
MATH 3670 - SCIENTIFIC COMPUTATION I

Fall 2015

Week 4: Curve Fitting and Interpolation in MATLAB (Chapter 8).
Applications in Numerical Analysis (Chapter 9)

Content
Part I
- Linear Interpolation
- Spline Interpolation
- Polynomial Fitting
- Exponential Fitting
- Review of function calls
- Review of anonymous function usage

Part II
- Solving equations (polynomial, non-polynomial) with one variable
- Find a function’s maximum and minimum
- Usage of plots to help guide function solving

• Homework # 4 (Due Fri, Sept 25):
Chapter 8, pg 290 # 22, 26*, 27
Chapter 9, page 314–315 # 8, 9

Today, we will introduce some powerful techniques for studying discrete data. Quite often,
one performs a series of observations (such as counting bacterial growth each day) which
is an example of discreet data. Sometimes there are pre conceived notions about how the
observed phenomena is expected to behave. For example, population growth often occurs
exponentially (only for a while). One can then see how well a specific experiment’s data
is consistent with conventional ideas about the phenomena. Other times, little is known
about the intrinsic properties of the phenomena. Data fitting and interpolation are tools
that aid in this analysis.

Interpolation and fitting are closely related. However, there are important differences that
influence how and when they are used. Today, we will focus on how to use interpolation and
fitting with discrete data. Roughly, interpolation is an effort to find reasonable data values
between empirically derived discrete data points. Fitting is an effort to find some sort of fit,
typically exponential or polynomial that attempts to describe the observed discrete points.

1. Interpolation

The simplest interpolation strategy is simply to do the equivalent of drawing a straight line
between each point. This is called linear interpolation. For example:

>> n = 11;

>> jdata = linspace(0, pi, n);

>> xdata = 5*cos(jdata);

>> f = @(t) 1./(1+t.^2);

>> ydata = feval(f, xdata);

>> plot (xdata, ydata, ’o’);

Review the above commands:
jdata = vector of length 11 equally spaced points between 0 and pi
xdata = vector of length 11 with values spread between -5 and 5 via a Chebyshev spacing
(the x-axis values of 11 evenly spaced points around a circle)
f = anonymous function that takes a vector t as input (NOTE the ./ for element by element
matrix division)
ydata = vector containing the evaluation of function f at each xdata point.
This plot creates:

Now we will use Matlab’s interp1 function to linearly interpolate between these points:

>> interpx = linspace(-5, 5, 100);

>> popLinear = interp1 (xdata, ydata, interpx, ’linear’);

>> hold on;

>> plot (interpx, popLinear, ’r’);

These commands perform:
interpx = vector of length 100 with values between -5 and 5
popLinear = a vector which is the output of Matlab’s interp1 function. Notice the
inputs:
xdata, ydata represent the discrete data
interpx is the set of xvalues that the interp1 function uses to find the associated y-values
which is the function’s output.
’linear’ is the property (notice it is in literal form) that tells this function that a linear
interpolation is to be performed.

Now, the plot is:

Notice that this looks like line segments were drawn between each discrete data point which
is basically what linear interpolation is.

Now, we will add a spline interpolation:

>> popSpline = interp1 (xdata, ydata, interpx, ’spline’);

>> plot (interpx, popSpline, ’g’);

Notice that the keyword ’spline’ (in quotes) was used so that the interp1 function performed
a spline interpolation. Again, this function’s output (which I named popSpline) consists
of a vector of same length as interpx - the 100 x-values and contains the spline function’s
image values for each of these x-values.
The plot:

Why spline vs. linear?
A typical spline interpolation will fit a 3rd degree polynomial between each successive set
of 4 points. Sometimes this ”looks” better, sometimes not. One must be careful to include
what might be known about the phenomena before blindly using the ”superior” spline
interpolation instead of a linear one. For example, maybe the experimentalist knows that
the data, if anything, should go on the other side of the linear fit in those places where the
green spline line is placed.

One nice thing about the spline is that the results have a smoothly changing first derivative
which is not the case of a linear fit. This is often advantageous when using the interpolated
data as inputs to other applications.

