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General path algebras

Let E be a directed graph. E = (E 0,E 1, r , s)

•s(e) e // •r(e)

The path algebra KE is the K -algebra with basis {pi} consisting of
the directed paths in E . (View vertices as paths of length 0.)

In KE , p · q = pq if r(p) = s(q), 0 otherwise.

In particular, s(e) · e = e = e · r(e).

Note: E 0 is finite ⇔ KE is unital; in this case 1KE =
∑

v∈E0 v .
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:
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Ê = •t
e

��

•u
h

h∗~~||
||
||
||

•v

e∗
>>||||||||

f
//

g

==•w

LL

f ∗tt

g∗

WW
i
QQ
uu

i∗ j
// •x

j∗

WW

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Symbolic dynamics and Leavitt path algebras: The Algebraic KP Question



Leavitt path algebras: Introduction / refresher Some things we know ... Some things we don’t (yet) know ...

Building Leavitt path algebras

Start with E , build its double graph Ê . Example:
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at those vertices v which are not sinks, and which emit only

finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Construct the path algebra K Ê . Consider these relations in K Ê :
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Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w hh∗ = u ff ∗ = ... (no simplification)

But (ff ∗)2 = f (f ∗f )f ∗ = f · r(f ) · f ∗ = ff ∗.
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the classical “Leavitt algebra of order n”.

LK (1, n) is generated by y1, ..., yn, x1, ..., xn, with relations

xiyj = δi ,j1K and
n∑

i=1

yixi = 1K .

Note: A = LK (1, n) has AA ∼= AAn as left A-modules:

a 7→ (ay1, ay2, ..., ayn) and (a1, a2, ..., an) 7→
n∑

i=1

aixi .
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A property of the Leavitt algebras LK (1, n)

Leavitt showed (1964) that LK (1, n) is simple for n ≥ 2.

Actually,
he showed something stronger:

Theorem: For any 0 6= x ∈ LK (1, n) there exists a, b ∈ LK (1, n)
for which axb = 1.

A unital algebra A having this property is called purely infinite
simple.

There is a module-theoretic description of these algebras:

An idempotent e ∈ A is called infinite if there exist NONZERO
idempotents f , g ∈ A for which Ae ∼= Af ⊕ Ag , and for which
Ae ∼= Af .

Proposition: A is purely infinite simple if and only if every
nonzero left ideal of A contains an infinite idempotent.
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Things we know about Leavitt path algebras

The main goal in the early years of the development: Establish
results of the form

LK (E ) has algebraic property P ⇔
E has graph-theoretic property Q.

(Only recently has the structure of K played a role.)
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Things we know about Leavitt path algebras

We know precisely the graphs E for which LK (E ) has these
properties: (No role played by the structure of K in any of these.)

1 simplicity

2 purely infinite simplicity

3 (one-sided) artinian; (one-sided) noetherian

4 (two-sided) artinian; (two-sided) noetherian

5 exchange

6 prime

7 primitive
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Things we know about Leavitt path algebras

Specifically:

Theorem: LK (E ) is purely infinite simple if and only if E has:

1 every vertex in E connects to every cycle of E ,

2 every cycle in E has an exit, and

3 E contains at least one cycle.

So this generalizes Leavitt’s result.
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The monoid V(R), and the Grothendieck group K0(R)

Isomorphism classes of finitely generated projective (left)
R-modules, with operation ⊕, denoted V(R).

(Conical) monoid, with ‘distinguished’ element [R].

Theorem

(George Bergman, Trans. A.M.S. 1975) Given a field K and
finitely generated conical monoid with a distinguished element,
there exists a universal K -algebra R for which V(R) ∼= S.

The construction is explicit, uses amalgamated products.

Bergman included the algebras LK (1, n) as examples of these
universal algebras.
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The monoid V(LK (E ))

For any graph E construct the free abelian monoid ME .

generators E 0; relations v =
∑

r(e)=w

w

Using Bergman’s construction,

Theorem

(Ara, Moreno, Pardo, Alg. Rep. Thy. 2007)

For any field K ,
V(LK (E )) ∼= ME .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Symbolic dynamics and Leavitt path algebras: The Algebraic KP Question



Leavitt path algebras: Introduction / refresher Some things we know ... Some things we don’t (yet) know ...

