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Throughout R is associative, but not necessarily with identity.

Assume R at least has “local units”:
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Prime rings

Definition: I , J two-sided ideals of R. The product IJ is the
two-sided ideal

IJ = {
n∑
`=1

i`j` | i` ∈ I , j` ∈ J, n ∈ N}.

R is prime if the product of any two nonzero two-sided ideals of R
is nonzero.

Examples:

1 Commutative domains, e.g. fields, Z, K [x ], K [x , x−1], ...

2 Simple rings

3 EndK (V ) where dimK (V ) is infinite. (∼= RFM(K ))
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Prime rings

Note: Definition makes sense for nonunital rings.

Lemma: R prime. Then R embeds as an ideal in a unital prime
ring R1. (Dorroh extension of R.)

If R is a K -algebra then we can construct R1 a K -algebra for
which dimK (R1/R) = 1.
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Primitive rings

Definition: R is left primitive if R admits a faithful simple
(= “irreducible”) left R-module.

Rephrased: if there exists RM simple for which AnnR(M) = {0}.

Examples:

- Simple rings (note: need local units to build irreducibles)

NON-Examples:

- Z, K [x ], K [x , x−1]
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Primitive rings

Primitive rings are “natural” generalizations of matrix rings.

Jacobson’s Density Theorem: R is primitive if and only if R is
isomorphic to a dense subring of EndD(V ), for some division ring
D, and some D-vector space V .

Here D = EndR(M) where M is the supposed simple faithful
R-module.

So this gives many more examples of primitive rings, e.g. FM(K ),
RCFM(K ), etc ...

Definition of “primitive” makes sense for non-unital rings.
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Prime and primitive rings

Well-known (and easy) Proposition: Every primitive ring is prime.

If R is prime, then in previous embedding,

R is primitive ⇔ R1 is primitive.
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Prime and primitive rings

Converse of Lemma is not true (e.g. Z, K [x ], K [x , x−1]).

In fact, the only commutative primitive unital rings are fields.
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Leavitt path algebras

Let E = (E 0,E 1, r , s) be any directed graph, and K any field.

•s(e) e // •r(e)

Construct the “double graph” (or “extended graph”) Ê , and then
the path algebra K Ê .

Impose these relations in K Ê :

(CK1) e∗e = r(e); f ∗e = 0 for f 6= e in E 1; and

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at those vertices v which are not sinks)

Then the Leavitt path algebra of E with coefficients in K is:

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Leavitt path algebras: Examples

Example 1.

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

Example 2.

E = •v1 e1 // •v2 e2 // •v3 // · · ·
Then LK (E ) ∼= FMN(K ).

Example 3.

E = •v1
(N) // •v2

Then LK (E ) ∼= FMN(K )1.
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Leavitt path algebras: Examples

Example 4.
E = R1 = •v xff

Then LK (E ) ∼= K [x , x−1].

Example 5.

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the Leavitt algebra of type (1, n).
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Leavitt path algebras: basic properties

1. LK (E ) is unital if and only if E 0 is finite; in this case
1LK (E) =

∑
v∈E0 v .

2. Every element of LK (E ) can be expressed as
∑n

i=1 kiαiβ
∗
i where

ki ∈ K and αi , βi are paths for which r(αi ) = r(βi ). (This is not
generally a basis.)

3. There is a natural Z-grading on LK (E ), generated by defining

deg(v) = 0, deg(e) = 1, deg(e∗) = −1

With respect to this grading, every nonzero graded ideal of LK (E )
contains a vertex of E .
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Leavitt path algebras: basic properties

4. An exit e for a cycle c = e1e2 · · · en based at v is an edge for
which s(e) = s(ei ) for some 1 ≤ i ≤ n, but e 6= ei .

If every cycle in E has an exit (“Condition (L)”), then every
nonzero ideal of LK (E ) contains a vertex, and every nonzero left
ideal of LK (E ) contains a nonzero idempotent.

5. If c is a cycle based at v for which c has no exit, then
vLK (E )v ∼= K [x , x−1].
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Prime Leavitt path algebras

Notation: u ≥ v means either u = v or there exists a path p for
which s(p) = u, r(p) = v . u “connects to” v .

Lemma. If I is a two-sided ideal of LK (E ), and u ∈ E 0 has u ∈ I ,
and u ≥ v , then v ∈ I .

Easy proof: If p has s(p) = u, r(p) = w , then using (CK1) we get

p∗p = r(p) = w ; but p∗p = p∗ · s(p) · p = p∗up ∈ I .
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Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary.
Then LK (E ) is prime ⇔ for each pair v ,w ∈ E 0 there exists
u ∈ E 0 with v ≥ u and w ≥ u.

“Downward Directed” (MT3)

Idea of Proof. (⇒) Let R denote LK (E ). Let v ,w ∈ E 0. But
RvR 6= {0} and RwR 6= {0} ⇒ RvRwR 6= {0} ⇒ vRw 6= {0} ⇒
vαβ∗w 6= 0 for some paths α, β in E . Then u = r(α) works.

