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Brief history

There are “naturally occurring” algebras for which

RR i ∼= RR j for some i 6= j ,

e.g., EndK (K (N))

(Here RR i ∼= RR j for all i 6= j .)

Does there exist R with, e.g., RR1 ∼= RR3 but RR1 � RR2?
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Leavitt algebras

Theorem

(Bill Leavitt, Trans. A.M.S., 1962)

For every m, n ∈ N and field K there exists R = LK (m, n) with

RRm ∼= RRn, and all isomorphisms between free left R-modules
result precisely from this one.
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Leavitt algebras

The m = 1 case of Leavitt’s Theorem is not too surprising:

RR1 ∼= RRn if and only if there exist

(y1, y2, ..., yn) and


x1
x2
...

xn

 ∈ Rn,

for which

(y1, y2, ..., yn)


x1
x2
...

xn

 = 1 and


x1
x2
...

xn

 (y1, y2, ..., yn) = In
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Leavitt algebras

Then LK (1, n) is the quotient

K < X1,X2, ...,Xn,Y1,Y2, ...,Yn > / < (
n∑

i=1

yixi )−1K ; xiyj−δi ,j1K >
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Turns out:

Theorem

(Leavitt, Duke J. Math, 1964)

For every field K and n ≥ 2, LK (1, n) is simple.

(On the other hand, for m ≥ 2, LK (m, n) is not simple.)
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General path algebras

Let E be a directed graph. E = (E 0,E 1, r , s)

•s(e) e // •r(e)

The path algebra KE is the K -algebra with basis {pi} consisting of
the directed paths in E . (View vertices as paths of length 0.)

s(e) · e = e = e · r(e).

Note: E 0 finite ⇔ KE is unital; then 1KE =
∑

v∈E0 v .

Gene Abrams University of Colorado UCCS
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:

E = •t •u
h

~~
•v

e

>>

f
//

g

==•w
i
QQ j

// •x

Ê = •t
e

��

•u
h

h∗~~
•v

e∗
>>

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at those vertices v which are not sinks, and which emit only

finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Construct the path algebra K Ê . Consider these relations in K Ê :
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:

Ê = •t
e

��

•u
h

h∗~~
•v

e∗
>>

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW

ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w hh∗ = u ff ∗ = ... (no simplification)

But ... (ff ∗)2 = f (f ∗f )f ∗ = f · w · f ∗ = ff ∗
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n).

The connection is clear, denote y∗i by xi .
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Some graph theory

Graph theory:

1. A cycle •a

x

DD•b

y

��

2. An exit for a cycle.

•a

x

DD•b

y

��
z // •c or •a

x

DD•b

y

��
e

vv

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Some graph theory

Graph theory:

1. A cycle •a

x

DD•b

y

��

2. An exit for a cycle.

•a

x

DD•b

y

��
z // •c or •a

x

DD•b

y

��
e

vv

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Some graph theory

3a. connects to a vertex.

•u // •v // •w ( also •w )

3b. connects to a cycle.

•a

x

DD•b

y

��
•c

f
oo
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Simplicity of Leavitt path algebras

Question: For which graphs E and fields K is LK (E ) simple?

Note LK (E ) is simple for

E = • // • // // • since LK (E ) ∼= Mn(K )

and for

and for E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ since LK (E ) ∼= LK (1, n)

but not simple for

E = R1 = •v xff since LK (E ) ∼= K [x , x−1]
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Simplicity of Leavitt path algebras

Theorem

(A -, Aranda Pino, 2005) LK (E ) is simple if and only if:

1 Every vertex connects to every cycle and to every sink in E ,
and

2 Every cycle in E has an exit.

Note: No role played by K .

Gene Abrams University of Colorado UCCS
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Other ring-theoretic properties of Leavitt path algebras

We know precisely the graphs E for which LK (E ) has these
properties:

1 (one-sided) artinian; (one-sided) noetherian

2 (two-sided) artinian; (two-sided) noetherian

3 exchange, prime, primitive, von Neumann regular

4 stable rank, GK dimension

(No role is played by K in any of these.)

Gene Abrams University of Colorado UCCS
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Purely infinite simplicity

An idempotent e ∈ R is purely infinite if Re = Rf ⊕ Rg with f , g
nonzero idempotents, and Re ∼= Rf .

Example: e = 1 in R = LK (1, 2), since R ∼= R ⊕ R.

R is purely infinite simple in case R is simple, and every nonzero
left ideal contains an infinite idempotent.

