\{x_1^2, x_4x_1, x_4\} \) appear in row 1, while \(\{x_2x_1, x_3x_1, x_5x_1, x_2, x_3, x_5\} \) appear in either rows 2 or 3.
Matrices over Leavitt algebras

Another Example of the Partition. Suppose $n = 35$, $d = 13$. Then $\gcd(13, 35 - 1) = 1$, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that $r = 9$, $r - 1 = 8$, and $s = d - (r - 1) = 13 - 8 = 5$. Then we consider the sequence starting at 1, and increasing by s each step, and interpret mod d.
Matrices over Leavitt algebras

Another Example of the Partition. Suppose $n = 35$, $d = 13$. Then $\gcd(13, 35 - 1) = 1$, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that $r = 9$, $r - 1 = 8$, and $s = d - (r - 1) = 13 - 8 = 5$. Then we consider the sequence starting at 1, and increasing by s each step, and interpret mod d. So here we get the sequence: 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9.
Matrices over Leavitt algebras

Another Example of the Partition. Suppose $n = 35$, $d = 13$. Then $\gcd(13, 35 - 1) = 1$, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that $r = 9$, $r - 1 = 8$, and $s = d - (r - 1) = 13 - 8 = 5$. Then we consider the sequence starting at 1, and increasing by s each step, and interpret mod d. So here we get the sequence $1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9$. Now break this set into two pieces: those integers up to and including $r - 1$, and those after. Since $r - 1 = 8$, here we get

$$\{1, 2, \ldots, 13\} = \{1, 3, 6, 8, 11\} \cup \{2, 4, 5, 7, 9, 10, 12, 13\}.$$
Matrices over Leavitt algebras

Another Example of the Partition. Suppose \(n = 35, d = 13 \).
Then \(\gcd(13, 35 - 1) = 1 \), so we are in the desired situation. Now
\[35 = 2 \cdot 13 + 9, \]
so that \(r = 9, r - 1 = 8, \) and
\[s = d - (r - 1) = 13 - 8 = 5. \]
Then we consider the sequence starting at 1, and increasing by \(s \) each step, and interpret mod \(d \).
So here we get the sequence \(1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9 \).
Now break this set into two pieces: those integers up to and including \(r - 1 \), and those after. Since \(r - 1 = 8 \), here we get
\[\{1, 2, \ldots, 13\} = \{1, 3, 6, 8, 11\} \cup \{2, 4, 5, 7, 9, 10, 12, 13\}. \]
Now extend these two sets mod 13 to all integers up to 35.
\[\{1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 34\} \cup \]
\[\{2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 35\} \]
Matrices over Leavitt algebras

Does this elementary number theory seem familiar??
Matrices over Leavitt algebras

Corollary. (Matrices over the Cuntz C*-algebras)

\[\mathcal{O}_n \cong M_d(\mathcal{O}_n) \iff \text{g.c.d.}(d, n-1) = 1. \]

More generally,

\[M_d(\mathcal{O}_n) \cong M_{d'}(\mathcal{O}_n) \iff \text{g.c.d.}(d, n-1) = \text{g.c.d.}(d', n-1). \]

(And the isomorphisms are explicitly described.)
Application to the theory of simple groups

Here is an important recent application of the isomorphism theorem.
Application to the theory of simple groups

Here is an important recent application of the isomorphism theorem.

For each pair of positive integers n, r, there exists an infinite, finitely presented simple group $G_{n,r}^+$. These were introduced in:

Application to the theory of simple groups

Here is an important recent application of the isomorphism theorem.

For each pair of positive integers \(n, r \), there exists an infinite, finitely presented simple group \(G^{+}_{n,r} \). These were introduced in:

Higman knew some conditions regarding isomorphisms between these groups, but did not have a complete classification.
Matrices over Leavitt algebras

Theorem. (E. Pardo, 2011)

\[G^{+}_{n,r} \cong G^{+}_{m,s} \iff m = n \text{ and } \gcd(r, n-1) = \gcd(s, n-1). \]
Matrices over Leavitt algebras

Theorem. (E. Pardo, 2011)

\[G_{n,r}^+ \cong G_{m,s}^+ \iff m = n \text{ and } \gcd(r, n-1) = \gcd(s, n-1). \]

Proof. Fix \(n \). Consider the set of invertible elements \(U_r(n) \) in \(M_r(L_C(1, n)) \) for which \(u^{-1} = u^* \), and for which each of the entries of \(u \) is a sum of terms of the form \(y_Ix_J \).
Matrices over Leavitt algebras

Theorem. (E. Pardo, 2011)

\[G_{n,r}^+ \cong G_{m,s}^+ \iff m = n \text{ and } \gcd(r, n-1) = \gcd(s, n-1). \]

Proof. Fix \(n \). Consider the set of invertible elements \(U_r(n) \) in \(M_r(L_C(1, n)) \) for which \(u^{-1} = u^* \), and for which each of the entries of \(u \) is a sum of terms of the form \(y_I x_J \).