(⇐) LK (E ) is graded by Z, so need only check primeness on
nonzero graded ideals I , J. But each nonzero graded ideal contains
a vertex. Let v ∈ I ∩ E 0 and w ∈ J ∩ E 0. By downward
directedness there is u ∈ E 0 with v ≥ u and w ≥ u. But then
u = p∗vp ∈ I and u = q∗wq ∈ J, so that 0 6= u = u2 ∈ IJ.
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The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable
Separation Property (CSP) if there exists a countable set of
vertices S in E for which every vertex of E connects to an element
of S .

E has the “Countable Separation Property” with respect to S .
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The Countable Separation Property

Observe: If E 0 is countable, then E has CSP.

Example: X uncountable, S the set of finite subsets of X . Define
the graph EX :

1 vertices indexed by S , and

2 edges induced by proper subset relationship.

Then EX does not have CSP.
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Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?

Note: Since LK (E ) ∼= LK (E )op, left primitivity and right primitivity
coincide. So we can just say “primitive” Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to
appear)

LK (E ) is primitive ⇔

1 LK (E ) is prime,

2 every cycle in E has an exit (Condition (L)), and

3 E has the Countable Separation Property.
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LK (E ) primitive ⇔ E has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a
left ideal N 6= R of R such that for every nonzero two-sided ideal I
of R, N + I = R.

2. Embed a prime LK (E ) in a unital algebra LK (E )1 in the usual
way; primitivity is preserved.

3. Show that CSP allows us to build a left ideal in LK (E )1 with
the desired properties.

4. Then show that the lack of the CSP implies that no such left
ideal can exist in LK (E )1.
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4. Then show that the lack of the CSP implies that no such left
ideal can exist in LK (E )1.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

(⇐). Suppose E downward directed, E has Condition (L), and E
has CSP.

Suffices to establish primitivity of LK (E )1. Let T denote a set of
vertices w/resp. to which E has CSP.

T is countable: label the elements T = {v1, v2, ...}.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Inductively define a sequence λ1, λ2, ... of paths in E for which, for
each i ∈ N,

1 λi is an initial subpath of λj whenever i ≤ j , and

2 vi ≥ r(λi ).

Define λ1 = v1.

Suppose λ1, ..., λn have the indicated properties. By downward
directedness, there is un+1 in E 0 for which r(λn) ≥ un+1 and
vn+1 ≥ un+1. Let pn+1 : r(λn) un+1.

Define λn+1 = λnpn+1. �
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Since λi is an initial subpath of λt for all i ≤ t, we get that

λiλ
∗
i λtλ

∗
t = λtλ

∗
t for each pair of positive integers i ≤ t.

In particular (1− λiλ∗i )λtλ
∗
t = 0 for i ≤ t.

Define N =
∑∞

i=1 LK (E )1(1− λiλ∗i ).

N 6= LK (E )1: otherwise, 1 =
∑t

i=1 ri (1− λiλ∗i ) for some
ri ∈ LK (E )1, but then

0 6= 1 · λtλ∗t = (
t∑

i=1

ri (1− λiλ∗i )) · λtλ∗t = 0.
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LK (E ) primitive ⇐ E has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of LK (E )1 contains some
λnλ

∗
n.

Idea: E is downward directed, so LK (E ), and therefore LK (E )1, is
prime. Since LK (E ) embeds in LK (E )1 as a two-sided ideal, we get
I ∩ LK (E ) is a nonzero two-sided ideal of LK (E ). So Condition (L)
gives that I contains some vertex w .

Then w ≥ vn for some n by CSP. But vn ≥ r(λn) by construction,
so w ≥ r(λn). So w ∈ I gives r(λn) ∈ I , so λnλ

∗
n ∈ I .

Now we’re done. Show N + I = LK (E )1 for every nonzero
two-sided ideal I of LK (E )1. But 1− λnλ∗n ∈ N (all n ∈ N) and
λnλ

∗
n ∈ I (some n ∈ N) gives 1 ∈ N + I .
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

For the converse:

1) If E is not downward directed then LK (E ) not prime, so that
LK (E ) not primitive.

2) General ring theory result: If R is primitive and f = f 2 is
nonzero then fRf is primitive.

So if E contains a cycle c (based at v) without exit then
vLK (E )v ∼= K [x , x−1], which is not primitive, and thus LK (E ) is
not primitive.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then LK (E ) is
not primitive.

Lemma. Let N be a left ideal of a unital ring A. If there exist
x , y ∈ A such that 1 + x ∈ N, 1 + y ∈ N, and xy = 0, then N = A.

Proof: Since 1 + y ∈ N then x(1 + y) = x + xy = x ∈ N, so that

1 = (1 + x)− x ∈ N.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist
a left ideal N 6= LK (E )1 for which N + I = LK (E )1 for all
two-sided ideals I of LK (E )1.

To do this: assume N is such an ideal, show N = LK (E )1.