The monoid V(LK (E ))

For any graph E construct the free abelian monoid ME .

generators E 0; relations v =
∑

r(e)=w

w

Using Bergman’s construction,

Theorem

(Ara, Moreno, Pardo, Alg. Rep. Thy. 2007)

For any field K ,
V(LK (E )) ∼= ME .

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Symbolic dynamics and Leavitt path algebras: The Algebraic KP Question



Leavitt path algebras: Introduction / refresher Some things we know ... Some things we don’t (yet) know ...

The monoid V(LK (E ))

Example.
A1

�� %%
A3

EE

22 A2rr

ee

ME = {z ,A1,A2,A3,A1 + A2 + A3}

ME \ {z} ∼= Z2 × Z2.

Theorem. V(LK (E )) \ {0} is a group if and only if LK (E ) is
purely infinite simple. In this case V(LK (E )) \ {0} is K0(LK (E )).
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Here’s the final slide from my March 2011 UCSD talk ...

What else?

1 LK (E ) ∼= LK (F )⇔ ? ? ?
Flow equivalence ideas come into play.

2 Generalizations to “separated graphs” (Ara / Goodearl)
Focus on V(R). One potential application: find a suitable
“von Neumann regular quotient ring” of the Leavitt path
algebra of a separated graph, use it to extend the class of
realizable monoids.

3 Is LK (1, 2)⊗K LK (1, 2) ∼= LK (1, 2) ?

4 Let R = LK (E ), and assume R simple. When is the Lie
algebra [R,R] simple?
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When is [LK (E ), LK (E )] simple?

(Question 4): Let R = LK (E ), and assume R simple. When is the
Lie algebra [R,R] simple?

This has been answered (joint with Zak Mesyan).

The answer involves E and char(K ).
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Tensor products of Leavitt path algebras

(Question 3): Is LK (1, 2)⊗K LK (1, 2) ∼= LK (1, 2)?

This has been answered in the negative.

THREE different proofs given, independently, in Spring 2011:

1 J. Bell + G. Bergman

2 W. Dicks

3 P. Ara + G. Cortiñas

Ara / Cortiñas showed more: if the tensor product of n nontrivial
Leavitt path algebras is isomorphic to the tensor product of m
nontrivial Leavitt path algebras, then m = n.
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Ara / Cortiñas showed more: if the tensor product of n nontrivial
Leavitt path algebras is isomorphic to the tensor product of m
nontrivial Leavitt path algebras, then m = n.

Gene Abrams University of Colorado @ Colorado SpringsUCCS

Symbolic dynamics and Leavitt path algebras: The Algebraic KP Question



Leavitt path algebras: Introduction / refresher Some things we know ... Some things we don’t (yet) know ...

The realization question for von Neumann regular rings

Question (2): Ara + Goodearl are still working on this.
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The Algebraic KP Question

Question (1): LK (E ) ∼= LK (F )⇔ ? ? ?

It’s fair to say that this question is the Holy Grail for most in the
Leavitt path algebra community.
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1 Leavitt path algebras: Introduction / refresher

2 Some things we know ...

3 Some things we don’t (yet) know ...
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LK (E ) ∼= LK (F )⇔ ? ? ?

There are easy examples to show that different graphs E and F
can produce isomorphic Leavitt path algebras.

Proposition: Suppose E is a finite graph which contains no
(directed) closed paths. Let v1, v2, ..., vt denote the sinks of E . (At
least one must exist.) For each 1 ≤ i ≤ t, let ni denote the
number of paths in E which end in vi . Then

LK (E ) ∼= ⊕t
i=1Mni (K ).

For instance: If

E = • // • // • and F = • // • •oo

then E and F are not isomorphic as graphs, but
LK (E ) ∼= LK (F ) ∼= M3(K ).
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LK (E ) ∼= LK (F )⇔ ? ? ?

Let Rn(d) denote this graph:

•w1 // •w2 // · · · •wd−1 // •v y1ff

y2

ss

y3

��

yn

QQ

Proposition:
LK (Rn(d)) ∼= Md(LK (1, n)).
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LK (E ) ∼= LK (F )⇔ ? ? ?

