
Elements of Optimal Control Theory
Pontryagin’s Principle

STATEMENT OF THE CONTROL PROBLEM
Given a system of ODEs (x1, . . . , xn

are state variables, u is the control variable)

8
>>>>>>><

>>>>>>>:

dx1

dt
= f1(x1, x2, · · · , xn

;u)

dx2

dt
= f2(x1, x2, · · · , xn

;u)

· · ·
dx

n

dt
= f

n

(x1, x2, · · · , xn

;u)

with initial data x
j

(0) = x0
j

, j = 1, ..n, the objective is to find an optimal control u⇤ = u⇤(t) and the
corresponding path x⇤ = x⇤(t), 0  t  T which mimimizes the functional

J(u) = c1x1(T ) + c2x2(T ) + · · · c
n

x
n

(T ) +

Z
T

0
F (x1(t), · · · , xn

(t);u(t)) dt

among all admissible controls u = u(t). Pontryagin’s Principle gives a necessary condition for u = u⇤(t)
and corresponding x = x⇤(t) to be optimal, i.e.

I(u⇤) = min
u

I(u)

METHOD FOR FINDING OPTIMAL SOLUTION:
Construct the ”Hamiltonian”

H( 1, . . . , n

, x1, . . . , xn

,u) =  1f1 +  2f2 + . . . 
n

f
n

+ F

where  1, · · · , n

are so-called adjoint variables satisfying the adjoint system

d 
j

dt
= � @H

@x
j

, j = 1, . . . , n

✓
Note:

dx
j

dt
=
@H

@ 
j

, j = 1, . . . , n

◆

For each fixed time t (0  t  T ), choose u⇤ be the value of u that maximizes the Hamiltonian H = H(u)
among all admissible u’s ( and x are fixed):

H(u⇤) = max
u

H(u)

Case 1. Fixed Terminal Time T , Free Terminal State x(T )
Set terminal conditions for the adjoint system:  

j

(T ) = c
j

, j = 1 . . . n. Solve the adjoint system backward
in time.

Case 2. Time Optimal Problem. Free Terminal Time T , Fixed Terminal State x(T ).
c
j

= 0, j = 1, . . . , n, F ⌘ 1. No terminal conditions for the adjoint system. Solve the adjoint system with
H( (T ),x(T ),u(T )) = 0.
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Example 1. Landing Probe on Mars Problem

Consider the time-optimal problem of landing a probe on Mars. Assume the descent starts close to the
surface of Mars and is a↵ected only by gravitational field and by friction with ’air’ (proportional with the
velocity). The lander is equipped with a braking system, which applies a force u, in order to slow down the
descent. The braking force cannot exceed a given (maximum) value U . Let x(t) be the distance from the
landing site. Then Newton’s Law gives mẍ = �mg � kẋ+ u. The objective is to find the optimal control
u(t) such that the object lands in shortest time.

For convenience assume m = 1, k = 1, U = 2 and g = 1 and 0  u  2. The system reads

ẍ = �1� ẋ+ u

As initial condition take x(0) = 10 and ẋ(0) = 0.

Solution
This problem is a standard time optimal problem (when terminal time T for return to origin has to be

minimized). It can be formulated as a Pontryagin Maximum Principle problem as follows.
Write the second order ODE for x = x(t) as a system of two equations for two state variables x1 = x

(position) and x2 = ẋ (speed).

dx1

dt
= x2

dx2

dt
= �1� x2 + u (1)

and initial conditions x1 = 10 and x2 = 0. The objective is to minimize T subject to the constraint
0  u  2 and terminal conditions x1(T ) = 0, x2(T ) = 0.