For example, let

\[u = y_1 x_2 + y_2 y_1 x_1^2 + y_2^2 x_2 x_1 \in L_C(1, 2) = M_1(L_C(1, 2)). \]

Then \(u^* = y_2 x_1 + y_1^2 x_1 x_2 + y_1 y_2 x_2^2 \), and easily \(uu^* = 1 = u^* u \) so that \(u \in U_1(2) \subseteq U(M_1(L_C(1, 2))). \)
Matrices over Leavitt algebras

Theorem. (E. Pardo, 2011)

\[G_{n,r}^+ \cong G_{m,s}^+ \iff m = n \text{ and } \gcd(r, n-1) = \gcd(s, n-1). \]

Proof. Fix \(n \). Consider the set of invertible elements \(U_r(n) \) in \(M_r(L_\mathbb{C}(1, n)) \) for which \(u^{-1} = u^* \), and for which each of the entries of \(u \) is a sum of terms of the form \(y_I x_J \).

For example, let

\[u = y_1 x_2 + y_2 y_1 x_1^2 + y_2^2 x_2 x_1 \in L_\mathbb{C}(1, 2) = M_1(L_\mathbb{C}(1, 2)). \]

Then \(u^* = y_2 x_1 + y_1^2 x_1 x_2 + y_1 y_2 x_2^2 \), and easily \(uu^* = 1 = u^* u \). so that \(u \in U_1(2) \subseteq U(M_1(L_\mathbb{C}(1, 2))). \)

Now one shows that \(G_{n,r}^+ \cong U_r(n) \), and that the explicit isomorphisms provided in the A -, Ánh, Pardo result take \(U_r(n) \) onto \(U_s(n) \).
1. Isomorphisms between matrix rings over the Leavitt algebras $L_K(1, n)$

2. Some classical questions, answered using Leavitt path algebras
Ring theory reminders

1. *R* is von Neumann regular (or just regular) in case

\[\forall a \in R \ \exists \ x \in R \ \text{with} \ a = axa. \]

2. *R* is prime if the product of any two nonzero two-sided ideals of *R* is nonzero.

3. *R* is primitive if *R* admits a faithful simple left *R*-module.

These are still valid for nonunital rings, in particular, for \(L_K(E) \) with *E* infinite.
Connections and Applications: Kaplansky’s question

Lemma: Every primitive ring is prime.
Connections and Applications: Kaplansky’s question

Lemma: Every primitive ring is prime.

Proof. Let M denote a simple faithful left R-module. Suppose $I \cdot J = \{0\}$. We want to show either $I = \{0\}$ or $J = \{0\}.$
Connections and Applications: Kaplansky’s question

Lemma: Every primitive ring is prime.

Proof. Let M denote a simple faithful left R-module. Suppose $I \cdot J = \{0\}$. We want to show either $I = \{0\}$ or $J = \{0\}$.

So $(I \cdot J)M = 0$. If $JM = \{0\}$ then $J = \{0\}$ as M is faithful. So suppose $JM \neq 0$. Then $JM = M$ (as M is simple), so $(I \cdot J)M = 0$ gives $IM = 0$, so $I = \{0\}$ as M is faithful. □

But the converse is not true: e.g. $\{0\}$ is a prime ideal of $A = K[x,x−1]$, but not primitive. (R has no simple faithful modules.)
Connections and Applications: Kaplansky’s question

Lemma: Every primitive ring is prime.

Proof. Let \(M \) denote a simple faithful left \(R \)-module. Suppose \(I \cdot J = \{0\} \). We want to show either \(I = \{0\} \) or \(J = \{0\} \).

