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Eigenvalues, Singular Value

Decomposition

Synonyms

Eigenvalues = Proper Values, Auto Values,

Singular Value Decomposition = Principal Component Analysis

Glossary

Matrix: a rectangular tableau of numbers

Eigenvalues: a set of numbers (real or complex) intrinsic to a given matrix

Eigenvectors: a set of vectors associated to a matrix transformation

Singular Value Decomposition: A specific decomposition of any given matrix, useful

in matrix analysis and its applications



Definition

Eigenvalues and Eigenvectors

Given a square (n× n) matrix A, a (complex) number λ is called an eigenvalue of A if

there exists a nonzero n-dimensional column vector X such that

AX = λX, X 6= 0. (1)

A vector X satisfying (1) is called an eigenvector of A corresponding to eigenvalue λ.

Singular Value Decomposition (SVD)

Given any rectangular matrix (m × n) matrix A, by singular value decomposition of

the matrix A we mean a decomposition of the form A = UΣV T , where U and V are

orthogonal matrices (representing rotations) and Σ is a diagonal matrix (representing a

stretch).

Introduction

Matrix analysis is ubiquitous in mathematics and its applications. Due to the context of

this encyclopedia, we restrict our discussion to real matrices only. Moreover, we restrict

most of the considerations here to real eigenvalues (λ ∈ R) and real eigenvectors (X ∈

Rn). One of the common ways to represent eigenvalues and eigenvectors is to associate A

with a (linear) transformation from Rn to Rn given by the left-multiplication X 7−→ AX;

then eigenvectors are precisely those vectors that get mapped parallel to themselves and

eigenvalues are the factors by which these eigenvectors stretch under this transformation;

see (1). In particular, λ = 0 is eigenvalue for a matrix A precisely when A has a nontrivial
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kernel (or nullspace): ker(A) = {X |AX = 0} 6= {0}. For each eigenvalue λ of A, the

set of eigenvectors corresponding to λ form (when including the zero vector as well) the

eigenspace of A corresponding to λ:

EA
λ = {X |AX = λX}.

The set of eigenvalues of the matrix A is referred to as the spectrum of A. Depending on

the application, one may only consider the real spectrum (hence only those eigenvalues

which are real). Some matrices do not have any real spectrum (e.g. the matrix [ 0 1
−1 0 ]

representing a rotation by 90◦ in R2,) while other matrices have the entire spectrum on

the real axis, as is the case for (real) symmetric matrices (see below).

We may refer to eigenvectors satisfying (1) as right-eigenvectors, to distinguish

them from left-eigenvectors, defined as (row) vectors Y satisfying

Y A = λY, Y 6= 0.

Left eigenvectors of A are nothing else but the (right) eigenvectors of the transpose matrix

AT . (The transpose BT of a matrix B is defined as the matrix obtained by rewriting the

rows of B as columns of the new BT and viceversa.) While the eigenvalues of A and AT

are the same, the sets of left- and right- eigenvectors may be different in general.

Eigenvalue and Eigenvector Computation

We now describe how to find the eigenvalues of a given matrix. The eigenvalues of A

turn out to be precisely the roots of the characteristic polynomial of the matrix A,

pA(t) := det(A− tIn), where In is the identity n× n matrix:

λ is eigenvalue for A⇐⇒ pA(λ) = det(A− λIn) = 0.
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The Fundamental Theorem of Algebra guarantees that any polynomial with real coeffi-

cients, such as pA, can be factored into linear factors

pA(t) = (−1)n(t− λ1)m1 . . . (t− λk)mk

where λ1, . . . λk are precisely the distinct (complex) eigenvalues of A. The positive inte-

ger mj is called the algebraic multiplicity of the eigenvalue λj, j = 1, . . . , k. Non-real

eigenvalues, if any, come in complex conjugate pairs. The other important information

about each eigenvalue λ = λj is its geometric multiplicity, which is defined as dimEA
λ ,

the dimension of the eigenspace EA
λ , or the maximum number of linearly independent

eigenvectors of A corresponding to λ. A well-known fact in linear algebra reads

geometric multiplicity of λ ≤ algebraic multiplicity of λ. (2)

Matrices for which the above equality holds for each of its eigenvalues are called diago-

nalizable, since the matrix A can be represented as a diagonal matrix (see below).