Recall that A = LK (1, n) has AA ∼= AAn as left A-modules. So, in
particular, A ∼= Mn(A). But then

LK (Rn) ∼= LK (1, n) ∼= Mn(LK (1, n)) ∼= LK (Rn(n)),

so that the Leavitt path algebras of these two graphs are
isomorphic:

•v y1ff

y2

ss

y3

��

yn

QQ and •w1 // •w2 // · · · •wn−1 // •v y1ff

y2

ss

y3

��

yn

QQ
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LK (E ) ∼= LK (F )⇔ ? ? ?

More generally: for what values of n, n′, d , d ′ do we have

LK (Rn(d)) ∼= LK (Rn′(d ′))?

Theorem

(A-, Ánh, Pardo; Crelle’s J. 2008) For any field K ,

Md(LK (1, n)) ∼= Md ′(LK (1, n′)) ⇔

n = n′ and g .c .d .(d , n − 1) = g .c .d .(d ′, n − 1).

(Moreover, we can write down the isomorphisms explicitly.)
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Matrices over Leavitt algebras

Breakthrough came from an analysis of isomorphisms between
more general Leavitt path algebras.

There are a few “graph moves” which preserve the isomorphism
classes of certain types of Leavitt path algebras.

“Shift” and ”outsplitting”.
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Matrices over Leavitt algebras

E = R5 = • eeqq
��
EE mm and R5(3) = • // • // • eeqq

��
EE mm

There exists a sequence of graphs

R5 = E1,E2, ...,E7 = R5(3)

for which Ei+1 is gotten from Ei by one of these two “graph
moves”.

So LK (R5) ∼= LK (E2) ∼= · · · ∼= LK (R5(3)) ∼= M3(R5).

Note: For 2 ≤ i ≤ 6 it is not immediately obvious how to view
LK (Ei ) in terms of a matrix ring over a Leavitt algebra.

Once we parsed out what was happening with this particular set of
moves, we were able to see how to do things in general.
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Application to the theory of simple groups

Brief digression:

Here is an important recent application of the A-, Ánh, Pardo
isomorphism theorem.

For each pair of positive integers n, r , there exists an infinite,
finitely presented simple group G+

n,r . “Higman Thompson groups.”

Higman knew some conditions regarding isomorphisms between
these groups, but did not have a complete classification.
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Application to the theory of simple groups

Theorem. (E. Pardo, 2011)

G+
n,r
∼= G+

m,s ⇔ m = n and g.c.d.(r , n − 1) = g.c.d.(s, n − 1).

Idea of Proof. Show that G+
n,r
∼= Ur (n) (an explicitly described

subgroup of the units of Mr (LK (1, n))), and that the explicit
isomorphisms provided in the A -, Ánh, Pardo result take Ur (n)
onto Us(n).
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Connections and Applications: C∗-algebras

Theorem

(Cuntz, Comm. Math. Physics, 1977) There exist simple
C∗-algebras generated by partial isometries.

Denote by On.

Subsequently, a similar construction was produced of the “graph
C∗-algebra” C ∗(E ), for any graph E . In this context,
On
∼= C ∗(Rn).

For any graph E ,

LC(E ) ⊆ C ∗(E )

as a dense ∗-subalgebra. In particular, LC(1, n) ⊆ On.

(But C ∗(E ) is usually “much bigger” than LC(E ).)
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Connections and Applications: C∗-algebras

Properties of C∗-algebras. These typically include topological
considerations.

1 simple

2 purely infinite simple

3 stable rank, prime, primitive, exchange, etc....
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Leavitt path algebras: Introduction / refresher Some things we know ... Some things we don’t (yet) know ...

Connections and Applications: C∗-algebras

For a vast number of (but not all) properties ...

LC(E ) has (algebraic) property P ⇐⇒
C ∗(E ) has (topological) property P.

... if and only if LK (E ) has (algebraic) property P for every field K .

... if and only if E has some graph-theoretic property.

Still no good understanding as to Why.