So \((I \cdot J)M = 0\). If \(JM = \{0\} \) then \(J = \{0\} \) as \(M \) is faithful. So suppose \(JM \neq 0 \). Then \(JM = M \) (as \(M \) is simple), so \((I \cdot J)M = 0\) gives \(IM = 0 \), so \(I = \{0\} \) as \(M \) is faithful. □

But the converse is not true: e.g. \(\{0\} \) is a prime ideal of \(A = K[x, x^{-1}] \), but not primitive. \((R \) has no simple faithful modules.)
Connections and Applications: Kaplansky’s question

Kaplansky, 1970: *Is a regular prime ring necessarily primitive?*

Answered in the negative (Domanov, 1977), a group-algebra example.
Connections and Applications: Kaplansky’s question

Kaplansky, 1970: *Is a regular prime ring necessarily primitive?*

Answered in the negative (Domanov, 1977), a group-algebra example.

Theorem. (A-, K.M. Rangaswamy 2010) \(L_K(E) \) is von Neumann regular \(\iff \) \(E \) is acyclic.
Connections and Applications: Kaplansky’s question

Kaplansky, 1970: *Is a regular prime ring necessarily primitive?*

Answered in the negative (Domanov, 1977), a group-algebra example.

Theorem. (A-, K.M. Rangaswamy 2010) $L_K(E)$ is von Neumann regular $\iff E$ is acyclic.

Theorem. (Aranda Pino, Pardo, Siles Molina) $L_K(E)$ is prime \iff for each pair of vertices u, v in E there exists a vertex w in E for which $u \geq w$ and $v \geq w$.
Connections and Applications: Kaplansky’s question

Kaplansky, 1970: *Is a regular prime ring necessarily primitive?*

Answered in the negative (Domanov, 1977), a group-algebra example.

Theorem. (A-, K.M. Rangaswamy 2010) $L_K(E)$ is von Neumann regular $\iff E$ is acyclic.

Theorem. (Aranda Pino, Pardo, Siles Molina) $L_K(E)$ is prime \iff for each pair of vertices u, v in E there exists a vertex w in E for which $u \geq w$ and $v \geq w$.

Condition (MT3) or “Downward Directed”
Connections and Applications: Kaplansky’s question

Theorem. (A-, Jason Bell, Ranga 2011) $L_K(E)$ is primitive \iff

1. $L_K(E)$ is prime,
2. every cycle in E has an exit, and
3. there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.

(Countable Separation Property)
Connections and Applications: Kaplansky’s question

Theorem. (A-, Jason Bell, Ranga 2011) $L_K(E)$ is primitive \iff

1. $L_K(E)$ is prime,
2. every cycle in E has an exit, and
3. there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.

(Countable Separation Property)

Idea of proof:

1. A unital ring R is left primitive if and only if there is a left ideal $M \neq R$ of R such that for every nonzero two-sided ideal I of R, $M + I = R$.

Gene Abrams
University of Colorado @ Colorado Springs

Leavitt path algebras: some (surprising?) connections
Connections and Applications: Kaplansky’s question

Theorem. (A-, Jason Bell, Ranga 2011) $L_K(E)$ is primitive \iff

1. $L_K(E)$ is prime,
2. every cycle in E has an exit, and
3. there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.

(Countable Separation Property)

Idea of proof:

1. A unital ring R is left primitive if and only if there is a left ideal $M \neq R$ of R such that for every nonzero two-sided ideal I of R, $M + I = R$.
2. Embed $L_K(E)$ in a unital algebra $L_K(E)_1$ in the usual way; primitivity is preserved.
Connections and Applications: Kaplansky’s question

Theorem. (A-, Jason Bell, Ranga 2011) $L_K(E)$ is primitive \iff

1. $L_K(E)$ is prime,
2. every cycle in E has an exit, and
3. there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.

(Countable Separation Property)

Idea of proof:
1. A unital ring R is left primitive if and only if there is a left ideal $M \neq R$ of R such that for every nonzero two-sided ideal I of R, $M + I = R$.
2. Embed $L_K(E)$ in a unital algebra $L_K(E)_1$ in the usual way; primitivity is preserved.
3. Show that the lack of the CSP implies that no such left ideal can exist in $L_K(E)_1$.

Gene Abrams

University of Colorado @ Colorado Springs

Leavitt path algebras: some (surprising?) connections
Connections and Applications: Kaplansky’s question

It’s not hard to find acyclic graphs E for which $L_K(E)$ is prime but for which C.S.P. fails.

Example: X uncountable, S the set of finite subsets of X. Define the graph E:

1. vertices indexed by S, and
2. edges induced by proper subset relationship.