(⇔ R is not a field, and ∀x 6= 0 ∃ α, β with αxβ = 1.)

Gene Abrams University of Colorado UCCS
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Purely infinite simplicity

Theorem: LK (E ) is purely infinite simple ⇔ LK (E ) is simple, and
E contains a cycle.

Observation: If c is a cycle based at vertex v , and e is an exit for c
with s(e) = v , then

LK (E )v = LK (E )cc∗ ⊕ LK (E )(v − cc∗).

Easily LK (E )v ∼= LK (E )cc∗, and easily both cc∗ and v − cc∗ are
idempotents, and easily cc∗ 6= 0.

That v − cc∗ 6= 0 follows since e is an exit for c : otherwise,

0 = v − cc∗ ⇒ 0 = 0e = ve − cc∗e = e − 0 = e,

a contradiction.

Gene Abrams University of Colorado UCCS
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The monoid V(R)

Isomorphism classes of finitely generated projective (left)
R-modules, with operation ⊕, denoted V(R). (Conical) monoid.
[R] is a ‘distinguished’ element in V(R).

E.g., V(K ) ∼= Z+. Also: V(Md(K )) ∼= Z+.

Theorem

(George Bergman, Trans. A.M.S. 1975) Given a field K and
finitely generated conical abelian monoid with a distinguished
element, there exists a universal K -algebra R for which V(R) ∼= S.

The construction is explicit, uses amalgamated products.
(Fin. gen. hypothesis eliminated by Bergman / Dicks, 1978)
Bergman included the algebras LK (m, n) as examples of these
universal algebras.

Gene Abrams University of Colorado UCCS
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The monoid V(LK (E ))

For any graph E construct the free abelian monoid ME .

generators E 0 relations v =
∑

r(e)=w

w

Using Bergman’s construction,

Theorem

(Ara, Moreno, Pardo, Alg. Rep. Thy. 2007)

For any field K ,
V(LK (E )) ∼= ME .

Gene Abrams University of Colorado UCCS
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The monoid V(LK (E ))

Nontrivial (but maybe nonsurprising) consequence:
Let S denote LK (1, n). Then

V(S) = {0, S , S ⊕ S , ...,

n−1 copies︷ ︸︸ ︷
S ⊕ S · · · ⊕ S}

Note: V(S) \ {0} ∼= Zn−1.

(The ’new’ identity element is S ⊕ S · · · ⊕ S (n − 1 copies). )

Gene Abrams University of Colorado UCCS
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The monoid V(LK (E ))

Example.
A1

�� %%
A3

EE

22 A2rr

ee

ME = {z ,A1,A2,A3,A1 + A2 + A3}

ME \ {z} ∼= Z2 × Z2.
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The monoid V(LK (E ))

Theorem

V(LK (E )) \ {0} is a group if and only if LK (E ) is purely infinite
simple. In this case V(LK (E )) \ {0} is K0(LK (E )).

Remarks:

1 Leavitt actually showed that LK (1, n) is purely infinite simple.

2 Proof of (⇐) is by Ara / Goodearl / Pardo (holds for any
purely infinite simple ring); other direction is by E. Pardo.

3 Note V(Md(K )) \ {0} = N, not a group.
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Connections and Applications: C∗-algebras

Theorem

(Joaquim Cuntz, Comm. Math. Physics, 1977) There exist simple
C∗-algebras {On|n ∈ N} generated by partial isometries.

Subsequently, a similar construction was produced of a C∗-algebra
C ∗(E ), for any graph E . In this context, On

∼= C ∗(Rn).

For any graph E , LC(E ) ⊆ C ∗(E ) as a dense ∗-subalgebra.

(But C ∗(E ) is usually “much bigger” than LC(E ).)

In particular, LC(1, n) ⊆ On for all n.
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Connections and Applications: C∗-algebras

Properties of C∗-algebras. These typically include topological
considerations.

1 simple

2 purely infinite simple

3 stable rank, prime, primitive, exchange, etc....

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Connections and Applications: C∗-algebras

Properties of C∗-algebras. These typically include topological
considerations.

1 simple

2 purely infinite simple

3 stable rank, prime, primitive, exchange, etc....

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Connections and Applications: C∗-algebras

For many properties ...

LC(E ) has (algebraic) property P ⇐⇒
C ∗(E ) has (topological) property P.

... if and only if LK (E ) has (algebraic) property P for every field K .