Diagonalization of Symmetric Matrices

By definition, a n × n matrix A = (aij) is symmetric if aij = aji for all indices

i, j = 1, . . . , n, or, in short, if it equals its own transpose A = AT . We describe here

a fundamental property of symmetric matrices, which is that any symmetric matrix A

has a decomposition of the form

A = SDST , (3)

where S = orthogonal matrix, (STS = In = SST , or S−1 = ST ) and D = diagonal

matrix. We say that A is diagonalizable and that S and D diagonalize the matrix A. A

generalization of this decomposition for the case of a (possibly non-square) m×n matrix

is precisely the SVD (see Section 3).
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In the remaining of this section, we present the construction of the diagonalization

procedure (3) for a symmetric n × n matrix. First, all eigenvalues of a (real) symmetric

matrix are real. Second, eigenvectors corresponding to distinct eigenvalues are

orthogonal. [Two vectors X, Y in RN are called orthogonal if XTY = 0.] A more

substantial fact, fundamental in linear algebra, is that for symmetric matrices,

the geometric multiplicity of each eigenvalue equals its algebraic multiplicity

(equality in (2)), hence
∑k

j=1 dimEλj =
∑k

j=1mj = n. This translates into the fact

that are sufficiently many (precisely n) linearly independent eigenvectors of A

to form a basis of Rn. [A basis in Rn is a set of n linearly independent vectors.]

Finally, the n linearly independent eigenvectors of A can be chosen to be

mutually orthogonal (using Gram-Schmidt orthogonalization process within

each eigenspace, if necessary) and consequently, form an orthonormal basis of

Rn. [An orthonormal basis is a basis consisting of mutually orthogonal vectors

which are also unit length]. A direct consequence of the above-mentioned

facts is that the matrix S constructed by placing as its columns precisely the

n eigenvectors described above, and the diagonal matrix D constructed by

choosing as the diagonal entries precisely the eigenvalues λj, listed with their

multiplicities mj, fulfill the relation

S−1AS = D (diagonal matrix) .

By design, S is an orthogonal matrix, i.e. satisfies STS = In, since the columns

vectors for an orthonormal set in Rn . Using the orthogonality of S, rewritten

as S−1 = ST , we then solve for A to obtain A = SDS−1 = SDST , which is the

desired decomposition (3). Note that this decomposition is not unique, in general,

since it depends on the choice of the eigenvectors used. The diagonalization of symmetric
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matrices has a wide range of applications (in classical mechanics, dynamical systems etc).

It is also the springboard towards a generalization for non-symmetric, even non-square

matrices, which will be described in the next section.

Singular Value Decomposition (SVD)

Definition

We describe here a very important generalization of the results above. Precisely, any

rectangular (m× n) matrix A with real coefficients, admits a decomposition of the form

A = UΣV T . (4)

with U an orthogonal (m×m) matrix, V an orthogonal (n×n) matrix and Σ a rectangular

(m × n) matrix, diagonal in the sense described below. The columns of the orthogonal

matrices U and V are called the (left and right) singular vectors of the matrix A. If we

denote r = rank(A), the maximum number of linearly independent rows (or columns) of

A, then the matrix Σ has all entries zero except the first r entries on the main diagonal,

which are positive and are called the singular values of A. The convention is to have the

singular values arranged in decreasing order: σ1 ≥ σ2 ≥ . . . ≥ σr > 0. We extend the

notation

Σ = diagm×n{σ1, . . . σr}

for this kind of ’diagonal’ rectangular (m× n) matrix. Such SVD is not unique, but the

singular values (hence Σ) are.
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Construction of the SVD

First, assuming the SVD already exists, we investigate what kind of matrices V and

Σ must represent. From A = UΣV T we compute ATA = (UΣV T )T (UΣV T ) =

(V ΣTUT )(UΣV T ) = V (ΣTΣ)V T . Therefore V and ΣTΣ are two matrices that diag-

onalize the matrix ATA. We now recognize that this is always possible precisely because

the matrix ATA is indeed symmetric. We could make the same argument about the matrix

AAT , but it turns out that the relationship between U and V is much more intimate. In

fact AV = UΣ means that each column vector of V is mapped into a scalar multiple of a

(column) vector of U . With these observations, we now detail the recipe for constructing

an SVD for A.