2. Curve Fitting

Curve fitting involves the attempt to find some sort of function that roughly mirrors
(describes) the discrete data. For example, if a temperature reading at a single place was
done every hour for months and then these points were graphed, there would be, at least
in a rough sense, a rise and fall in values based on a 24-hour cycle. There would be many
exceptions, but over the long term, a basic trend would be seen. This cyclic nature might
suggest some sort of trigonometric function could describe this behavior, at least roughly. If
the data sharply deviates from the expected behavior, it could be that temperature at that
location behaves differently than what was expected. Alternatively, it could be due to some
bias associated with that particular location, for example, if the thermometer was heavily
shaded until late afternoon. Curve fitting is a form of looking at the data and seeing if it is

consistent with expectations, or, if the fitting attempts provide more understanding of the
mechanisms that influence the data.

Today, we will look at fitting discrete data exponentially and polynomially. Our example
will involve population counts of bacteria in a medium over time. Population growth is often
exponential in nature, at least for a short time and given certain assumptions such as no
restrictions on resources and no external input or shock to the system. Our example starts
with 8 days (some days are skipped) of counting bacteria colonies in our growth medium,
once per day at the same time each day:

>> figure;

>> dataDays = [10 11 12 13 14 15 19 22];

>> bacterialCount = [4 7 12 12 19 25 76 125]*10^3;

>> plot (dataDays, bacterialCount, ’o’);

dataDays represents the day number in which the observation was made
bacterialCount represents the number of colonies that were observed on each of the above
days. Notice that each value is multiplied by a factor of 1000.
Note that while the time spans from day number 10 to 22, the bacterial count increases
from 4 to 125 (times 1000).
Also note that most of the gains in bacterial count occur near the end of this time period.
Such large changes near one end of sampling often (not necessarily) is indicative of an
exponential nature of change.
The plot is:

Notice the scale of the y-axis.

Now let’s find a ”best” exponential fit. Remember, the basic form of an exponential function
based on some variable has an exponent which is linear:

base^(ax+b)

Notice the exponent ax+b is the basic form of a linear equation. Usually, the base used is
the natural logarithm e.

We will use Matlab’s polyfit function to attempt to find a the best coefficients of the above
equation for a and b:

>> p = polyfit(dataDays, log(bacterialCount), 1);

The inputs to this particular use of polyfit are: dataDays - the discrete data’s x-values
log(bacterialCount): This ”parameter” is actually a call to Matlab’s log function to
take the natural logarithm of the bacterialCount set of values. This is a good example
of a parameter of one function is actually the output of yet another function - a usage of a
function function.
The usage of the log function as a parameter to polyfit tells polyfit to fit an exponential
function instead of a polynomial function.
The last parameter 1 is the degree of polynomial (in this case the degree of the exponent’s
polynomial) to be created.
The output is a 2 element vector which I called p. p(1) represents a and p(2) represents b
in the above exponential equation. So when one uses this output appropriately, the output
of this usage of polyfit is the exponential equation:

e^(p(1)x + p(2))

Now let’s create a denser array of time (x-values) and also an array of y-values representing
the above exponential equation and plot this against our empirically derived data:

>> timeVals = linspace (8, 23, 360);

>> expFit = exp(p(2)) .* exp(p(1).*timeVals);

>> hold on

>> plot(timeVals, expFit);

The vector timeVals has 360 equally spaced elements from 8 to 23 which roughly represents
each hour between day 8 and day 23.
The vector expFit contains the output of the inline function defined on this line.
Notice the usage of the vector p which is the output of the above polyfit function. Also
notice that the timeVals vector was used as the x-values of this function - another usage of
element by element vector multiplication.
The plot of this exponential fit is placed on the original plot of the discrete data:

Notice that the fitted curve does not exactly match the data values. But it is likely (if
polyfit worked properly), this is the best possible exponential fit.
Now, we can use this fit to determine what the bacterial count would have been on a day
not represented by our original data. For practice, we will use an anonymous function to
compute this as opposed to the above inline function usage:

>> a = p(1);

>> b = p(2);

>> expFitFn = @(x, a, b) exp(a*x + b);

>> day25 = expFitFn(25, a, b);

>> fprintf (’According to this exponential fit, the bacterial count on day\n’);

>> fprintf (’25 was %7.0f\n’, day25);

The output of the fprintf statements are:

According to this exponential fit, the bacterial count on day

25 was 356407

IMPORTANT: This number is how many bacteria there would have been on day 25 IF
THIS FUNCTION ACCURATELY DESCRIBED THIS EXPERIMENT’S BEHAVIOR.
If, on day 24, there was a fire or if a lot of new bacteria were introduced or any other reason
why things changed significantly, the actual number would be much different.
ALSO, it is possible that our preconceived notion that this particular exponential func-
tion (or any exponential function) being a good descriptor of the growth phenomena is
fundamentally flawed. The mathematics is correct; the assumption that this particular

mathematical model is a good description of our phenomena may be incorrect.