Then $L_K(E)$ is regular, prime, not primitive.
Connections and Applications: Kaplansky’s question

It’s not hard to find acyclic graphs E for which $L_K(E)$ is prime but for which C.S.P. fails.

Example: X uncountable, S the set of finite subsets of X. Define the graph E:

1. vertices indexed by S, and
2. edges induced by proper subset relationship.

Then $L_K(E)$ is regular, prime, not primitive.

Note: Adjoining 1_K in the usual way (Dorroh extension by K) gives unital, regular, prime, not primitive algebras.

Remark: These examples are also “Cohn algebras”.

Lie algebras arising from associative algebras

Definitions / Notation.

R an associative K-algebra.

For $x, y \in R$ let $[x, y]$ denote $xy - yx$.

Let $[R, R]$ denote the K-subspace of R spanned by $\{[x, y] \mid x, y \in R\}$.
Lie algebras arising from associative algebras

Definitions / Notation.

R an associative K-algebra.

For $x, y \in R$ let $[x, y]$ denote $xy - yx$.

Let $[R, R]$ denote the K-subspace of R spanned by $\{[x, y] \mid x, y \in R\}$.

$[R, R]$ with $[-, -]$ is a Lie K-algebra.
Lie algebras arising from associative algebras: general ideas

Let L denote a Lie K-algebra. A subset I of L is called a **Lie K-ideal** if I is a K-subspace of L and $[L, I] \subseteq I$.

Important Observation: If $K1_R \subseteq [R, R]$, then $K1_R$ is a Lie K-ideal of $[R, R]$. But we need not have $K1_R \subseteq [R, R]$ in general. (Cheap example: R commutative.)
Let L denote a Lie K-algebra. A subset I of L is called a *Lie K-ideal* if I is a K-subspace of L and $[L, I] \subseteq I$.

Important Observation: If $K1_R \subseteq [R, R]$, then $K1_R$ is a Lie K-ideal of $[R, R]$. But we need not have $K1_R \subseteq [R, R]$ in general. (Cheap example: R commutative.)

Definition: The Lie K-algebra L is called *simple* if $[L, L] \neq 0$ and the only Lie K-ideals of L are 0 and L.
Lie algebras arising from associative algebras: general ideas

Question: For which graphs E and fields K is the Lie algebra $[L_K(E), L_K(E)]$ simple?
Lie algebras arising from associative algebras: general ideas

Question: For which graphs E and fields K is the Lie algebra $[L_K(E), L_K(E)]$ simple?

Of great help here:

Theorem (Herstein, 1965). Let S be a simple associative K-algebra. Assume either that $\text{char}(S) \neq 2$, or that S is not 4-dimensional over $Z(S)$, where $Z(S)$ is a field.

Let U be any proper Lie K-ideal of the Lie algebra $[S, S]$.

Then $U \subseteq Z(S) \cap [S, S]$.
Lie algebras arising from associative algebras: general ideas

Intuition ...
If the center $Z(S)$ is ‘small’, then usually we have good control over all the Lie ideals of the Lie algebra $[S, S]$.

Main Consequence of Herstein’s Theorem:
Let R be a unital K-algebra which satisfies the hypotheses of Herstein’s Theorem. Suppose that $1[R, R] \neq 0$, and $Z(R) = K$. Then $[R, R]$ is a simple Lie K-algebra if and only if $1 \in [R, R]$.

Gene Abrams
University of Colorado @ Colorado Springs

Leavitt path algebras: some (surprising?) connections
Lie algebras arising from associative algebras: general ideas

Intuition ...

If the center $Z(S)$ is ‘small’, then usually we have good control over all the Lie ideals of the Lie algebra $[S, S]$.

Main Consequence of Herstein’s Theorem: Let R be a unital simple K-algebra which satisfies the hypotheses of Herstein’s Theorem. Suppose that

1. $[[R, R], [R, R]] \neq 0$, and
2. $Z(R) = K1_R$.

Then $[R, R]$ is a simple Lie K-algebra if and only if $1_R \notin [R, R]$.
Step 1 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Definition. Write $E^0 = \{v_i \mid i \in I\}$.

For each $i \in I$, let $\epsilon_i \in \mathbb{Z}^{(I)}$ denote the element with 1 as the i-th coordinate and zeros elsewhere.