... if and only if E has some graph-theoretic property.

Still no good understanding as to Why.

Recently: Although O2 ⊗O2
∼= O2, it turns out that

LC(1, 2)⊗ LC(1, 2) � LC(1, 2).
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Connections and Applications: C∗-algebras

The Leavitt path algebra side has made contributions to the graph
C∗-algebra side.

Observation: Let R = LC(1, 4). So RR ∼= RR4. So R ∼= M4(R).

Are there other isomorphisms between matrix rings over R?

Yes, for example R ∼= M2(R) also.
(It is not hard to find an explicit isomorphism.)

But, for example, R � M3(R). (Leavitt already knew this.)
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Connections and Applications: C∗-algebras

Question(s):

1. For what n, d do we have LC(1, n) ∼= Md(LC(1, n))?

2. For what n, d do we have On
∼= Md(On)?

Answer(s):

2. (Kirchberg / Phillips, 2000) ... ⇔ g.c.d.(d , n − 1) = 1.
(This uses powerful tools; and no explicit isomorphism is given.)

1. (A -, Ánh, Pardo, 2008) ... ⇔ g.c.d.(d , n − 1) = 1.
Isomorphisms are explicitly given. This implies the result of
Kirchberg / Phillips, and more.
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Connections and Applications: Higman - Thompson simple
groups

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group (the “Higman-Thompson group”),
denoted G+

n,r . These were introduced by G. Higman in 1974.

Higman knew some conditions regarding isomorphisms between
these groups, but did not have a complete classification.

Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Show that G+
n,r can be realized as an appropriate subgroup

of the invertible elements of Mr (LC(1, n)), and then use the
explicit isomorphisms provided in the A -, Ánh, Pardo result.

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

Connections and Applications: Higman - Thompson simple
groups

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group (the “Higman-Thompson group”),
denoted G+

n,r . These were introduced by G. Higman in 1974.

Higman knew some conditions regarding isomorphisms between
these groups, but did not have a complete classification.

Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Proof. Show that G+
n,r can be realized as an appropriate subgroup

of the invertible elements of Mr (LC(1, n)), and then use the
explicit isomorphisms provided in the A -, Ánh, Pardo result.
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Additional ‘general ring-theoretic results’ from L.p.a.’s

In addition to the previous examples, Leavitt path algebras have
been used to :

1) produce a class of prime, non-primitive von Neumann regular
algebras

2) produce associative algebras for which the corresponding
bracket Lie algebra is simple

3) produce examples of affine algebras having specified behavior of
the radical

4) realize categories of quasi-coherent sheaves as full module
categories

... and more ...

Gene Abrams University of Colorado UCCS

Leavitt path algebras: an introduction, and applications



Introduction and Motivation Algebraic properties Projective modules Connections and Applications

The Algebraic Kirchberg Phillips Question

The Kirchberg / Phillips Theorem, when interpreted in the context
of graph C∗-algebras, yields:

KP Theorem for graph C∗-algebras: Suppose E and F are finite
graphs for which C ∗(E ) and C ∗(F ) are purely infinite simple.
Suppose there is an isomorphism ϕ : K0(C ∗(E ))→ K0(C ∗(F )) for
which ϕ([C ∗(E )]) = [C ∗(F )]. Then C ∗(E ) ∼= C ∗(F )
(homeomorphically).

Notes: (1) This is an existence theorem only, and

(2) the fact that O2 ⊗O2
∼= O2 is invoked in the proof.
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The Algebraic Kirchberg Phillips Question

It turns out that:

1) K0(LK (E )) ∼= K0(C ∗(E )) for any finite graph E .

2) The K0 groups are easily described in terms of the adjacency
matrix AE of E . Let n = |E 0|. View In − At

E as a linear
transformation Zn → Zn. Then

K0(LK (E )) ∼= K0(C ∗(E )) ∼= Coker(In − At
E ).

Moreover, Coker(In − At
E ) can be computed by finding the Smith

normal form of In − At
E .
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The Algebraic Kirchberg Phillips Question

Example: A1

�� %%
A3

DD

11 A2
qq

ee

I3−At
E =

 1 −1 −1
−1 1 −1
−1 −1 1

 , whose Smith normal form is:

1 0 0
0 2 0
0 0 2

 .

Conclude that K0(LK (E )) ∼= Coker(I3 − At
E ) ∼= Z/2Z× Z/2Z.
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The Algebraic Kirchberg Phillips Question

The question becomes: Can information about K0 be used to
establish isomorphisms between Leavitt path algebras as well?