Starting with the matrix A, compute ATA, which is a n × n symmetric, semi-

positive definite (i.e. with nonnegative eigenvalues) matrix with the same rank as A:

rank(ATA)=rank(A)=r. Being symmetric, is it diagonalizable, hence one can find an

orthonormal basis of eigenvectors for ATA, denoted V1, V2, . . . , Vn. Let V be the (n× n)

eigenvector matrix with columns Vj. The diagonal matrix D will have only nonnegative

diagonal entries, since ATA is semi-positive definite. Upon arranging them in decreasing

order (by eventually permuting the columns of V ), and denoting by σi the square root of

each positive eigenvalue, we have

D = diag n×n{σ2
1, . . . σ

2
r , 0, . . . , 0}.

Note that there are precisely n− r zeros in D since that is the dimension of the kernel of

ATA, as given by the dimension theorem. Now assemble the rectangular (m× n) matrix

Σ using the entries σ1, . . . , σr on the first r entries of the main diagonal, the rest of Σ

entries being zero. Clearly ΣTΣ = D.
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The final step of the decomposition is as follows: if V1, . . . , Vr are the

first r columns of V , then, for j = 1 . . . r, |AVj|2 = (AVj)
T (AVj) = V T

j (ATA)Vj =

V T
j (V ΣTΣV T )Vj = (V T

j V )D(V TVj) = σ2
j , so the vector AVj has length equal to σj.

We can now define the vectors U1, . . . Ur, where Uj is the unit vector obtained

by normalizing AVj: Uj =
1

|AVj|
AVj =

1

σj
AVj, or

AVj = σjUj, j = 1, . . . r

The set of vectors {U1, . . . Ur} forms an orthonormal basis for the column space

of A. We can extend this set to an orthonormal basis of Rm by completing it

with vectors Ur+1, . . . Um from the left nullspace of A. Since Vr+1, . . . Vn belong

to the kernel of A, we have just established the relation

AV = UΣ

which yields A = UΣV −1 = UΣV T , the desired decomposition (4).

The SVD construction presented above, remarkably simple, makes the

result even more beautiful and powerful. SVD is considered by many (see

(Strang 2009)) to be one of the jewels of linear algebra. The simplicity of this

makes the numerical implementation of the SVD straightforward.

A final word about SVD for symmetric matrices: if the matrix A is symmetric

(hence square) and has eigenvalues λ1, . . . , λn the singular values are precisely the positive

parts of the eigenvalues of A, ordered in decreasing order, since the construction above

gives σ2
i to be the eigenvalues of ATA = A2. IN this sense, SVD can be regarded as a

generalization of the diagonalization of symmetric matrices.
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Computational aspects

The computation of eigenvalues and eigenvectors can be performed via standard nu-

merical algorithms, or, in case of large matrices, using more sophisticated algorithms,

depending on the structure of the matrix (e.g. sparse, random etc). A standard algorithm

for eigenvalue computation is the QR iteration method, and one can find its implemen-

tation in computational platforms such as MATLAB, (Moler 2004), via the eig built-in

function. The computation of the SVD of the matrix A is, at least in theory, equivalent

to the computation of eigenvalues and eigenvectors for the matrix ATA. An effective

implementation of such an algorithm in MATLAB is the svd function. Optimization

of such computations in the case of large sparse matrices can be found in

(Saad 2011).

Applications

Matrix eigenvalue and singular value computations are essential in a wide range of appli-

cations, from structural dynamics, power networks, image processing and data mining,

stability and control in dynamical systems, to social network analysis andy crowd dy-

namics, just to name a few. Below we detail just a few instances where matrix analysis

is used in applications.