Strategy: If N has this property, then for each v ∈ E 0 we have
N + 〈v〉 = LK (E )1. So for each v ∈ E 0 there exists yv ∈ 〈v〉,
nv ∈ N for which nv + yv = 1. Let xv = −yv . This gives a set
{xv | v ∈ E 0} ⊆ LK (E )1 for which 1 + xv ∈ N for all v ∈ E 0.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Now show that the lack of CSP in E 0 forces the existence of a pair
of vertices v ,w for which xv · xw = 0. (This is the technical part.)

Then use the Lemma.
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LK (E ) primitive ⇒ E has (MT3), (L), and CSP

Key pieces of the technical part:

1 Every element ` of LK (E ) can be written as
∑n

i=1 kiαiβ
∗
i for

some n = n(`), and paths αi , βi . In particular, we can “cover”
all elements of LK (E ) by specifying n and lengths of paths.
This is a countable covering of LK (E ). (Not a partition.)

2 Collect up the xv according to this covering. Since E does not
have CSP, then some specific subset in the cover does not
have CSP.

3 Show that, in this specific subset Z , there exists v ∈ Z for
which the set

{w ∈ Z | xvxw = 0}

does not have CSP. In particular, this set is nonempty. Pick
such v and w . Then we are done by the Lemma. �
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von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

∀a ∈ R ∃ x ∈ R with a = axa.

(R is not required to be unital.)

Examples:

1 Division rings

2 Direct sums of matrix rings over division rings

3 Direct limits of von Neumann regular rings

R is regular ⇔ R1 is regular.
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Kaplansky’s Question

“Kaplansky’s Question”:

I. Kaplansky, Algebraic and analytic aspects of operator
algebras, AMS, 1970.

Is every regular prime algebra primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example. (Clever, but very ad hoc.)

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive Leavitt path algebras, and a general solution to a question of Kaplansky



Kaplansky’s Question

“Kaplansky’s Question”:

I. Kaplansky, Algebraic and analytic aspects of operator
algebras, AMS, 1970.

Is every regular prime algebra primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example. (Clever, but very ad hoc.)

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Primitive Leavitt path algebras, and a general solution to a question of Kaplansky



Kaplansky’s Question

Theorem. (A-, K.M. Rangaswamy 2010)

LK (E ) is von Neumann regular ⇔ E is acyclic.

Idea of Proof: (⇐) If E contains a cycle c based at v , can show
that a = v + c has no “regular inverse”.

(⇒) Show that if E is acyclic then every element of LK (E ) can be
trapped in a subring of LK (E ) which is isomorphic to a finite direct
sum of finite matrix rings.
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Application to Kaplansky’s question

It’s not hard to find acyclic graphs E for which LK (E ) is prime but
for which C.S.P. fails.

Example (mentioned previously): X uncountable, S the set of
finite subsets of X . Define the graph EX :

- vertices indexed by S , and

- edges induced by proper subset relationship.

Then for the graph EX ,

1 LK (EX ) is regular (E is acyclic)

2 LK (EX ) is prime (E is downward directed)

3 LK (EX ) is not primitive (E does not have CSP).
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Application to Kaplansky’s question

By using uncountable sets of different cardinalities, we get:

Theorem: For any field K , there exists an infinite class (up to
isomorphism) of K -algebras (of the form LK (EX )) which are von
Neumann regular and prime, but not primitive.

Remark: These examples are also “Cohn path algebras”.
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Application to Kaplansky’s question

For these graphs E , embedding LK (E ) in LK (E )1 in the usual way
gives unital, regular, prime, not primitive algebras. So we get

Theorem: For any field K , there exists an infinite class (up to
isomorphism) of unital K -algebras (of the form LK (EX )1) which
are von Neumann regular and prime, but not primitive.

Remark: The algebras LK (EX )1 are never Leavitt path algebras.
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Application to Kaplansky’s question

A different construction of germane graphs:

Let κ > 0 be any ordinal. Define Eκ as follows:

E 0
κ = {α | α < κ}, E 1

κ = {eα,β | α, β < κ, and α < β},

s(eα,β) = α, and r(eα,β) = β for each eα,β ∈ E 1
κ .

Suppose κ has uncountable cofinality. Then Eκ is downward
directed, and has Condition (L), but does not have CSP. This gives:

Theorem: If {κi | i ∈ I} is a set of ordinals having distinct
cardinalities, for which each κi has uncountable cofinality, then the
set {LK (Eκi ) | i ∈ I} is a set of nonisomorphic K -algebras, each of
which is von Neumann regular, and prime, but not primitive.
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Primitive graph C∗-algebras

An intriguing connection:

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then C ∗(E ) is primitive if and only if

1 E is downward directed,

2 E satisfies Condition (L), and

3 E satisfies the Countable Separation Property.

... if and only if LK (E ) is primitive for every field K .

This theorem yields an infinite class of examples of prime,
nonprimitive C∗-algebras.

Proofs of the sufficiency direction for LC(E ) and C ∗(E ) results are
dramatically different.
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Questions?
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