Leavitt path algebras: An Introduction

UW Algebra Seminar Pre-talk

May 20, 2014

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Leavitt path algebras

General path algebras

Let *E* be a directed graph. $E = (E^0, E^1, r, s)$

$$\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$$

The path algebra KE is the K-algebra with basis $\{p_i\}$ consisting of the directed paths in E. (View vertices as paths of length 0.)

In
$$KE$$
, $p \cdot q = pq$ if $r(p) = s(q)$, 0 otherwise.

In particular,
$$s(e) \cdot e = e = e \cdot r(e)$$
.

Note: E^0 is finite $\Leftrightarrow KE$ is unital; in this case $1_{KE} = \sum_{v \in E^0} v$.

Start with *E*, build its *double graph* \hat{E} .

Start with *E*, build its *double graph* \hat{E} . Example:

Start with *E*, build its *double graph* \hat{E} . Example:

Construct the path algebra $K\widehat{E}$.

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

Leavitt path algebras

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

$$(\mathsf{CK1}) \quad e^*e' = \delta_{e,e'}r(e) \text{ for all } e, e' \in E^1.$$

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for all $v \in E^0$

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1)
$$e^*e' = \delta_{e,e'}r(e)$$
 for all $e, e' \in E^1$.

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for all $v \in E^0$

(just at those vertices v which are not *sinks*, and which emit only finitely many edges)

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

$$(\mathsf{CK1}) \quad e^*e' = \delta_{e,e'}r(e) \text{ for all } e, e' \in E^1.$$

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for all $v \in E^0$

(just at those vertices v which are not *sinks*, and which emit only finitely many edges)

Definition

The Leavitt path algebra of E with coefficients in K

$$L_{K}(E) = K\widehat{E} \ / \ < (CK1), (CK2) >$$

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:

 $h^*h = w$ $hh^* = u$ $ff^* = ...$ (no simplification)

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:

Standard algebras arising as Leavitt path algebras:

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \xrightarrow{\bullet^{v_{n-1}}} \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

$$E = \bullet^{v} \bigcirc x$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Then $L_{\mathcal{K}}(E) \cong \mathcal{K}[x, x^{-1}].$

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \downarrow \\ y_n \end{array}}^{y_3} y_2$$

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$, the classical "Leavitt algebra of order n".

Leavitt path algebras

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{\mathbf{v}} \\ \mathbf{v} \\ \mathbf{y}_n \end{array}}^{y_3} y_2$$

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$, the classical "Leavitt algebra of order n". $L_{\mathcal{K}}(1, n)$ is generated by $y_1, ..., y_n, x_1, ..., x_n$, with relations

$$x_i y_j = \delta_{i,j} \mathbb{1}_K$$
 and $\sum_{i=1}^n y_i x_i = \mathbb{1}_K$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Leavitt path algebras

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \downarrow \\ y_n \end{array}}^{y_3} y_2$$

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$, the classical "Leavitt algebra of order n". $L_{\mathcal{K}}(1, n)$ is generated by $y_1, ..., y_n, x_1, ..., x_n$, with relations

$$x_i y_j = \delta_{i,j} \mathbf{1}_K$$
 and $\sum_{i=1}^n y_i x_i = \mathbf{1}_K$.

Note: $A = L_{\mathcal{K}}(1, n)$ has ${}_{\mathcal{A}}A \cong {}_{\mathcal{A}}A^n$ as left A-modules:

Things we know about Leavitt path algebras

The main goal in the early years of the development: Establish results of the form

$$L_{\mathcal{K}}(E)$$
 has algebraic property $\mathcal{P} \Leftrightarrow E$ has graph-theoretic property \mathcal{Q} .

(Only recently has the structure of K played a role.)

Things we know about Leavitt path algebras

We know precisely the graphs E for which $L_{\mathcal{K}}(E)$ has these properties: (No role played by the structure of \mathcal{K} in any of these.)

イロト 不得 とくほ とくほ とうほう

- simplicity
- 2 purely infinite simplicity
- 3 (one-sided) artinian; (one-sided) noetherian
- 4 (two-sided) artinian; (two-sided) noetherian
- **5** exchange (**)
- 6 prime
- 7 primitive

The monoid $\mathcal{V}(R)$, and the Grothendieck group $\mathcal{K}_0(R)$

Isomorphism classes of finitely generated projective (left) R-modules, with operation \oplus , denoted $\mathcal{V}(R)$.

(Conical) monoid, with 'distinguished' element [R].

The monoid $\mathcal{V}(R)$, and the Grothendieck group $\mathcal{K}_0(R)$

Isomorphism classes of finitely generated projective (left) R-modules, with operation \oplus , denoted $\mathcal{V}(R)$.

(Conical) monoid, with 'distinguished' element [R].

Theorem

(George Bergman, Trans. A.M.S. 1975) Given a field K and finitely generated conical monoid S with a distinguished element I, there exists a universal K-algebra R for which $\mathcal{V}(R) \cong S$, and for which, under this isomorphism, $[R] \mapsto I$.

The construction is explicit, uses amalgamated products.

