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General path algebras

Let E be a directed graph. E = (E 0,E 1, r , s)

•s(e) e // •r(e)

The path algebra KE is the K -algebra with basis {pi} consisting of
the directed paths in E . (View vertices as paths of length 0.)

In KE , p · q = pq if r(p) = s(q), 0 otherwise.

In particular, s(e) · e = e = e · r(e).

Note: E 0 is finite ⇔ KE is unital; in this case 1KE =
∑

v∈E0 v .
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Building Leavitt path algebras

Start with E , build its double graph Ê .

Example:
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Building Leavitt path algebras

Construct the path algebra K Ê .

Consider these relations in K Ê :

(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at those vertices v which are not sinks, and which emit only

finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K

LK (E ) = K Ê / < (CK 1), (CK 2) >
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Construct the path algebra K Ê . Consider these relations in K Ê :
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(CK1) e∗e ′ = δe,e′r(e) for all e, e ′ ∈ E 1.

(CK2) v =
∑
{e∈E1|s(e)=v} ee∗ for all v ∈ E 0

(just at those vertices v which are not sinks, and which emit only

finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K
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LK (E ) = K Ê / < (CK 1), (CK 2) >

Leavitt path algebras



Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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ee∗ + ff ∗ + gg∗ = v g∗g = w g∗f = 0

h∗h = w hh∗ = u ff ∗ = ... (no simplification)

But (ff ∗)2 = f (f ∗f )f ∗ = f · r(f ) · f ∗ = ff ∗.

Leavitt path algebras



Leavitt path algebras: Examples

Some sample computations in LC(E ) from the Example:
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Leavitt path algebras: Examples

Standard algebras arising as Leavitt path algebras:

E = •v1 e1 // •v2 e2 // •v3 •vn−1
en−1 // •vn

Then LK (E ) ∼= Mn(K ).

E = •v xff

Then LK (E ) ∼= K [x , x−1].
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Leavitt path algebras: Examples

E = Rn = •v y1ff

y2

ss

y3

��

yn

QQ

Then LK (E ) ∼= LK (1, n), the classical “Leavitt algebra of order n”.

LK (1, n) is generated by y1, ..., yn, x1, ..., xn, with relations

xiyj = δi ,j1K and
n∑

i=1

yixi = 1K .

Note: A = LK (1, n) has AA ∼= AAn as left A-modules:

a 7→ (ay1, ay2, ..., ayn) and (a1, a2, ..., an) 7→
n∑

i=1

aixi .
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Things we know about Leavitt path algebras

The main goal in the early years of the development: Establish
results of the form

LK (E ) has algebraic property P ⇔
E has graph-theoretic property Q.

(Only recently has the structure of K played a role.)
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Things we know about Leavitt path algebras

We know precisely the graphs E for which LK (E ) has these
properties: (No role played by the structure of K in any of these.)

1 simplicity

2 purely infinite simplicity

3 (one-sided) artinian; (one-sided) noetherian

4 (two-sided) artinian; (two-sided) noetherian

5 exchange (∗∗)
6 prime

7 primitive
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The monoid V(R), and the Grothendieck group K0(R)

Isomorphism classes of finitely generated projective (left)
R-modules, with operation ⊕, denoted V(R).

(Conical) monoid, with ‘distinguished’ element [R].

Theorem

(George Bergman, Trans. A.M.S. 1975) Given a field K and
finitely generated conical monoid S with a distinguished element I ,
there exists a universal K -algebra R for which V(R) ∼= S, and for
which, under this isomorhpism, [R] 7→ I .

The construction is explicit, uses amalgamated products.

Bergman included the algebras LK (1, n) as examples of these
universal algebras.

Leavitt path algebras



The monoid V(R), and the Grothendieck group K0(R)

Isomorphism classes of finitely generated projective (left)
R-modules, with operation ⊕, denoted V(R).

(Conical) monoid, with ‘distinguished’ element [R].

Theorem

(George Bergman, Trans. A.M.S. 1975) Given a field K and
finitely generated conical monoid S with a distinguished element I ,
there exists a universal K -algebra R for which V(R) ∼= S, and for
which, under this isomorhpism, [R] 7→ I .

The construction is explicit, uses amalgamated products.

Bergman included the algebras LK (1, n) as examples of these
universal algebras.

Leavitt path algebras



The monoid V(LK (E ))

For any graph E construct the free abelian monoid ME .

generators {av | v ∈ E 0}; relations av =
∑

r(e)=w

aw

Using Bergman’s construction,

Theorem

(Ara, Moreno, Pardo, Alg. Rep. Thy. 2007)

For any field K ,
V(LK (E )) ∼= ME .

Under this isomorphism, [LK (E )] 7→
∑

v∈E0 av .
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The monoid V(LK (E ))

Example.
1

�� $$
3

EE

22 2rr

dd

Not hard to show: ME = {z ,A1,A2,A3,A1 + A2 + A3}

Note: ME \ {z} ∼= Z2 × Z2.

So V(LK (E )) \ {0} ∼= Z2 × Z2.

Here LK (E ) 7→ A1 + A2 + A3 = (0, 0) ∈ Z2 × Z2.
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The monoid V(LK (E ))

Example: For each n ∈ N let Cn denote the “directed cycle”
graph with n vertices.

Then it’s easy to show that MCn = Z+, and so MCn \ {0} = N.

So in particular V(LK (Cn)) \ {0} is not a group.
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C∗-algebras

Theorem

(Cuntz, Comm. Math. Physics, 1977) There exist simple
C∗-algebras generated by partial isometries.

Denote by On.

Subsequently, a similar construction was produced of the “graph
C∗-algebra” C ∗(E ), for any graph E . In this context,
On
∼= C ∗(Rn).

For any graph E ,

LC(E ) ⊆ C ∗(E )

as a dense ∗-subalgebra. In particular, LC(1, n) ⊆ On.

(But C ∗(E ) is usually “much bigger” than LC(E ).)
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C∗-algebras

Properties of C∗-algebras. These typically include topological
considerations.

1 simple

2 purely infinite simple

3 stable rank, prime, primitive, exchange, etc....
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C∗-algebras

For a vast number of (but not all) properties ..

LC(E ) has (algebraic) property P ⇐⇒
C ∗(E ) has (topological) property P.

... if and only if LK (E ) has (algebraic) property P for every field K .

... if and only if E has some graph-theoretic property.

Still no good understanding as to Why.

Note: O2 ⊗O2
∼= O2.

But (2011, three different proofs) LK (1, 2)⊗ LK (1, 2) 6∼= LK (1, 2).
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