We set the Hamiltonian (for time optimal problem)

H( 1, 2, x1, x2;u) =  1x2 +  2(�1� x2 + u)� 1

where  1 and  2 safisfy the adjoint system

d 1

dt
= � @H

@x1
⌘ 0

d 2

dt
= � @H

@x2
= � 1 +  2 (2)

There are no terminal conditions for the adjoint system.
Pontryagin’s principle asks to maximize H as a function of u 2 [0, 2] at each fixed time t. Since H is

linear in u, it follows that the maximum occurs at one of the endpoints u = 0 or u = 2, hence the control
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is bang-bang! More precisely,

u⇤(t) = 0 whenever  2(t) < 0

u⇤(t) = 2 whenever  2(t) > 0

We now solve the adjoint system. Since  1 ⌘ c1 is constant, we obtain

 2(t) = c1 + c2e
t (3)

It is clear that no matter what constants c1 and c2 we use,  2 can have no more than one sign change. In
order to be able to land with zero speed at time T , it is clear that the initial stage one must choose u = 0
and then switch (at a precise time t

s

) to u = 2.
The remaining of the problem is to find the switching time t

s

and the landing time T . To this end, we
solve the state system (1) for u(t) ⌘ 0, for t 2 [0, t

s

] and u(t) ⌘ 2, for t 2 [t
s

, T ]:
In the time interval t 2 [0, t

s

], u ⌘ 0 yields:

dx1

dt
= x2

dx2

dt
= �1� x2

which has the solution x1(t) = 11� t� e�t and x2(t) = �1 + e�t

In the time interval t 2 [t
s

, T ], u ⌘ 2 yields:

dx1

dt
= x2

dx2

dt
= 1� x2

which has the solution x1(t) = �1 + t� T + eT�t and x2(t) = 1� eT�t

The matching conditions for x1 and x2 at t = t
s

yield the system of equations for t
s

and T . which can
be solved (surprisingly) explicitely:

(
11� t

s

� e�ts = �1 + t
s

� T + eT�ts

� 1 + e�ts = 1 + eT�ts

Whether you use a computer or you do it by hand, the solution turns out to be t
s

⇡ 10.692 and T ⇡ 11.386.
(quite short braking period...)

Conclusion: To achieve the optimal solution (landing in shortest amount of time), the probe is left to
fall freely for the first 10.692 seconds and then the maximum brake is applied for the next 0.694 seconds.
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Example 2. Insects as Optimizers Problem

Many insects, such as wasps (including hornets and yellowjackets) live in colonies and have an annual life
cycle. Their population consists of two castes: workers and reproductives (the latter comprised of queens
and males). At the end of each summer all members of the colony die out except for the young queens
who may start new colonies in early spring. From an evolutionary perspective, it is clear that a colony,
in order to best perpetuate itself, should attempt to program its production of reproductives and workers
so as to maximize the number of reproductives at the end of the season - in this way they maximize the
number of colonies established the following year. In reality, of course, this programming is not deduced
consciously, but is determined by complex genetic characteristics of the insects. We may hypothesize,
however, that those colonies that adopt nearly optimal policies of production will have an advantage over
their competitors who do not. Thus, it is expected that through continued natural selection, existing
colonies should be nearly optimal. We shall formulate and solve a simple version of the insects’ optimal
control problem to test this hypothesis.

Let w(t) and q(t) denote, respectively, the worker and reproductive population levels in the colony. At
any time t, 0  t  T , in the season the colony can devote a fraction u(t) of its e↵ort to enlarging the
worker force and the remaining fraction 1� u(t) to producing reproductives. Accordingly, we assume that
the two populations are governed by the equations

ẇ = buw � µw

q̇ = c(1� u)w

These equations assume that only workers gather resources. The positive constants b and c depend on
the environment and represent the availability of resources and the e�ciency with which these resources
are converted into new workers and new reproductives. The per capita mortality rate of workers is µ, and
for simplicity the small mortality rate of the reproductives is neglected. For the colony to be productive
during the season it is assumed that b > µ. The problem of the colony is to maximize

J = q(T )

subject to the constraint 0  u(t)  1, and starting from the initial conditions

w(0) = 1 q(0) = 0

(The founding queen is counted as a worker since she, unlike subsequent reproductives, forages to feed the
first brood.)