Bergman included the algebras $L_{\mathcal{K}}(1, n)$ as examples of these universal algebras.

For any graph E construct the free abelian monoid M_E .

generators
$$\{a_v \mid v \in E^0\}$$
; relations $a_v = \sum_{r(e)=w} a_w$

For any graph E construct the free abelian monoid M_E .

generators
$$\{a_v \mid v \in E^0\}$$
; relations $a_v = \sum_{r(e)=w} a_w$

Using Bergman's construction,

Theorem

(Ara, Moreno, Pardo, Alg. Rep. Thy. 2007)

For any field K,

 $\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.$

Under this isomorphism, $[L_{\mathcal{K}}(E)] \mapsto \sum_{v \in E^0} a_v$.

Example.

Leavitt path algebras

Example.

Not hard to show: $M_E = \{z, A_1, A_2, A_3, A_1 + A_2 + A_3\}$

Example.

Not hard to show: $M_E = \{z, A_1, A_2, A_3, A_1 + A_2 + A_3\}$ Note: $M_E \setminus \{z\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. So $\mathcal{V}(L_K(E)) \setminus \{0\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Here $L_K(E) \mapsto A_1 + A_2 + A_3 = (0,0) \in \mathbb{Z}_2 \times \mathbb{Z}_2$.

Example: For each $n \in \mathbb{N}$ let C_n denote the "directed cycle" graph with *n* vertices.

Then it's easy to show that $M_{C_n} = \mathbb{Z}^+$, and so $M_{C_n} \setminus \{0\} = \mathbb{N}$.

So in particular $\mathcal{V}(L_{\mathcal{K}}(C_n)) \setminus \{0\}$ is not a group.

Theorem

(Cuntz, Comm. Math. Physics, 1977) There exist simple C^* -algebras generated by partial isometries.

Denote by \mathcal{O}_n .

Subsequently, a similar construction was produced of the "graph C*-algebra" $C^*(E)$, for any graph *E*. In this context, $\mathcal{O}_n \cong C^*(R_n)$.

イロト 不得 トイヨト イヨト 二日

Theorem

(Cuntz, Comm. Math. Physics, 1977) There exist simple C^* -algebras generated by partial isometries.

Denote by \mathcal{O}_n .

Subsequently, a similar construction was produced of the "graph C*-algebra" $C^*(E)$, for any graph *E*. In this context, $\mathcal{O}_n \cong C^*(R_n)$. For any graph *E*,

$$L_{\mathbb{C}}(E) \subseteq C^*(E)$$

as a dense *-subalgebra. In particular, $L_{\mathbb{C}}(1, n) \subseteq \mathcal{O}_n$.

(But $C^*(E)$ is usually "much bigger" than $L_{\mathbb{C}}(E)$.)

Properties of C*-algebras. These typically include topological considerations.

Properties of C*-algebras. These typically include topological considerations.

- 1 simple
- 2 purely infinite simple
- **3** stable rank, prime, primitive, exchange, etc....

For a vast number of (but not all) properties ...

 $L_{\mathbb{C}}(E)$ has (algebraic) property $\mathcal{P} \iff C^*(E)$ has (topological) property \mathcal{P} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

For a vast number of (but not all) properties ...

$$L_{\mathbb{C}}(E)$$
 has (algebraic) property $\mathcal{P} \iff C^*(E)$ has (topological) property \mathcal{P} .

... if and only if $L_{\mathcal{K}}(E)$ has (algebraic) property \mathcal{P} for every field \mathcal{K} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

For a vast number of (but not all) properties ...

$$L_{\mathbb{C}}(E)$$
 has (algebraic) property $\mathcal{P} \iff C^*(E)$ has (topological) property \mathcal{P} .

... if and only if $L_{\mathcal{K}}(E)$ has (algebraic) property \mathcal{P} for every field \mathcal{K} .

... if and only if E has some graph-theoretic property. Still no good understanding as to Why.

For a vast number of (but not all) properties ...

$$L_{\mathbb{C}}(E)$$
 has (algebraic) property $\mathcal{P} \iff C^*(E)$ has (topological) property \mathcal{P} .

... if and only if $L_{\mathcal{K}}(E)$ has (algebraic) property \mathcal{P} for every field \mathcal{K} .

... if and only if E has some graph-theoretic property. Still no good understanding as to Why.

Note: $\mathcal{O}_2 \otimes \mathcal{O}_2 \cong \mathcal{O}_2$.

For a vast number of (but not all) properties ...

$$L_{\mathbb{C}}(E)$$
 has (algebraic) property $\mathcal{P} \iff C^*(E)$ has (topological) property \mathcal{P} .

... if and only if $L_{\mathcal{K}}(E)$ has (algebraic) property \mathcal{P} for every field \mathcal{K} .

... if and only if E has some graph-theoretic property. Still no good understanding as to Why.

Note: $\mathcal{O}_2 \otimes \mathcal{O}_2 \cong \mathcal{O}_2$. But (2011, three different proofs) $L_{\mathcal{K}}(1,2) \otimes L_{\mathcal{K}}(1,2) \not\cong L_{\mathcal{K}}(1,2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()