Note: O2 ⊗O2
∼= O2.
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The Algebraic Kirchberg Phillips Question

Kirchberg and Phillips (2000) each proved this deep result:

KP Theorem for C∗-algebras: Suppose A and B are C∗-algebras
which are:

1 unital

2 simple

3 purely infinite

4 separable

5 nuclear

6 in the “bootstrap class”

Suppose there is an isomorphism ϕ : K0(A)→ K0(B) for which
ϕ([A]) = [B], and suppose K1(A) ∼= K1(B). Then A ∼= B
(homeomorphically).
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The Algebraic Kirchberg Phillips Question

In the case of graph C∗-algebras, necessarily some of these
hypotheses are automatically satisfied. The KP Theorem becomes:

KP Theorem for graph C∗-algebras: Suppose E and F are finite
graphs for which C ∗(E ) and C ∗(F ) are purely infinite simple.
Suppose there is an isomorphism ϕ : K0(C ∗(E ))→ K0(C ∗(F )) for
which ϕ([C ∗(E )]) = [C ∗(F )]. Then C ∗(E ) ∼= C ∗(F )
(homeomorphically).
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The Algebraic Kirchberg Phillips Question

It turns out that:

1) K0(LK (E )) ∼= K0(C ∗(E )) for any finite graph E .

2) The K1 data for LK (E ) and C ∗(E ) does not necessarily match
up. But: if LK (E ) and LK (F ) are unital purely infinite simple, then

K0(LK (E )) ∼= K0(LK (F )) ⇒ K1(LK (E )) ∼= K1(LK (F )).

3) The K0 groups are easily described in terms of the adjacency
matrix AE of E . Let n = |E 0|. View In − At

E as a linear
transformation Zn → Zn. Then

K0(LK (E )) ∼= K0(C ∗(E )) ∼= Coker(In − At
E ).

Moreover, Coker(In − At
E ) can be computed by finding the Smith

normal form of In − At
E .
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The Algebraic Kirchberg Phillips Question

Example: A1

�� %%
A3

DD

11 A2
qq

ee

I3−At
E =

 1 −1 −1
−1 1 −1
−1 −1 1

 , whose Smith normal form is:

1 0 0
0 2 0
0 0 2

 .

Conclude that K0(LK (E ) ∼= Coker(I3 − At
E ) ∼= Z/2Z× Z/2Z.
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The Algebraic Kirchberg Phillips Question

The question becomes: Can information about K0 be used to
establish isomorphisms between Leavitt path algebras as well?

The Algebraic KP Question: Suppose E and F are finite graphs
for which LK (E ) and LK (F ) are purely infinite simple. Suppose
also that there exists an isomorphism ϕ : K0(LK (E ))→ K0(LK (F ))
for which ϕ([LK (E )]) = [LK (F )].

Is LK (E ) ∼= LK (F )?
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Connections to symbolic dynamics

VERY informally:

Some mathematicians and computer scientists have interest in,
roughly, how information “flows” through a directed graph.

Makes sense to ask: When is it the case that information flows
through two different graphs in essentially the same way? “Flow
equivalent graphs”.

(Often cast in the language of matrices.)
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Connections to symbolic dynamics

Example: “Expansion at v”

E

  @
@@

@@
@@

•v

>>~~~~~~~

  @
@@

@@
@@

@>>~~~~~~~~

Ev

��?
??

??
??

•v f // •v
∗

>>}}}}}}}

  A
AA

AA
AA

A??��������

Proposition: If Ev is the expansion graph of E at v , then E and
Ev are flow equivalent. Rephrased, “expansion” (and its inverse
“contraction”) preserve flow equivalence.
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Connections to symbolic dynamics

There are four other ’graph moves’ which preserve flow
equivalence:

out-split (and its inverse out-amalgamation), and

in-split (and its inverse in-amalgamation).

Theorem PS (Parry / Sullivan): Two graphs E , F are flow
equivalent if and only if one can be gotten from the other by a
sequence of transformations involving these six graph operations.
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Connections to symbolic dynamics

Graph transformations may be reformulated in terms of adjacency
matrices.

For an n × n matrix M with integer entries, think of M as a linear
transformation M : Zn → Zn. In particular, when M = In − At

E .

Proposition (Parry / Sullivan): If E is flow equivalent to F , then
det(I − At

E ) = det(I − At
F ).

Proposition (Bowen / Franks): If E is flow equivalent to F , then
Coker(I − At

E ) ∼= Coker(I − At
F ).
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Proposition (Parry / Sullivan): If E is flow equivalent to F , then
det(I − At

E ) = det(I − At
F ).