Solution
We will apply the Pontryagin’s maximum principle to this problem. Construct the Hamiltonian:

H( 
w

, 
q

, w, q, u) =  
w

(bu� µ)w +  
q

c(1� u)w,

where  
w

and  
q

are adjoint variables, safistying the adjoint system

� ̇
w

=
@H

@w
= (bu� µ) 

w

+ c(1� u) 
q

(4)

� ̇
q

=
@H

@q
= 0 (5)

and terminal conditions
 
w

(T ) = 0,  
q

(T ) = 1

It is clear, from the second adjoint equation, that  
q

(t) = 1 for all t. Note also the adjoint equation
for  

w

cannot be solved directly, since it depends on the unknown function u = u(t). The other necessary
conditions must be used in conjunction with the adjoint equations to determine the adjoint variables.
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Since this Hamiltonian is linear as a function of u (for a fixed time t),

H = H(u) = [( 
w

b� c)w]u+ (c�  
w

µ)w

and since w > 0, it follows that it is maximized with respect to 0  u  1 by either u⇤ = 0 or u⇤ = 1,
depending on whether  

w

b� c is negative or positive, respectively. Using pplane7.m, we plot the solution
curves in the two regions where the ’switch’ function

S(w, 
w

) =  
w

b� c

is positive (then u = 1) and negative (then u = 0) respectively. (See figures.)

It is now possible to solve the adjoint equations and determine the optimal u⇤(t) by moving backward
in time from the terminal point T . In view of the known conditions on  

w

at t = T , we find  
w

(T )b� c =
�c < 0, and hence the condition for maximization of the Hamiltonian yields u⇤(T ) = 0. Therefore near
the terminal time T the first adjoint equation becomes

� ̇
w

(t) = �µ 
w

(t) + c,  
w

(T ) = 0
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which has the solution
 
w

(t) =
c

µ

⇣
1� eµ(t�T )

⌘
, t 2 [t

s

, T ]

Viewed backward in time it follows that  
w

(t) increases from its terminal value of 0. When it reaches
a point t

s

< T where  
w

(t) = c

b

, the value of u⇤ switches from 0 to 1.
[The point t

s

is found to be t
s

= T + 1
µ

ln
�
1� µ

b

�
.]

Past that point t = t
s

, the first adjoint equation becomes

� ̇
w

(t) = (b� µ) 
w

, for t < t
s

.

which, in view of the assumption that b > µ, implies that, moving backward in time,  
w

(t) continues to
increase. Thus, there is no additional switch in u⇤.

Exercise: Show that the optimal number q⇤(T ) = c

b

e(b�µ)ts = c

b

e(b�µ)[T+ 1
µ ln(1�µ

b )]. (exercise!).

Conclusion: In terms of the original colony problem, it is seen that the optimal solution is for the
colony to produce only workers for the first part of the season (u⇤(t) = 1, t 2 [0, t

s

]), and then beyond a
critical time to produce only reproductives (u⇤(t) = 0, t 2 [t

s

, T ]). Social insects colonies do in fact closely
follow this policy, and experimental evidence indicates that they adopt a switch time that is nearly optimal
for their natural environment.

Example 3: Ferry Problem

Consider the problem of navigating a ferry across a river in the presence of a strong current, so as to
get to a specified point on the other side in minimum time. We assume that the magnitude of the boat’s
speed with respect to the water is a constant S. The downstream current at any point depends only on
this distance from the bank. The equations of the boat’s motion are

ẋ1 = S cos ✓ + v(x2) (6)

ẋ2 = S sin ✓, (7)

where x1 is the downstream position along the river, x2 is the distance from the origin bank, v(x2) is the
downstream current, and ✓ is the heading angle of the boat. The heading angle is the control, which may
vary along the path.