The Algebraic KP Question: Suppose E and F are finite graphs
for which LK (E ) and LK (F ) are purely infinite simple. Suppose
also that there exists an isomorphism ϕ : K0(LK (E ))→ K0(LK (F ))
for which ϕ([LK (E )]) = [LK (F )].

Is LK (E ) ∼= LK (F )?
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Connections to symbolic dynamics

VERY informally:

Some mathematicians and computer scientists have interest in,
roughly, how information “flows” through a directed graph.

Makes sense to ask: When is it the case that information flows
through two different graphs in essentially the same way? “Flow
equivalent graphs”.

(Often cast in the language of matrices.)
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Connections to symbolic dynamics

Example: “Expansion at v”

E

  
•v

>>

  

>>

Ev

��
•v f // •v

∗

>>

  

??

Proposition: If Ev is the expansion graph of E at v , then E and
Ev are flow equivalent. Rephrased, “expansion” (and its inverse
“contraction”) preserve flow equivalence.
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Connections to symbolic dynamics

There are four other ’graph moves’ which preserve flow
equivalence:

out-split (and its inverse out-amalgamation), and

in-split (and its inverse in-amalgamation).

Theorem PS (Parry / Sullivan): Two graphs E , F are flow
equivalent if and only if one can be gotten from the other by a
sequence of transformations involving these six graph operations.
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Connections to symbolic dynamics

Graph transformations may be reformulated in terms of adjacency
matrices.

For an n × n matrix M with integer entries, think of M as a linear
transformation M : Zn → Zn. In particular, when M = In − At

E .

Proposition (Parry / Sullivan): If E is flow equivalent to F , then
det(I − At

E ) = det(I − At
F ).

Proposition (Bowen / Franks): If E is flow equivalent to F , then
Coker(I − At

E ) ∼= Coker(I − At
F ).

Theorem (Franks): Suppose E and F have some additional
properties (irreducible, essential, nontrivial). If

Coker(I −At
E ) ∼= Coker(I −At

F ) and det(I −At
E ) = det(I −At

F ),

then E and F are flow equivalent.

So by Theorem PS, if the Cokernels and determinants match up
correctly, then there is a sequence of “well-understood” graph
transformations which starts with E and ends with F .
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Connections to symbolic dynamics

Proposition: E is irreducible, essential, and non-trivial if and only
if E has no sources and LK (E ) is purely infinite simple.

Theorem: Suppose E is a graph for which LK (E ) is purely infinite
simple. Suppose F is gotten from E by doing one of the six “flow
equivalence” moves. Then LK (E ) and LK (F ) are Morita
equivalent.

In addition, the “source elimination” process also preserves Morita
equivalence of the Leavitt path algebras.

Proof: Show that an isomorphic copy of LK (E ) can be viewed as a
(necessarily full, by simplicity) corner of LK (F ) (or vice-versa).
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Connections to symbolic dynamics

But (recall) that when LK (E ) is purely infinite simple, then
K0(LK (E )) ∼= Coker(I|E0| − At

E ).

Consequently:

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose LK (E )
and LK (F ) are purely infinite simple. If

K0(LK (E )) ∼= K0(LK (F )) and det(I − At
E ) = det(I − At

F ),

then LK (E ) and LK (F ) are Morita equivalent.
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Connections to symbolic dynamics

Using some intricate computations provided by Huang, one can
show the following:

Suppose LK (E ) is Morita equivalent to LK (F ). Further, suppose
there is some isomorphism ϕ : K0(LK (E ))→ K0(LK (F )) for which
ϕ([LK (E )]) = [LK (F )].

Then there is some Morita equivalence
Φ : LK (E )−Mod→ LK (F )−Mod for which Φ|K0(LK (E)) = ϕ.
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Connections to symbolic dynamics

Consequently:

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose LK (E )
and LK (F ) are purely infinite simple. If

K0(LK (E )) ∼= K0(LK (F ))

via an isomorphism ϕ for which ϕ([LK (E )]) = [LK (F )],

and det(I − At
E ) = det(I − At

F ),

then LK (E ) ∼= LK (F ).