Now let’s fit this same data with a 3rd degree polynomial. Again, we will use Matlab’s
polyfit function:

>> figure;

>> plot (dataDays, bacterialCount, ’o’);

>> hold on

>> plot(timeVals, expFit);

>> p = polyfit(dataDays, bacterialCount, 3);

>> polyFit = p(1).*timeVals.^3 +...

>> p(2).*timeVals.^2 +...

>> p(3).*timeVals + p(4);

>> plot(timeVals, polyFit, ’r’);

>> title(’plot of bacterial count - exp, poly fits’);

>> leg = legend(’selected day’’s data’,’exponential fit’,’3rd degree polyfit’);

>> rect = [0.15, 0.55, .45, .15];

>> set(leg, ’Position’, rect);

>> xlabel (’ Day number’);

Here, the polyfit function is called using the same dataDays vector (the original day
number each observation was made). But the bacterialCount vector is used as is (as
opposed to calling the log function as part of the polyfit parameter). This tells polyfit to
create a polynomial (instead of an exponential) fit. The last parameter 3 tells the function
to create a 3rd degree polynomial fit.
NOTE: That a 3rd degree polynomial fit is different than the cubic spline we did above -
both use 3rd degree polynomials but different definitions for fitting. (Basically a 3rd degree
fit finds the best 3rd degree polynomial fit for all N data values vs. cubic spline uses a set
of 4 points to fit a 3rd degree polynomial then, the vector is incremented by one so the next
set of 4 points which includes 3 of the previous set of 4 points are used for the next 3rd
degree polynomial. So there are N - 3 different 3rd degree polynomials used to fit the data.)

The output of this call to polyfit is a 4 element vector that I called p. There are 4 elements
because it represents the coefficients of the 3rd degree polynomial it found. To interpret this
vector appropriately, use as:

p(1)*x^3 + p(2)*x^2 + p(3)*x + p(4)

The next line produces a vector called polyFit which is the same length as the vector
timeVals. Each element of timeVals is used as an x-value to a 3rd degree polynomial
using the 4 elements of polyfit output as it’s coefficients.

The above code produces:

At first glance, the polynomial fit (red line) looks a little closer than the exponential fit
(blue line) to the original data (blue circles). But upon closer inspection, the polynomial fit
implies that before day 10, the bacterial count was higher. Even though this is possible (the
experimenter may have killed some before day 10), there is no way for any fitting scheme to
”know” this. If the days prior to day 10 were unremarkable, then each successive day would
have more bacteria than the day before.
IMPORTANT LESSON: even though one can eventually find a polynomial that fits a given
set of data better than an exponential fit, this does not necessarily mean that it is better a
better description of the phenomena. This is especially evident in a case when shortly before
the first observation was made, bacteria counts should be increasing all the time, even if
slowly.
In fact, there is a mathematical theorem that states that for n-data points, there exists a
polynomial of degree n that will exactly ”fit” the data. But this polynomial might also
behave very different for values in between each data point than one would expect the actual
data would be if observed during those in between time spots.
The following fits a 7 degree polynomial to the original data and creates a new figure with
a graph of this 7 degree polynomial superimposed on the original data:

>> figure

>> plot (dataDays, bacterialCount, ’o’);

>> p = polyfit(dataDays, bacterialCount, 7);

>> polyFit = p(1).*timeVals.^7 +...

>> p(2).*timeVals.^6 +...

>> p(3).*timeVals.^5 +...

>> p(4).*timeVals.^4 +...

>> p(5).*timeVals.^3 +...

>> p(6).*timeVals.^2 +...

>> p(7).*timeVals + p(8);

>> hold on

>> plot(timeVals, polyFit, ’g’);

>> leg = legend(’selected day’’s data’,’7 degree poly fit’);

>> title (’ data values with 7 degree poly fit’);

Notice that the fit goes exactly through each data point - in a way, an ”exact fit” to the
original data. However, one would be hard pressed to defend this polynomial as a good
representation of the behavior of this experiment’s bacterial growth. Indeed, the observed
count on day 22 was 125000. This ”perfect fit” then predicts that on day 23, there would
be minus 2.5 million bacteria.

3. Fun With Curve Fitting
(and a powerful way to improve a fit without increasing sampling)

We will now attempt to ”harvest” data points from an image. This will also illustrate some
of Matlab’s input capabilities. We will attempt to click a number of points on the profile
of Mt. Mckinley (do at least 21 of them, more is better), then use polyfit to create a
polynomial of degree 21 that fits the points that were obtained by the user’s cursor position
on each click.