If v_i is a regular vertex, for all $j \in I$ let a_{ij} denote the number of edges $e \in E^1$ such that $s(e) = v_i$ and $r(e) = v_j$.

Define

$$B_i = (a_{ij})_{j \in I} - \epsilon_i \in \mathbb{Z}^{(I)}.$$

(If v_i is not a regular vertex, define $B_i = (0)_{j \in I} \in \mathbb{Z}^{(I)}$.)
Step 1 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Example

Then

\[B_1 = (1, 1, 0, 0) - \epsilon_1 = (0, 1, 0, 0), \]
\[B_2 = (1, 0, 0, 1) - \epsilon_2 = (1, -1, 0, 1), \]
\[B_3 = (0, 1, 1, 0) - \epsilon_3 = (0, 1, 0, 0), \]
\[B_4 = (0, 0, 1, 0) - \epsilon_4 = (0, 0, 1, -1). \]
Step 2 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Definition

Let K be a field, and let E be a directed graph. The *Cohn path K-algebra* $C_K(E)$ of E with coefficients in K is the path algebra $K\hat{E}$, modulo only the (CK1) relation

$$(\text{CK1}) \quad e^* e' = \delta_{e,e'} r(e) \quad \text{for all } e, e' \in E^1.$$
Step 2 towards: When is \(1_{L_K(E)} \in [L_K(E), L_K(E)]?\)

Definition

Let \(K\) be a field, and let \(E\) be a directed graph. The *Cohn path \(K\)-algebra* \(C_K(E)\) of \(E\) with coefficients in \(K\) is the path algebra \(K\hat{E}\), modulo *only* the (CK1) relation

\[(CK1) \quad e^*e' = \delta_{e,e'}r(e) \quad \text{for all } e, e' \in E^1.\]

Remark: Cohn path algebras might be interesting to study in their own right ...
Step 2 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Definition

Let K be a field, and let E be a directed graph. The *Cohn path K-algebra* $C_K(E)$ of E with coefficients in K is the path algebra $K\hat{E}$, modulo *only* the (CK1) relation

$$(CK1) \quad e^*e' = \delta_{e,e'}r(e) \quad \text{for all } e, e' \in E^1.$$

Remark: Cohn path algebras might be interesting to study in their own right ...

Let $N \subseteq C_K(E)$ denote the ideal of $C_K(E)$ generated by elements of the form $v = \sum\{e \in E^1 | s(e) = v\} \quad ee^*$, where $v \in E^0$ is a regular vertex.
Step 2 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Definition

Let K be a field, and let E be a directed graph. The *Cohn path K-algebra* $C_K(E)$ of E with coefficients in K is the path algebra $K \hat{E}$, modulo only the (CK1) relation

$$(\text{CK1}) \quad e^*e' = \delta_{e,e'}r(e) \quad \text{for all } e, e' \in E^1.$$

Remark: Cohn path algebras might be interesting to study in their own right ...

Let $N \subseteq C_K(E)$ denote the ideal of $C_K(E)$ generated by elements of the form $\nu = \sum\{e \in E^1 | s(e) = \nu\}ee^*$, where $\nu \in E^0$ is a regular vertex.

So

$$L_K(E) \cong C_K(E)/N.$$
Step 3 towards: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Using the “standard basis” available in $C_K(E)$, we can define a K-linear transformation

$$T : C_K(E) \to K^{(I)}$$

having

1. $T([x, y]) = 0$ for all $x, y \in C_K(E)$,
2. $T(v_i) = \epsilon_i$ for all $i \in I$, and
3. $T(w) \in \text{span}_K \{B_i \mid i \in I\} \subseteq K^{(I)}$ for all $w \in N$.

Gene Abrams
University of Colorado @ Colorado Springs

Leavitt path algebras: some (surprising?) connections
Final step: When is $1_{L_K(E)} \in [L_K(E), L_K(E)]$?

Theorem

If E^0 is finite (so that $L_K(E)$ is unital), then

$1_{L_K(E)} \in [L_K(E), L_K(E)] \iff (1, \ldots, 1) \in \text{span}_K \{B_i \mid i \in I\} \subseteq K(I)$.
A few known results which complete the picture.

1. $K \cong L_K(\bullet)$ is the only simple commutative Leavitt path K-algebra. (So we call a simple Leavitt path algebra $L_K(E)$ nontrivial in case $L_K(E) \not\cong K$.)
A few known results which complete the picture.

