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-
The monoid V(R)

All rings are unital.  Z* denotes {0,1,2,...}.

For any ring R, V(R) denotes the isomorphism classes of finitely
generated projective (left) R-modules.

With operation @&, V(R) becomes an abelian monoid.

In V(R), [R] is distinguished:

For each [P] € V(R) there exists [P'] € V(R) and n € N for
which [P] @ [P'] = n[R].
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-
The monoid V(R)

Example. R = K, a field. Then V(R) 2 Z*. ([R] — 1)

Example. S = My(K), K a field. Then V(S) = Z™.
([5] = d)
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-
The monoid V(R)

Example. R = K, a field. Then V(R) 2 Z*. ([R] — 1)

Example. S = My(K), K a field. Then V(S) = Z™.
([5] = d)

Remarks:

(1) Given a ring R, it is in general not easy to compute V(R).

(2) The Grothendieck group Ko(R) of R is the universal group of
the monoid V(R).
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The monoid Mg

All graphs E = (E°, EY, s, r) are finite and directed.

1. A cycle °
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The monoid Mg

All graphs E = (E°, EY, s, r) are finite and directed.

1. A cycle °

2. An exit for a cycle.
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R
The monoid Mg

Associate to E the abelian monoid (Mg, +) as follows.

YE denotes the free abelian monoid on the set {a, | v € E°}.
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R
The monoid Mg

Associate to E the abelian monoid (Mg, +) as follows.
YE denotes the free abelian monoid on the set {a, | v € E°}.
Define relations R in Yg by setting:
e Y a
{els(e)=v}

(for any vertex v which emits at least one edge).
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R
The monoid Mg

Associate to E the abelian monoid (Mg, +) as follows.
YE denotes the free abelian monoid on the set {a, | v € E°}.
Define relations R in Yg by setting:
= D e
{els(e)=v}
(for any vertex v which emits at least one edge).

Then (Mg, +) is defined to be the quotient Yg/R.
So elements of Mg are of the form

Mg = {[Z nyay]}
veED
with n, € Z* for all v € E°.
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The monoid Mg

For notational convenience we often denote a, € Yg simply by v.
So ME is typically written as:

ME is the free abelian monoid on E°, subject to the relations

v= Z r(e)

{els(e)=v}

(for any vertex v which emits at least one edge).

Note: de = [Y,cpo v] is a distinguished element in ME.
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The monoid Mg

Example. Let F be the graph

ky / \\\4\

V2

So ME consists of elements {n1vy + mpvo + n3v3} (n; € Z7T),

subjectto R: w1 =w+Vv3; o =Vv1 +Vv3; V3 = V] + V.
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The monoid Mg

Example. Let F be the graph

ky / \\\4\

V2

So ME consists of elements {n1vy + mpvo + n3v3} (n; € Z7T),
subjectto R: w1 =w+Vv3; o =Vv1 +Vv3; V3 = V] + V.

It's not hard to get:
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The monoid Mg

Example. Let F be the graph

ky / \\\4\

V2

So ME consists of elements {n1vy + mpvo + n3v3} (n; € Z7T),

subjectto R: w1 =w+Vv3; o =Vv1 +Vv3; V3 = V] + V.

It's not hard to get: Me ={[0], [wv1], [vo], [v3], [vi +vo+ v3]}.
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The monoid Mg

Example:
y3

S Y2
E=R,= %n

Then Mg is the set of symbols of the form

nv (n€ezZ")

subject to the relation: v = mv
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The monoid Mg

Example:
y3

S Y2
E=R, = %n

Then Mg is the set of symbols of the form
nv (n€ezZ")

subject to the relation: v = mv

So here, Mg = {[0],[v], 2[V], ..., (m — 1)[v]}.
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Bergman's Theorem
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Bergman's Theorem (one of MANY)
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Bergman's Theorem (one of MANY)

conical monoid: x+y =0& x=y =0.
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Bergman's Theorem (one of MANY)

conical monoid: x+y =0& x=y =0.

Theorem

(George Bergman, Trans. A.M.S. 1975)

Given a field K and finitely generated conical monoid
M = (Z*)"/R containing a distinguished element d, there exists a
universal K-algebra B = Bk (M, R, d) for which V(B) = M, and
for which [B] — d under this isomorphism.

The construction is explicit, uses amalgamated products.
(Fin. gen. hypothesis eliminated by Bergman / Dicks, 1978)
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The Bergman algebra of a finite directed graph

We put these two ideas together.

Let E be a finite directed graph and K any field. Form the (finitely
generated, conical) monoid Mg as a quotient of (Z)E’l, modulo
the relations given above. Let de = [} o v] be the specified
distinguished element of Mg.

Let B = Bk (Mg, dg) be the corresponding Bergman algebra.
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The Bergman algebra of a finite directed graph

We put these two ideas together.