Image Compression

When a large matrix is used to encode some information (such as an image), then compres-

sion of this data can be done using SVD. More specifically, SVD finds low rank approxi-

mations of the original matrix which preserve the ’essential’ information. If A = UΣV T
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then by keeping only the first k largest singular values (k < r) and the matrices U and

V to the corresponding k singular vectors can construct the rank-k matrix

Ak = UkΣkV
T
k

which approximates the matrix A. Image compression can be effective especially when

the (k + 1)th singular value is significantly smaller than the first k ones.

Data Mining

Linear algebra tools are ubiquitous in data mining applications. For example, face recog-

nition (or handwriting recognition) are classical examples where eigenvalue computation

and SVD can be applied. From a large set of data one identifies a few representative ones,

called eigenfaces, and then projects all the other ones. See (Kokiopoulou 2011) for a good

overview of such dimension reduction methods.

One particularly important tool in analyzing multidimensional data is the Princi-

pal Component Analysis (PCA). This is a method which extracts the ’essential’ structure

of the data set in the form of a lower dimensional subspace, spanned by so-called principal

components. See e.g. (Jolliffe 2002) or (Abdi 2010). Principal components have a

particular ordering – each principal component points in the direction of maximal vari-

ance that is orthogonal to each of the previous principal components. In this way, each

principal component accounts for the maximal possible amount of variance, ignoring the

variance already accounted for by the previous principal components. These directions

turn out to be precisely the eigenvectors of ATA. See (Johnson 2007) for a detailed de-

scription of the PCA, its geometric representations and its application in multivariate

data analysis.
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Below are illustrations of a data set before and after the PCA analysis. Data

was collected from 75 universities in the United States (MUP 2012) and consisted of 8

variables: level of total research funds, federal research funds, endowment assets, annual

giving, number of National Academy of Science (NAS) members, number of faculty awards

and number of doctorates and postdocs. An 8-dimensional data point corresponds to each

University in the study.

Figure 1. Partial representation of the 8-dim university data set, before PCA, using only pairs of the variables: number of NAS
members (left) and number of doctoral students (right) vs. the total research funding.

The PCA computes the eigenvalues (principal values) and eigenvectors (principal

components) of the correlation matrix formed by the renormalized (to zero mean) vari-

ables. Then each variable (column of A) is projected to the first few principal components.

The first few principal components for the entire data set are plotted below.
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Figure 2. Projection of the university data set onto the first two (left) and three (right) principal component directions.

Here each data point is color coded, depending on the magnitude of the first principal

component. Visualizing such high dimensional data using projections to lower dimensional

space is useful in identifying directions of maximal variation in the data, which, in the

case of the university data example, could be used in university ranking.

Network Analysis

The study of networks has become central in many scientific fields; see e.g. (Easley 2010).

The mathematical representation of a network often associates certain matrices to the

network, such as the adjacency matrix or the graph Laplacian (Neuman 2010). Under-

standing the type of information gained by matrix analysis is in general the crux of the

application. In the case of large networks, additional computational challenges must be

mitigated.

The adjacency matrix A = (aij) of a network consists of 1’s and 0’s, with aij = 1

if the ith node is connected with the jth node and aij = 0 otherwise. For undirected
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networks, the adjacency matrix is symmetric, while for directed networks, it is not sym-

metric. The eigenvector corresponding to the largest eigenvalue can be used to define

the node centrality, that is the ’importance’ of each node in the network. This is not

simply the node with the higher number of ’connections’, but it also takes into account

the ’importance’ of connected nodes. A slightly more involved notion of centrality has

been used in establishing the Google’s PageRank algorithm.

One interesting application of the eigenvalue computation is related to the graph

partitioning problem. The second-highest eigenvalue gives a measure of how easy it is

to partition the network in two (comparable in size) while keeping the number of edges

between sides to a minimum. This can be generalized to multiple partitions. In social

networks, this can be used to determine the community structure (Neuman 2010).

Interpreting the SVD can present challenges depending on the application. While

the singular vector corresponding to the leading singular value usually can be thought as

the principal direction in which the data is organized, it is often the case that the subse-

quent singular values cannot always be associated with a specific property of the network

in question, other than that they are orthogonal to previous ones. Instead, interpreting

the SVD must be inferred from the application at hand (Mahoney 2011).
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