1. $K \cong L_K(\bullet)$ is the only simple commutative Leavitt path K-algebra. (So we call a simple Leavitt path algebra $L_K(E)$ nontrivial in case $L_K(E) \not\cong K$.)

2. For any noncommutative $R = L_K(E)$, $[[R, R], [R, R]] \neq 0$
A few known results which complete the picture.

1. $K \cong L_K(\bullet)$ is the only simple commutative Leavitt path K-algebra. (So we call a simple Leavitt path algebra $L_K(E)$ nontrivial in case $L_K(E) \not\cong K$.)

2. For any noncommutative $R = L_K(E)$, $[[R, R], [R, R]] \neq 0$

3. The Simplicity Theorem for finite E
A few known results which complete the picture.

1. $K \cong L_K(\bullet)$ is the only simple commutative Leavitt path K-algebra. (So we call a simple Leavitt path algebra $L_K(E)$ nontrivial in case $L_K(E) \not\cong K$.)

2. For any noncommutative $R = L_K(E)$, $[[R, R], [R, R]] \neq 0$

3. The Simplicity Theorem for finite E

4. (The Centers Theorem for finite E) If $L_K(E)$ is simple, then $Z(L_K(E)) = K1_{L_K(E)}$.
Simplicity of $L_K(E)$

Now from Herstein’s Theorem, the Centers Theorem, and our theorem about when $1_{L_K(E)}$ is (or is not) an element of $[L_K(E), L_K(E)]$, we get

Theorem (A-, Mesyan 2012)

Let K be a field, and let E be a finite graph for which $L_K(E)$ is a nontrivial simple Leavitt path algebra. Write $E^0 = \{v_1, \ldots, v_m\}$, and for each $1 \leq i \leq m$ let B_i be as above. Then

$$[L_K(E), L_K(E)] \text{ is simple as a Lie } K\text{-algebra}$$

if and only if

$$(1, \ldots, 1) \not\in \text{span}_K\{B_1, \ldots, B_m\}.$$
\[L_K(E), L_K(E) \] simple \(\iff \) \((1, \ldots, 1) \notin \text{span}_K\{B_1, \ldots, B_m\} \)

Previous example.

\[
\begin{array}{c}
\bullet^v_1 \rightarrow \rightarrow \rightarrow \bullet^v_2 \\
\downarrow \downarrow \downarrow \downarrow \\
\bullet^v_3 \rightarrow \rightarrow \rightarrow \bullet^v_4
\end{array}
\]

\[
B_1 = (0, 1, 0, 0), \quad B_2 = (1, -1, 0, 1), \quad B_3 = (0, 1, 0, 0), \quad B_4 = (0, 0, 1, -1).
\]

Is \((1, 1, 1, 1) \) in \(\text{span}_K\{B_1, B_2, B_3, B_4\} \)? That is, can we find \(k_1, k_2, k_3, k_4 \in K \) for which

\[
(1, 1, 1, 1) = k_1(0, 1, 0, 0) + k_2(1, -1, 0, 1) + k_3(0, 1, 0, 0) + k_4(0, 0, 1, -1)
\]
[\[L_K(E), L_K(E)\]] simple ⇔ (1, . . . , 1) \notin \text{span}_K\{B_1, \ldots, B_m\}

So we want to solve a system. Here’s the augmented matrix of the system:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & \vdots & 1 \\
1 & -1 & 1 & 0 & 0 & \vdots & 1 \\
0 & 0 & 0 & 0 & 1 & \vdots & 1 \\
0 & 1 & 0 & -1 & 1 & \vdots & 1
\end{pmatrix}
\]
\[[L_K(E), L_K(E)] \text{ simple } \iff (1, \ldots, 1) \not\in \text{span}_K \{B_1, \ldots, B_m\} \]

After row-reducing we get
\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 1 \\
1 & -1 & 1 & 0 & \cdots & 1 \\
0 & 0 & 0 & 1 & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & 1
\end{pmatrix}.
\]

The system has no solution (regardless of the characteristic of \(K\)). So \([L_K(E), L_K(E)]\) is simple for any field \(K\).
[\mathcal{L}_K(E), \mathcal{L}_K(E)] \text{ simple } \iff (1, \ldots, 1) \notin \text{ span}_K\{B_1, \ldots, B_m\}

More examples. Let \(\mathcal{P} = \{p_1, p_2, \ldots, p_t\} \) be a finite set of primes, let \(q = p_1 p_2 \cdots p_t \in \mathbb{N} \), and let \(E_q \) be this graph.