To do this:
- You need to have mountain.jpg in your working Matlab path (i.e. Matlab working
directory).
- When the picture of the mountain appears, better results are obtained if the image is
expanded by grabbing the lower right corner with the cursor and dragging it down and to
the right.
- Click at least 25 points along the profile of the mountain. When finished, hit the enter
key. Then click in Matlab’s command window and hit any key (like space) to ”un pause”
the script execution.
- A red line should then appear on the image that goes through each clicked point (seen as
circles). - More points = better results (usually). If you continue clicking up along the profile
of the closer hillside on the right side of the image, the polynomial fit can get pretty crazy.

>> A=imread(’mountain.jpg’);

>> image(A), axis image, hold on

>> [X,Y]=ginput;

>> plot(X,Y,’o’)

>> save(’mount.mat’,’X’,’Y’)

>> load(’mount.mat’)

>> fprintf(’Number of points sampled (# of mouse clicks): %i\n’, numel(X));

>> N=size(X); N=N(1);

>> plot(X,Y,’ok’), hold on

>> pause

>> Pfit=polyfit(X,Y,21);

>> xplot=linspace(0,max(X),1000);

>> yplot=polyval(Pfit, xplot);

>> plot(xplot, yplot, ’-r’);

>> hold off

The fprintf displays the number of points that were clicked:

Number of points sampled (# of mouse clicks): 34

Here is an image of an attempt I did at home:

Now for a VERY GOOD way to greatly improve the fit WITHOUT increasing the number
of points to sample:
This strategy basically involves sampling more often at the edges and where there is rapidly
changing slopes while keeping the overall number of sampled points constant - i.e. if one is
only allowed to use 34 points, this technique allows for spacing such that results are greatly
improved.
Briefly, the previous attempt involved fitting a polynomial of degree 21 to the (in my case)
34 points sampled.
Now, the x-values of these same points will be modified via a C

¯
hebyshev spacing technique

which can be graphically described as:
Imagine a circle where (in my case) 34 points are equally spaced around it. Then project
these points down to the x-axis - these become the new x-values (after rescaling to fit the
original picture).
Then the original (34) y-values are then modified via the spline method of interp1.

The below code snippet performs this and produces a new image of the fit. Notice that there
are still only 34 sampled positions, however the fit is greatly improved:

figure

image(A), axis image, grid on, hold on

x=X/max(X);

j=linspace(0,pi,numel(X));

xi=cos(j);

yi=interp1(x,Y,(xi+1)/2,’spline’);

fprintf(’Number of points Chebyshev spaced points: %i\n’, numel(xi));

plot((xi+1)/2*max(X),yi,’-ob’)

Number of points Chebyshev spaced points: 34

Here is an image of the improved fit (without increasing number of points):

Part II. Applications in Numerical Analysis

Numerical analysis is the field of mathematics that studies the effective use of computer al-
gorithms for solving scientific problems. While this is a vast subject (which requires several
courses just to get started in it), in the following two labs we highlight some of the applica-
tions of MATLAB, such as solving equations (finding zeros of functions), finding minima or
maxima of a function, numerical integration, and solving ordinary differential equations.

4. Root finding

A central problem in numerical analysis is formulated as follows. Given a real-valued
function f : R → R, find a number r so that f(r) = 0. The number r is called the root or
zero of f . We have already seen two ways to compute roots of polynomials and of symbolic
functions. Let’s briefly recall them.

4.1 Computing roots of polynomials
As we have already seen, polynomials are represented in MATLAB by their coefficients in
the descending order of powers. For instance, the cubic polynomial p(x) = 3x3 + 2x2 − 1 is
represented as

>> p = [3 2 0 1];

Its roots can be found using function roots

>> r = roots(p)

r= -1.0000

0.1667 + 0.5528i

0.1667 - 0.5528i

To check correctness of this result we evaluate p(x) at r using the function polyval.

>> err = polyval(p, r)

err = 1.0e-014 * - 0.6661

- 0.0444 - 0.0722i

- 0.0444 + 0.0722i

The above line of code called Matlab’s polyval function which takes 2 parameters, the first
being a vector of polynomial coefficients; the 2nd being a vector of values to evaluate. This
vector of values that we use here are values returned by the root function that corresponds
to the zeros of our polynomial function represented by the vector p. So the vector returned

by polyval which I chose to name err represents the polynomial evaluation for each element
member of the vector r. If these 2 Matlab functions worked correctly, then the members of
the vector err should be zero. Since the values of err are zero or close to the computer’s
eps value, we infer that the zeros returned by the root function call are indeed zeros of the
polynomial.