Let E be a finite directed graph and K any field. Form the (finitely
generated, conical) monoid Mg as a quotient of (Z)E’l, modulo
the relations given above. Let de = [} o v] be the specified
distinguished element of Mg.

Let B = Bk (Mg, dg) be the corresponding Bergman algebra.

Definition. We call Bx(MEg, dg) the Leavitt path algebra of E
with coefficients in K, denoted Lk (E).
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General ring-theoretic questions about Lk(E)

An explicit description of Lk (E) via generators and relations is
available.

Using it, we can determine necessary and sufficient conditions on E
which yield that Lk (E) is, for instance,

simple

purely infinite simple

von Neumann regular

primitive

lots more ...
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More ring-theoretic questions about Lk(E)
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More ring-theoretic questions about Lk (E) ...

. specifically, questions which can be interpreted as properties of
V(Lk(E)) ...
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More ring-theoretic questions about Lx(E) ...

. specifically, questions which can be interpreted as properties of
V(Lk(E)) ...
R has Invariant Basis Number if RR™ =2 gR" < m = n.

R has Unbounded Generating Number if RR™ = grR" ® P =
m > n.

(R is directly finite if xy =1 = yx = 1.)

R is stably finite if M,(R) is directly finite for all n € N.
This is equivalent to: R"Z R"d K = K =0.

R is cancellative if for any finitely generated projective left
R-modules P,P'.Q, P& Q=P &Q = PP
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Results about Leavitt path algebras ...
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Results about Leavitt path algebras ...

. without the Leavitt path algebras (?!)

Find those graphs E for which Lk (E):
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Results about Leavitt path algebras ...

. without the Leavitt path algebras (?!)

Find those graphs E for which Lk (E):

has Invariant Basis Number (IBN)
i.e., for which ndg = mdgin Mg = m=n
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Results about Leavitt path algebras ...

. without the Leavitt path algebras (?!)

Find those graphs E for which Lk (E):

has Invariant Basis Number (IBN)
i.e., for which ndg = mdgin Mg = m=n
has Unbounded Generating Number (UGN)
i.e., for which mdg =ndeg +xin Mg = m>n

Gene Abrams University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



Results about Leavitt path algebras ...

. without the Leavitt path algebras (?!)

Find those graphs E for which Lk (E):

has Invariant Basis Number (IBN)
i.e., for which ndg = mdgin Mg = m=n
has Unbounded Generating Number (UGN)
i.e., for which mdg =ndeg +xin Mg = m>n

is stably finite, cancellative, ...

i.e., for which ....
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Leavitt path algebras with Unbounded Generating Number

Gene Abrams University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



Leavitt path algebras with Unbounded Generating Number

Note: If R and S are Morita equivalent unital rings, then
V(R) = V(S); but in general [R] 4 [S] under such an
isomorphism.
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Leavitt path algebras with Unbounded Generating Number

Note: If R and S are Morita equivalent unital rings, then
V(R) = V(S); but in general [R] 4 [S] under such an
isomorphism.

Nonetheless,

Theorem. (P. Ara) The UGN property is a Morita invariant.
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Leavitt path algebras with Unbounded Generating Number

Note: If R and S are Morita equivalent unital rings, then
V(R) = V(S); but in general [R] 4 [S] under such an
isomorphism.

Nonetheless,

Theorem. (P. Ara) The UGN property is a Morita invariant.

Proof: Prove a result about commutative monoids: if some
distinguished element in M has the UGN property, then every
distinguished element in M has the UGN property.

Clever (but not hard ...)
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Leavitt path algebras with Unbounded Generating Number

Note: If R and S are Morita equivalent unital rings, then
V(R) = V(S); but in general [R] 4 [S] under such an
isomorphism.

Nonetheless,

Theorem. (P. Ara) The UGN property is a Morita invariant.

Proof: Prove a result about commutative monoids: if some
distinguished element in M has the UGN property, then every
distinguished element in M has the UGN property.

Clever (but not hard ...)

Is this in the literature?
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Some pieces of the puzzle

Proposition: If R = S; @& S, (as rings), and one of S; or S, has
UGN, then R has UGN.
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Some pieces of the puzzle

Proposition: If R = S; @& S, (as rings), and one of S; or S, has
UGN, then R has UGN.

Proposition: If E has an isolated vertex, then Lk(E) has UGN.
Proof: Then Lk(E) has a ring direct summand isomorphic to K.
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Some pieces of the puzzle

Proposition: If R = S; @& S, (as rings), and one of S; or S, has
UGN, then R has UGN.

Proposition: If E has an isolated vertex, then Lk(E) has UGN.
Proof: Then Lk(E) has a ring direct summand isomorphic to K.