Proposition (Bowen / Franks): If E is flow equivalent to F , then
Coker(I − At

E ) ∼= Coker(I − At
F ).
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Connections to symbolic dynamics

Theorem F (Franks): Suppose E and F have some additional
properties (irreducible, essential, nontrivial). If

Coker(I −At
E ) ∼= Coker(I −At

F ) and det(I −At
E ) = det(I −At

F ),

then E and F are flow equivalent.

So by Theorem PS, if the Cokernels and determinants match up
correctly, then there is a sequence of “well-understood” graph
transformations which starts with E and ends with F .
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Connections to symbolic dynamics

Proposition: E is irreducible, essential, and non-trivial if and only
if E has no sources and LK (E ) is purely infinite simple.

Theorem: Suppose E is a graph for which LK (E ) is purely infinite
simple. Suppose F is gotten from E by doing one of the six “flow
equivalence” moves. Then LK (E ) and LK (F ) are Morita
equivalent.

In addition, the “source elimination” process also preserves Morita
equivalence of the Leavitt path algebras.

Proof: Show that an isomorphic copy of LK (E ) can be viewed as a
(necessarily full, by simplicity) corner of LK (F ) (or vice-versa).
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Connections to symbolic dynamics

But (recall) that when LK (E ) is purely infinite simple, then
K0(LK (E )) ∼= Coker(I|E0| − At

E ).

Consequently:

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose LK (E )
and LK (F ) are purely infinite simple. If

K0(LK (E )) ∼= K0(LK (F )) and det(I − At
E ) = det(I − At

F ),

then LK (E ) and LK (F ) are Morita equivalent.
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Connections to symbolic dynamics

Using some intricate computations provided by Huang, one can
show the following:

Suppose LK (E ) is Morita equivalent to LK (F ). Further, suppose
there is some isomorphism ϕ : K0(LK (E ))→ K0(LK (F )) for which
ϕ([LK (E )]) = [LK (F )].

Then there is some Morita equivalence
Φ : LK (E )−Mod→ LK (F )−Mod for which Φ|K0(LK (E)) = ϕ.
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Connections to symbolic dynamics

Consequently:

Theorem: (A- / Louly / Pardo / Smith 2011): Suppose LK (E )
and LK (F ) are purely infinite simple. If

K0(LK (E )) ∼= K0(LK (F ))

via an isomorphism ϕ for which ϕ([LK (E )]) = [LK (F )],

and det(I − At
E ) = det(I − At

F ),

then LK (E ) ∼= LK (F ).

‘Restricted’ Algebraic KP Theorem
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Connections to symbolic dynamics

So the Algebraic KP Question can be rephrased:

Algebraic KP Question: Can we drop the hypothesis on the
determinants in the Restricted Algebraic KP Theorem?
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Connections to symbolic dynamics

Here’s the “smallest” example of a situation of interest. Consider
the Leavitt path algebras L(R2) and L(E4), where

R2 = •v ff
��

and E4 = •v1
** ** •v2

�� **
jj •v3

�� **
jj •v4 ffjj

It is not hard to establish that

(K0(L(R2)), [1L(R2)]) = ({0}, 0) = (K0(L(E4)), [1L(E4)]);

det(I − At
R2

) = −1; and det(I − At
E4

) = 1.

Question: Is LK (R2) ∼= LK (E4)?
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Connections to symbolic dynamics

Some concluding remarks:

1 C ∗(R2) ∼= C ∗(E4); but the isomorphism is NOT given
explicitly, its existence is ensured by “KK Theory”.

2 There have been a number of approaches in the attempt to
answer the Algebraic KP Question: e.g., consider graded
isomorphisms; restrict the potential isomorphisms

3 Start with E for which LK (E ) is purely infinite simple. There
is a systematic (easy) way to produce a graph F for which
LK (F ) is purely infinite simple, K0(LK (E )) ∼= K0(LK (F )), but
det(I − At

E ) = −det(I − At
F ). “Cuntz Splice”.

4 There are three possible outcomes to the Algebraic KP
Question: NEVER, SOMETIMES, or ALWAYS. The answer
will be interesting, no matter how things play out.
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Conjecture?

Is there an Algebraic KP Conjecture?

Not really.

More open questions about Leavitt path algebras were generated
at a meeting at BIRS last April.
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Questions?
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