To reconstruct a polynomial from its roots one can use the function poly. Using the
roots r computed earlier we obtain

>> poly(r)

ans = 1.0000 0.6667 -0.0000 0.3333

Note that these are the coefficients of p(x) all divided by 3. The coefficients of p(x) can be
recovered easily

>> 3*ans

ans = 3.0000 2.0000 -0.0000 1.0000

4.2 Computing zeros of symbolic functions

A quick (but not always successful way) to evaluate zeros of functions is using the sym-
bolic capabilities of MATLAB. For example, if we want to compute the roots of the same
polynomial p(x) = 3x3 + 2x2 − 1, we can proceed as follows:

>> syms x

>> p=3*x^3 + 2*x^2- 1

>> r=solve(p);

We do not include the output of this operation since it would not fit on this handout.
Typical of symbolic calculations, the zeros are displayed as very long (100 characters or so)
of complex arithmetic. If you use the double command, then you can see the same roots
in numeric format. But this procedure does have it’s disadvantages, since not all equations
can be solved symbolically, as the next example will show.

4.3 Computing zeros of any function

The MATLAB function fzero computes a zero of the function f using user supplied initial
guess of a zero sought. For example let f(x) = cos(x) − x. To see how fzeroworks, let’s
define the function in anonymous format

>> f = @ (x) cos(x)-x ;

The graph below is obtained with the fplot command

>> fplot(f, [0 10])

To compute its zero we use the MATLAB function fzero:

>> format long

>> r = fzero(f, 0.5);

r =

0.739085133215161

The first parameter of the function fzero is the name of the function whose zero is to be
computed. The second argument of fzero is the initial approximation of r. One can check
the last result using the function feval:

>> err = f(r)

err =

0

In the case when a zero of a function is known to be within an interval, one can enter a
two-element vector that designates this interval. In our example we choose [0, 1] as this
interval to obtain

>> r = fzero(f, [0 1])

r=

0.739085133215161

However, this choice of the designated interval

>> fzero(f, [1 2])

generates the error message.

???? Error using ==> fzero The function values at the interval endpoints

must differ in sign.

The above error implies that fzero uses an aspect of the Mean Value Theorem: a zero
can be numerically approximated if an interval is given such that the function evaluation
at the extremes of that interval have opposite signs. If these evaluations are of opposite
signs, a narrower interval can be constructed with this same behavior. This process can be
continued until the interval is within some specified tolerance.

The function fzero can take several optional parameters (for a complete list, see the
help for fzero.) below we illustrate one of them, where all the iterations are displayed.

>> options=optimset(’Display’,’iter’);

>> r=fzero(f, 0.5, options)

Search for an interval around 0.5 containing a sign change:

Func-count a f(a) b f(b) Procedure

1 0.5 0.377583 0.5 0.377583 initial interval

3 0.485858 0.398417 0.514142 0.356573 search

5 0.48 0.406995 0.52 0.347819 search

7 0.471716 0.419074 0.528284 0.335389 search

9 0.46 0.436052 0.54 0.317709 search

11 0.443431 0.459853 0.556569 0.292504 search

13 0.42 0.493089 0.58 0.256463 search

15 0.386863 0.539234 0.613137 0.20471 search

17 0.34 0.602755 0.66 0.129992 search

19 0.273726 0.689045 0.726274 0.0213797 search

21 0.18 0.803844 0.82 -0.137779 search

Search for a zero in the interval [0.18, 0.82]:

Func-count x f(x) Procedure

21 0.82 -0.137779 initial

22 0.726355 0.0212455 interpolation

23 0.738866 0.00036719 interpolation

24 0.739085 -6.04288e-08 interpolation

25 0.739085 2.92788e-12 interpolation

26 0.739085 0 interpolation

Zero found in the interval [0.18, 0.82]

r =

0.739085133215161

5. Finding a minimum or maximum of a function

A very common task in mathematics is to determine the minima and maxima of a function
(either of one variable or several variables). MATLAB has a few powerful ways to do this
without having to go through the derivative (or gradient) computations.

5.1 The fminbnd command
Finds minimum of single-variable function on fixed interval. Let’s consider the following
function.