Solution
This is a time optimal problem with terminal constraints, since both initial and final values of x1 and

x2 are specified. The objective function is (negative) total time, so we choose f0 = �1.
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The adjoint equations are found to be

� ̇1 = 0 (8)

� ̇2 = v0(x2) 1 (9)

There are no terminal conditions on the adjoint variables. The Hamiltonian is

H =  1S cos ✓ +  1v(x2) +  2S sin ✓ � 1 (10)

The condition for maximization yields

0 =
dH

d✓
= � 1S sin ✓ +  2S cos ✓

and hence,

tan ✓ =
 2

 1

We then rewrite (5) (along an optimal path)

H =  1

✓
S

cos ✓
+ v(x2)

◆
� 1. (11)

Next, di↵erentiating (5) with respect to t, we observe

d

dt
H =  ̇1S cos ✓ �  1S sin ✓✓̇ +  ̇1v(x2) +  1v

0(x2)ẋ2 +  ̇2S sin ✓ +  2S cos ✓✓̇

=  ̇1(S cos ✓ + v(x2)) + (� 1S sin ✓ +  2S cos ✓)✓̇ +  1v
0(x2)ẋ2 +  ̇2S sin ✓

= 0

(where we used (2), (3), and (4)). Thus, along an optimal path, H is constant in time.

H ⌘ const. (12)

Using (6) and (7) and the fact that  1 is constant ( ̇1 = 0), we obtain:

S

cos ✓
+ v(x2) = A

for some constant A. Once A is specified this determines ✓ as a function of x2.

cos ✓ =
S

A� v(x2)
(13)

Back in the state space, (1) and (2) become:

ẋ1 =
S2

A� v(x2)
+ v(x2) (14)

ẋ2 = S

s

1� S2

(A� v(x2))2
, (15)

The constant A is chosen to obtain the proper landing point.
A special case is when v(x2) = v is independent of x2, hence so is ✓. Then the optimal paths are then

straight lines.
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Example 4. Harvesting for Profit Problem

Consider the problem of determining the optimal plan for harvesting a crop of fish in a large lake. Let
x = x(t) denote the number of fish in the lake, and let u = u(t) denote the intensity of harvesing activity.
Assume that in the absence of harvesting x = x(t) grows according to the logistic law x0 = rx(1 � x/K),
where r > 0 is the intrinsic growth rate and K is the maximum sustainable fish population. The rate
at which fish are caught when there is harvesting at intensity u is h = qux for some constant q > 0
(catchability). (Thus the rate increases as the intensity increases or as there are more fish to be harvested).
There is a fixed unit price p for the harvested crop and a fixed cost c per unit of harvesting intensity. The
problem is to maximize the total profit over the period 0  t  T , subject to the constraint 0  u  E,
where E is the maximum harvesting intensity allowed (by the ”WeCARE” environmental agency). The
system is

x0(t) = rx(t)(1� x(t)/K)� h(t)

x(0) = x0

and the objective is to maximize

J =

Z
T

0
[ph(t)� cu(t)] dt

[The objective function represents the integral of the profit rate, that is the total profit.]

1. Write the necessary conditions for an optimal solution, using the maximum principle.

2. Describe the optimal control u⇤ = u⇤(t) and resulting population dynamics x⇤ = x⇤(t).

3. Find the maximum value of J for this optimal plan.

[You may assume (at some point) the following numerical values: the intrinsic growth rate r = 0.05, maxi-
mum sustainable population K = 250, 000, q = 10�5, maximum level of intensity E = 5000 (in boat-days).
The selling price per fish p = 1 (in dollars), unit cost c = 1 (in dollars), initial population x0 = 150, 000
(fish) and length of time (in years) T = 1. ]

Solution
This is an optimal control problem with fixed terminal time, hence the Pontryagin maximum principle

can be used. We first set up the problem:
The objective function is

J =

Z
T

0
[pqx(t)u(t)� cu(t)] dt.