Proposition: (Ara / Rangaswamy) If E contains a source vertex
v, and v is not isolated, then Lx(E) and Lk (E \ {v}) are Morita
equivalent.

Proof: Can show Lk (E \ {v}) is a full corner in Lx(E).
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Key observation

Corollary: Start with E. Do a sequence of source eliminations
E:Eo—)E1—>~-—>Et_1—>Et:Esf

where E is source-free.

If some E; contains an isolated vertex, then Lx(E) has UGN.

If no E; contains an isolated vertex, then Lx(E) has UGN if and
only if Lx(Esf) has UGN.

Consequently, we have reduced the question to source-free graphs.

Gene Abrams University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



Aside: Lpa's without the Lpa’'s?

The previous propositions were stronger than we needed, but they
were definitely convenient to use (and already on the shelf).
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Aside: Lpa's without the Lpa’'s?

The previous propositions were stronger than we needed, but they
were definitely convenient to use (and already on the shelf).
There are “Leavitt-path-algebra-free” proofs as well.

Gene Abrams University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



Aside: Lpa's without the Lpa’'s?

The previous propositions were stronger than we needed, but they
were definitely convenient to use (and already on the shelf).
There are “Leavitt-path-algebra-free” proofs as well.

Proposition: If w is an isolated vertex in E, then Mg has UGN.

Proof: If m[} cpov] = n[>_, cgov] + [x] in Mg then (because w
is isolated) we get the equation mw = nw + x,, in the free abelian
monoid Yg = (Z)IE°l, which gives m > n.
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Aside: Lpa's without the Lpa’'s?

The previous propositions were stronger than we needed, but they
were definitely convenient to use (and already on the shelf).
There are “Leavitt-path-algebra-free” proofs as well.

Proposition: If w is an isolated vertex in E, then Mg has UGN.

Proof: If m[} cpov] = n[>_, cgov] + [x] in Mg then (because w
is isolated) we get the equation mw = nw + x,, in the free abelian
monoid Yg = (Z)IE°l, which gives m > n.

Proposition: Let w be a source vertex in E. Let F = E \ {w}.
Then Mg = Mg as abelian monoids.

Proof: The “inclusion map” Mg — Mg is a monoid
homomorphism, which can be shown to be injective. Surjectivity
follows because w is a source.
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A key property of Mg

The Confluence Lemma. (Ara / Moreno / Pardo 2007) For each
pair x,y € (ZM)E°l [x] = [y] in Mg if and only if there are
sequences o, o’ such that A,(x) = Ay/(y) in YE.

In other words, we have some control over when two elements in

Yg are equal in Mg, in that we can “forward move” both of them
to the same place.
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The foundational result

Definition. A source cycle c in a graph E is a cycle for which, for
each vertex v in ¢, the only edge that v receives is the preceding
edge in c.

(i.e., a cycle with no entrances?)

Theorem. (A-, Nam, Phuc) Let E = (E°, EL, r, s) be a finite
source-free graph and K any field. Then Lk(E) has Unbounded
Generating Number if and only if E contains a source cycle.
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|dea of proof: source cycle implies UGN

We denote E® by {v1, va, ..., v}, in such a way that the non-sink
vertices of E appear as vy, ..., ;.

Assume that E contains a source cycle c; show that Lk (E) has
UGN. Let m and n with

m[Y1 vl + X = n[h, vl in Me

for some [x] € Mg. We must show that m < n.
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|dea of proof: source cycle implies UGN

Write x € Yg as x = Zf’zl n;vi, with n; € Z+.

By the Confluence Lemma and there are two sequences o and o’
taken from {1, ..., z} for which

h h
Ao (D (m+ni)vi) =7 =Nor(n) i)
i=1 i=1
for some v € YE.
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|dea of proof: source cycle implies UGN

But each time a substitution corresponding to vertex j is made to
an element of Yg, the effect on that element is to:

(i) subtract 1 from the coefficient on vj;
(i) add ajj to the coefficient on v; (for 1 < i < h).

For each 1 < j < z, denote the number of times that M; is invoked
in Ay (resp., Ayr) by kj (resp., k7).
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|dea of proof: source cycle implies UGN

Recalling the previously observed effect of M; on an element of Y,
we see that

7= A (m+ mi)vi)
= ((m +ny — kl) + a1tk + aniko + ...+ azlkz)vl
+((m+ n — ko) + aioky + axko + ... + axk;)vo
+((m+ ny — k;) + a1k + agzko + ... + azkz) v
+((M + nz41) + a4kt + axzy1yke + o F Az (z1)ke)Vara
+((m+ np) + ainky + acnko + ... + aznk;)vp.
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|dea of proof: source cycle implies UGN