Here \(B_1 = (0,1,0,0) \), \(B_2 = (1,-1,0,1) \), \(B_3 = (0,1,0,0) \), and \(B_4 = (0,0,1,q) \).

When is \((1,1,1,1)\) in \(\text{ span}_K\{B_1, B_2, B_3, B_4\}\)?
$[L_K(E), L_K(E)]$ simple $\iff (1, \ldots, 1) \not\in \text{span}_K \{B_1, \ldots, B_m\}$

Elementary row-operations on the augmented matrix yield:

$$
\begin{pmatrix} 1 & -1 & 1 & 0 & \vdots & 1 \\
0 & 1 & 0 & 0 & \vdots & 1 \\
0 & 0 & 0 & 1 & \vdots & 1 \\
0 & 0 & 0 & 0 & \vdots & -q \\
\end{pmatrix}.
$$

So the system has solutions precisely when $\text{char}(K)$ divides q, i.e., when $\text{char}(K) \in \{p_1, p_2, \ldots, p_t\}$. So by the Main Theorem,

$[L_K(E_q), L_K(E_q)]$ is simple if and only if $\text{char}(K)$ is NOT in $\{p_1, p_2, \ldots, p_t\}$.
Isomorphisms between matrix rings over the Leavitt algebras $L_K(1, n)$ Some classical questions, answered using Leavitt path algebra

$[L_K(E), L_K(E)]$ simple $\Leftrightarrow (1, \ldots, 1) \not\in \text{span}_K\{B_1, \ldots, B_m\}$

So the characteristic of the field K plays a role here!
Isomorphisms between matrix rings over the Leavitt algebras $L_K(1, n)$: Some classical questions, answered using Leavitt path algebras

\[
[L_K(E), L_K(E)] \text{ simple } \iff (1, \ldots, 1) \not\in \text{span}_K \{B_1, \ldots, B_m\}
\]

So the characteristic of the field K plays a role here!

Remark. On the other end of the spectrum, we can also build graphs where \([L_K(E), L_K(E)]\) is simple if and only if $\text{char}(K)$ is in \(\{p_1, p_2, \ldots, p_t\}\).

Gene Abrams
University of Colorado @ Colorado Springs
Leavitt path algebras: some (surprising?) connections
\[[L_K(E), L_K(E)] \text{ simple } \Leftrightarrow (1, \ldots, 1) \notin \text{span}_K \{B_1, \ldots, B_m\} \]

So the characteristic of the field \(K \) plays a role here!

Remark. On the other end of the spectrum, we can also build graphs where \([L_K(E), L_K(E)] \) is simple if and only if \(\text{char}(K) \) IS in \(\{p_1, p_2, \ldots, p_t\} \).

Let \(q = p_1p_2 \cdots p_t \in \mathbb{N} \). Then using the previous result for matrices over Leavitt algebras, the Lie \(K \)-algebra \([L_K(1, q + 1), L_K(1, q + 1)] \) is simple if and only if \(\text{char}(K) \in \mathcal{P} \).
Connections and Applications:
The realization question for von Neumann regular rings

Fundamental problem: (Goodearl, 1994) What monoids M appear as $\mathcal{V}(R)$ for von Neumann regular R?
Connections and Applications:
The realization question for von Neumann regular rings

Fundamental problem: (Goodearl, 1994) What monoids M appear as $\mathcal{V}(R)$ for von Neumann regular R?

Theorem: (Ara / Brustenga, 2007) For any row-finite graph E and field K there exists a von Neumann regular K-algebra $Q_K(E)$ for which $L_K(E)$ embeds in $Q_K(E)$, and

$$\mathcal{V}(L_K(E)) \cong \mathcal{V}(Q_K(E)).$$
Connections and Applications:
The realization question for von Neumann regular rings

Fundamental problem: (Goodearl, 1994) What monoids M appear as $\mathcal{V}(R)$ for von Neumann regular R?

Theorem: (Ara / Brustenga, 2007) For any row-finite graph E and field K there exists a von Neumann regular K-algebra $Q_K(E)$ for which $L_K(E)$ embeds in $Q_K(E)$, and

$$\mathcal{V}(L_K(E)) \cong \mathcal{V}(Q_K(E)).$$

Corollary: the realization question has affirmative answer for graph monoids M_E.
Thank you.