‘Restricted’ Algebraic KP Theorem
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Connections to symbolic dynamics

Algebraic KP Question: Can we drop the hypothesis on the
determinants in the Restricted Algebraic KP Theorem?
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Connections to symbolic dynamics

Here’s the “smallest” example of a situation of interest. Consider
the Leavitt path algebras L(R2) and L(E4), where

R2 = •v ff
��

and E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4 ffjj

It is not hard to establish that

(K0(L(R2)), [1L(R2)]) = ({0}, 0) = (K0(L(E4)), [1L(E4)]);

det(I − At
R2

) = −1; and det(I − At
E4

) = 1.

Question: Is LK (R2) ∼= LK (E4)?
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Connections to symbolic dynamics

Some concluding remarks:

1 C ∗(R2) ∼= C ∗(E4); but the isomorphism is NOT given
explicitly, its existence is ensured by “KK Theory”.

2 There have been a number of approaches in the attempt to
answer the Algebraic KP Question: e.g., consider graded
isomorphisms; restrict the potential isomorphisms

3 There are three possible outcomes to the Algebraic KP
Question: NEVER, SOMETIMES, or ALWAYS. The answer
will be interesting, no matter how things play out.
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Conjecture?

Is there an Algebraic KP Conjecture?

Not really.
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Questions?

Thanks to the Simons Foundation
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Connections and Applications: simple Lie algebras arising
from Leavitt path algebras

Definition Write E 0 = {vi | i ∈ I}. For i ∈ I , let εi ∈ Z(I ) be the
usual standard basis vector.

For all j ∈ I let aij denote the number of edges e ∈ E 1 such that
s(e) = vi and r(e) = vj . Define Bi = (aij)j∈I − εi ∈ Z(I ).

Example

•v1
** ** •v2oo

��
•v3
**

==

•v4oo

B1 = (1, 1, 0, 0)− ε1 = (0, 1, 0, 0), B2 = (1, 0, 0, 1)− ε2 = (1,−1, 0, 1),

B3 = (0, 1, 1, 0)− ε3 = (0, 1, 0, 0), B4 = (0, 0, 1, 0)− ε4 = (0, 0, 1,−1).
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Connections and Applications: simple Lie algebras arising
from Leavitt path algebras

Theorem. (A-, Zak Mesyan 2011) Let K be a field, and let E be
a finite graph for which LK (E ) is a nontrivial simple Leavitt path
algebra. Write E 0 = {v1, . . . , vm}. Then

[LK (E ), LK (E )] is simple as a Lie K -algebra

if and only if

(1, . . . , 1) 6∈ spanK{B1, . . . ,Bm}.

Note: Dependence on char(K ) arises here.
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Ring theory reminders

1 R is von Neumann regular in case

∀a ∈ R ∃ x ∈ R with a = axa.

2 R is prime if the product of any two nonzero two-sided ideals
of R is nonzero.

3 R is primitive if R admits a faithful simple left R-module.
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Connections and Applications:
The realization question for von Neumann regular rings

Fundamental problem: (Goodearl, 1994) What monoids M
appear as V(R) for von Neumann regular R?

Theorem: (Ara / Brustenga, 2007) For any row-finite graph E
and field K there exists a von Neumann regular K -algebra QK (E )
for which LK (E ) embeds in QK (E ), and

V(LK (E )) ∼= V(QK (E )).

Corollary: the realization question has affirmative answer for
graph monoids ME .
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Connections and Applications: Kaplansky’s question

Kaplansky, 1970: Is a regular prime ring necessarily primitive?

Answered in the negative (Domanov, 1977), a group-algebra
example.

Theorem. (A-, K.M. Rangaswamy 2010) LK (E ) is von Neumann
regular ⇔ E is acyclic.

Proposition. LK (E ) is prime ⇔ for each pair of vertices u, v in E
there exists a vertex w in E for which u ≥ w and v ≥ w .

Theorem. (A-, Jason Bell, Ranga 2011) LK (E ) is primitive ⇔
1 LK (E ) is prime,
2 every cycle in E has an exit, and
3 there exists a countable set of vertices S in E for which every

vertex of E connects to an element of S .
(Countable Separation Property)
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Connections and Applications: Kaplansky’s question

It’s not hard to find acyclic graphs E for which LK (E ) is prime but
for which C.S.P. fails.

Example: X uncountable, S the set of finite subsets of X . Define
the graph E :

1 vertices indexed by S , and

2 edges induced by proper subset relationship.

Then LK (E ) is regular, prime, not primitive.

Note: Adjoining 1K in the usual way (Dorroh extension by K )
gives unital, regular, prime, not primitive algebras.

Remark: These examples are actually “Cohn algebras”.
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