On the other hand, we have

h
v = No(ndiigvi)
= ((n — k{) + allk{ + 321ké + ...+ azlk;)vl
+ ((n — ké) + 312/(1 + azgké + ...+ azgk;)VQ
4+ .
+ ((n— K.) + a1k] + ao kb + ... + az kL) v,
+(n + a4k + ks + oo+ Az k) vzt
4+ .
+ (n + alhk{ + azhké + ...+ azhk;)vh.
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|dea of proof: source cycle implies UGN

For each 1 < i < z, define m; := k,f — ki. Then equating
coefficients on the free generators {v; | 1 < i < h} of Yk, we get
the following system of equations in Z™:

m—n-+n
m—n-+ny
m—n-+n,

m—n+4 nziq

m— n+ ny

Gene Abrams

(a1y — 1)my + apimo + ... 4+ az1m,
aromy + (a2 — 1)ma + ... + a,om;

aizmy + az;my + ... + (azz - 1)mz
a(z+1)M + A(z41)M2 +ot Az(z41)Mz

aipmi + apm + ... + a;pym;

University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



|dea of proof: source cycle implies UGN

By hypothesis c is a source cycle in E, i.e., |[r~1(v)| = 1 for all
v € c®. By renumbering vertices if necessary, we may assume
without loss of generality that c® = {vi, ..., v,}. The condition
|r=1(v)| = 1 then yields:

-ajjp1=1for1<i<p-1;

-ap1 =1
-aj,,-+1:0for1§f§P—13ndf7éi(1§j§h);and
~aj1=0ifj#p (1<j<h).
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|dea of proof: source cycle implies UGN

If p=1 (i.e., if cis a loop), then a;; = 1, and first equation in the
system becomes

m—n+n1:(1—1)m1+0m2+~-+0mz:0,

som—n=—n <0, ie, m<n.
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|dea of proof: source cycle implies UGN

If p> 2, then using the noted information about the a;;, the first
p equations of the system can be written as:

m—n+mnm = —m +mp
m—-—n—+n = my —mp

m-—n-+n3 = my —m3

m-—n+n, = Mp_1 —mp

Then adding both sides yields that p(m — n) 4+ (n1 + ... + np) =0,
so that p(m — n) = —(n1 + ... + np) < 0, which gives m < n.
Therefore, Lx(E) has Unbounded Generating Number.
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-
|dea of proof of converse: no source cycle implies NOT
UGN

First prove a Lemma about various configurations of cycles in E
which is implied by no source cycles.

Then do another analysis of the elements in Mg by analyzing a
system of linear equations in Z*.

University of Colorado @ Colorado Springs
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|dea of proof of converse: no source cycle implies NOT
UGN

First prove a Lemma about various configurations of cycles in E
which is implied by no source cycles.

Then do another analysis of the elements in Mg by analyzing a
system of linear equations in Z*.
In fact we can show more:

If E has no source cycles, then for €very pair m > n we can find
[x] € Mg for which

m[z v+ [x] = n[z v].

veEo veE®
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UGN property for Lk (E)

So we have a graph-theoretic condition equivalent to Li(E) having
the UGN property.
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Summary of properties of V(R)

Invariant Basis Number
Unbounded Generating Number

stably finite

cancellative

In general, these get stronger ...
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Additional properties of V(Lx(E))

Proposition: (Lia Va3) For a Leavitt path algebra R = Lx(E)
the following are equivalent:

R is directly finite

R is stably finite

R is cancellative

R is one-sided Noetherian
No cycle in E has an exit.

Also equivalent to: R is Hermite
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Examples

Example (1) IBN, but not UGN. Let G be the graph

-

o T oY
O
Lk (G) does NOT have UGN by the theorem.
Note: [x] = [2x + 2y] gives [x + y] = 2[x + y] + [v].

But easy computation gives that any equation of the form
n[x + y] = m[x + y| in Mg necessarily gives m = n.
(The one relation x = 2x + 2y, applied to an element of Y of
the form t = nx + ny, will either yield t itself, or an element
t' = ix + jy for which i # j.)
So Lk(G) DOES have IBN.
(OR: Lk(G) = Ck(G’) for some G’, then use a theorem.)
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Examples

Example (2) UGN, but not directly finite (etc ...)
Consider the Toeplitz graph

7- = C e —— 0
Lk(E) has UGN by the theorem.

However, Lx(E) = K(X,Y | XY = 1) is not directly finite
(“Jacobson algebra”).
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What about IBN for Leavitt path algebras?

Suppose |E°| = n.

Nam and Phuc have found a nice condition involving the matrix
Ag — I, which is equivalent to Lk (E) having IBN.

But they have not yet found a nice graphical condition.

Gene Abrams University of Colorado @ Colorado Springs

The Unbounded Generating Number property for the Bergman algebra of a directed graph



Questions?
[ ]
Questions?
Thanks to the Simons Foundation.
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