The state variable is x = x(t) and satisfies the di↵erential equation

x0 = rx(1� x/K)� qxu

with initial condition x(0) = x0.
The Hamiltonian

H( , x, u) = pqxu� cu+  (rx(1� x/K)� qxu)

= [(qx(p�  )� c]u+  rx(1� x/K)

is linear in u, hence to maximize it over the interval u 2 [0, E] we need to use boundary values, i.e. u = 0
or u = E, depending on the sign of the coe�cient of u. More precisely
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u⇤(t) = 0 whenever qx(t)(p�  (t))� c < 0

u⇤(t) = E whenever qx(t)(p�  (t))� c > 0

The adjoint variable  satisfies the di↵erential equation

 0 = �@H
@x

= �(pqu+ (r(1� 2x/K)� qu) ).

and the terminal condition
 (T ) = 0.

Based on the computed values of u (either 0 or E) we get two systems (x and  ) to consider.

For u ⌘ 0 we get

(
x0 = rx(1� x/K)

 0 = �r(1� 2x/K) 

For u ⌘ E we get

(
x0 = rx(1� x/K)� qxE

 0 = �(pqE + (r(1� 2x/K)� qE) )

We can employ the use of Matlab code pplane7.m to help decide if any switching is needed. Here is a
phase portrait for each (x, ) system, and the zero level set of the ’switch’ function

S(x, ) = qx(p�  )� c,

using the numerical values given in the problem: q = 10�5, p = 1, c = 1.
We plot separately the solutions curves only in the appropriate regions of the phase plane, that is where

S(x, ) < 0 for u ⌘ 0 and S(x, ) > 0 for u ⌘ E. The direction of the solution curves is determined by the
two systems above, as follows: increasing x (left to right) for first graph (u = 0) and decreasing x (right to
left) for second plot (u = E).
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harvest1.pdf

harvest2.pdf

Figure 1. Solution curves (x(t), (t)): in the region S(x, ) < 0 (TOP, u = 0)

and in the region S(x, ) > 0 (BOTTOM, u = E)

It is deduced from these plots that in order to achieve  (T ) = 0 when we start with x(0) = 150000,
we must have u⇤(T ) = E (that is finish the year with maximum level of e↵ort). Hence, u⇤(t) = E for
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t 2 [t
s

, T ] for some t
s

< T . By solving backward in time the system (with u = E), we can compute the
value of the switching time t

s

.
It turns out that, for the given values of the parameters x0, p, c, the switching time t

s

= 0 (see below),
in other words the optimal control is u⇤(t) = E for all times t 2 [0, T ], meaning that NO SWITCHING
is required in the e↵ort of fishing (being always at its maximum).

As a matter of fact, we can solve both systems explicitly. Notice that the numerical values are such
that qE = r = 0.05, hence the system (u = E) simplify to

(
x0 = �r/Kx2

 0 = �pr + 2r/Kx .

Hence, when u ⌘ E, we can explicitly solve for x = x⇤ first (separation of variables)

x⇤(t) =
1

1
x0

+ r

K

t
for t 2 [0, T ]

The equation for  can also be solved explicitly (it’s linear equation in  hence method of integrating
factor applies)

 ⇤(t) = p(K̃ + rt) + const (K̃ + rt)2, where K̃ =
K

x0
(= 5/3)

It is clear that one can choose the constant above such that  (T ) = 0. More precisely, choose const =
�p(K̃ + rT )�1.

One can verify that, in this case, S(x⇤(t), ⇤(t)) > 0 for all t 2 [0, T ], hence t
s

= 0.
All of the above imply that the optimal control and optimal path are

u⇤(t) = E, x⇤(t) =
1

1
x0

+ r

K

t
, t 2 [0, T ]

The graphs are included below.

(c) The maximum value for the profit, given by the optimal strategy found above, is then

max
u

J(x, u) = J(x⇤, u⇤) =

Z
T

0
(pqEx⇤(t)� cE) dt

=

Z 1

0

0.05

1/150, 000 + 0.05/250000 t
� 5000 dt ⇡ 2389 ( using Matlab!)

Conclusion: To achieve maximum profit, the company needs to fish at its maximum capacity for the
entire duration of the year: u⇤(t) = E = 5000 boat-days, t 2 [0, T ].
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