>> f = @(x) x^3-2*x-3;

>> fplot(f, [0 2])

To compute the x-value corresponding to the minimum point of f in the interval [0, 2], invoke
fminbnd with

xmin = fminbnd(f, 0, 2)

The result is

xmin =

0.8165

which is the x-value corresponding to the minimum point and this minimum value is

fminval = f(xmin)

The result is

fminval =

-4.0887

One can use this command also to find maximum of a function in a single interval.

5.2 The fminsearch command
Finds minimum of unconstrained multivariable function using derivative-free method.
Again, we illustrate this on the following function

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2

which is called the Rosenbrock banana function.

>> banana = @(x) 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval] = fminsearch(banana,[-1.2, 1])

This produces

x =

1.0000 1.0000

fval =

8.1777e-01

What’s remarkable about fminsearch is that it uses an algorithm that does not require
the computation of the derivative, in this case the Nelder – Mead method (also known
as downhill simplex method or amoeba method), which is very effective even in large
dimensions.

A very interesting use of the fminsearch command is in finding solutions of any system of
equations. To illustrate the method, consider a 2× 2 system of the form{

f(x1, x2) = 0

g(x1, x2) = 0

Note that any solution of this system is a minimizer for

min
x1,x2

h(x1, x2) where h(x1, x2) = f(x1, x2)
2 + g(x1, x2)

2

in other words we can replace solving a system of (possibly very) nonlinear equations with
several variables into a minimization problem, for which the Nelder-Mead algorithm can be
effective in finding a solution:

Example: Find the points of intersection between the implicit curve (x2
1+x2

2−1)3−x2
1x

3
2 = 0

and the line x1 + 2x2 = 1
We employ the fminsearch command with the initial guess [1,1]

>> h = @(x) ((x(1)^2+x(2)^2-1)^3-x(1)^2*x(2)^3)^2+(x(1)+2*x(2)-1)^2;

>> fminsearch(h, [1,1])

ans =

1.0004 -0.0002

Note that the actual solution is (1, 0). However, by default, the fminsearch stops after
a certain number of iterations. To get a better approximation, we can change the desired
tolerance:

>> options=optimset(’TolX’, 10^(-10));

>> fminsearch(h, [1,1], options)

ans =

1.0000 -0.0000

Is this the only solution? Numerically, it is impossible to tell how many solutions a nonlinear
system will have, or how many local minimum points a function of two or more variables
will have. Even mathematically this is a difficult problem to solve. In this case, we can
get an idea of how many intersection points these two curves will have by plotting them
(symbolically):

>> syms x1 x2

>> f = (x1^2+x2^2-1)^3-x1^2x2^3;

>> g = x1+2*x2-1;

>> ezplot(f), hold on, ezplot(g)

>> axis([-2 2 -2 2])

)
So obviously the only two solutions are (x1, x2) = (1, 0) found above and (x1, x2) = (−1, 1).
How do we find the second solution? Simply choose a different guess point:

>> fminsearch(h, [-1,-1])

ans =

-1.0000 1.0000

Note that you can also get extraneous solutions by this method, such as if you choose the
initial guess to be [0, 0]:

>> fminsearch(h, [0,0])

ans =

-0.4238 0.7151

This is because the function of two variables that gets minimized has more than two
local minima, as seen from the graph below (more about plotting in 3D in Lab 10).

One could have employed the symbolic solver solve for seeking solutions of the system
above, which would give the following results:

>> [x1star, x2star] = solve(f,g)

x1star =

1

-1

- 54/125 + (3*51^(1/2)*i)/125

- 54/125 - (3*51^(1/2)*i)/125

x2star =

0

1

179/250 - (3*51^(1/2)*i)/250

179/250 + (3*51^(1/2)*i)/250

which confirms again that there are two (real) intersection points, but the methods used in
symbolic computations are quite different than those used in numerical methods.

SUMMARY: Things to remember from this lab

Solving algebraic equations can be done efficiently using the fzero command, which
employs a cocktail of numerical methods in finding zeros of a function. This only works for
single equations, and it is in addition to the other methods (the symbolic solve or the the
numerical roots functions).

Finding minima (or maxima) for a function there is the fminbnd , which also works only
for functions of one variable. For functions of several variables, the fminsearch is effective
since it employs a derivative-free method.

For solving systems of (nonlinear) equations there is no build in command in MATLAB.
Algorithms such as the Newton’s method, or steepest descent method can easily implemented
(although they were not shown in this lab). More creatively, the fminsearch command can
be used, although one has to be cautious to exclude the extraneous solutions (i.e. local
minima that are not intended to be used as minima) that might be added by the equivalent
minimization problem.

