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ABSTRACT
In this paper we study the effects of variations in the
external conditions (such as pressure changes due to mo-
tion in gravitational field) on the cardiovascular system.
The goal is to understand how the flow and pressures
propagate in the network in such variable conditions and
which are the locations where the effects are significant.
This is relevant to the auto regulation mechanism of the
pressure and flow, designed to maintain the system in a
homeostatic condition.
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1. INTRODUCTION
The primary role of the human cardiovascular system
is to transport oxygen and nutrients to all the tissues of
the body and to remove carbon dioxide and other harm-
ful waste products of cell metabolism. From a physical
point of view, the system consists of two synchronized
pumps in parallel that propel a viscous liquid (the blood)
through a network of flexible tubes. The heart provides
energy to move blood through the circulatory system. It
consists of four cavities: two ventricles and two atria,
whose size varies during the cardiac cycle due to the
activity of the heart muscle. The right heart pumps de-
oxygenated blood through the pulmonary circulation and
the left heart pumps oxygen-rich blood through the sys-
temic circulation. There are four valves, one at the exit of
each heart cavity, which regulate blood flow in the heart
and ensure bulk unidirectional motion through both pul-
monary and systemic circulation (Formaggia, Lamponi
and Veneziani 2006; Ottesen, Olfusen and Larsen 2004).
The latter consists of a network of curved and branch-
ing vessels whose size decreases in the arteries, arterioles
and capillaries and increases in the venules and veins. In
particular, arteries distribute blood throughout the body
and maintain blood pressure between heartbeats, arteri-
oles transport blood to capillary beds, capillaries diffuse

oxygen and nutrients to cells, and venules collect deoxy-
genated blood from capillaries and return it to the heart
through veins. The topological pattern of the large sys-
temic arteries is primarily a binary tree structure.

In this paper, we consider a simplified arterial network
which contains the 55 largest arteries in the human body
for the systemic circulation as presented in (Alaustrey,
Parker and Sherwin 2012; Alaustrey 2006).

Numerically, we start with the standard hyperbolic
system which models area A = A(x, t) and velocity
U = U(x, t) in the spatial domain (Cascaval, D’Apice,
D’Arienzo and Manzo 2015). At the junctions we use
continuity conditions for the Bernoulli pressure and the
continuity of the forward and backward characteristics
for the hyperbolic system. The outflow is defined using
peripheral resistance model. We solve the system with a
discontinuous Galerkin scheme, using Gauss-Legendre
method to approximate integrals and Newton method to
find the solution of the Riemann problem at junctions.
The entire system is simulated under variable external
conditions such as variations in hydrostatic pressure due
to posture changes, variations in respiratory patterns and
variations in pressures due to exercise. The heart rate and
peripheral resistance are used as controls for maintaining
homeostatic conditions, which model the autoregulation
mechanism. While an analytical treatment of the optimal
control problem is out of reach due to the complexity of
the system, numerical simulations of the entire system
reveal the nature of the autoregulation mechanism under
the considered variable external conditions. The novelty
of this paper is to apply the numerical model of the entire
55-edge network to study the effects of the variable
environment on the cardiovascular system performance,
showing that the obtained results are consistent with the
expected ones.

2. NUMERICAL MODEL
We consider the standard hyperbolic system which mod-
els area A = A(x, t) and velocity U =U(x, t) in the spatial
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domain W = [0,M] (Cascaval, D’Apice, D’Arienzo and
Manzo 2015):
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Here f = f (A,U) is a friction force which models the
viscosity of the blood, considered as a non-Newtonian
fluid, P = P(x, t) is the hydrodynamic pressure and r is
the density of the blood. For the pressure we choose the
elastic model:
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where Pext is the external pressure, A0 is the cross-
sectional area in unstressed conditions, b = Ehw

1�s

2

p
p ,

with s the Poisson ratio, usually taken to be s = 1
2 , E

the Young modulus and hw the wall thickness.

Inflow conditions (at x = 0) are implemented using a
valve model, which mimics the real behavior of the phys-
iological system. The opening and closing of valve is
determined by the pressure difference between the left
ventricle (PLV ) and the aortic pressure. More specifically,
the valve opens when

P(0, t) PLV (t),

in which case the pressure at the inflow gets prescribed

P(0, t) = PLV (t),

and it closes when the velocity becomes negative, in
which case the velocity at the inflow is prescribed to be
zero:

U(0, t) = 0.

So:
U(0, t) = 0, if PLV (t)< P(0, t)

P(0, t) = PLV (t), if U(0, t)> 0

In the simulations, the left ventricular pressure is pre-
scribed equal to

PLV (t) = Pext +3.75
HR
75

10�4 sin
pt
t

,

with HR representing the heart rate and t the duration
of the systole, taken to be a quarter of the heart beat
(t = 15/HR). This model accounts for the fact that peak
amplitude of the left ventricular pressure depends on the
heart rate.

As terminal condition, we have used a model with
terminal reflection coefficient Rt , see (Alastruey 2006),
which is based on the assumption that Wb is proportional
to Wf :

Wb =�RtWf ,

where �1  Rt  1 and Wf and Wb are the forward and
backward characteristics, defined as:

Wf ,b = u± (c(A)� c(A0)) , c(A) =

s
8b

rA0
A1/4.

Note that Rt = 1 corresponds to u = 0, which means
the outflow is completely blocked, while Rt = �1 cor-
responds to A = A0. For general values of Rt 2 [�1,1]
the boundary conditions is

U =
1�Rt

1+Rt

s
8b

rA0

⇣
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0

⌘
.

The spatial network considered in this paper is the
standard 55-edge network representing the large arter-
ies in a human. The labeling of the edges is taken from
(Alastruey 2006).

Figure 1: The spatial domain is a 55-edge network.

3. NUMERICAL SOLUTION
In order to find the numerical solution of the problem, we
write the system in conservation form:
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We solve it using the discontinuous Galerkin scheme as
described in (Cascaval, D’Apice, D’Arienzo and Manzo
2015).

We write the weak formulation of the problem, ap-
proximate U(x, t) with its discretized expansion Ud (x, t)
and integrate twice by part, so we get:
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To simplify the method, we have mapped each elemen-
tal region onto the standard element Wst = {x 2R : �1 
x  1}. This mapping is defined as

c(x ) = M
1+x

2
, x 2 Wst ,

and its inverse is given by

x = c
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x
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We selected as expansion basis the Legendre polynomi-
als Lk(x ), with k the polynomial order, because they are
orthogonal with respect to the product inner product of
L2. In this way, the solution is expanded on W as

Ud (c(x ), t) =
K

Â
k=0

Lk(x )
cUk(t), (3)

withcUk(t) the time-varying coefficients of the expansion.
We have chosen Legendre points (which are the zeros of
Legendre polynomials) as collocation points.
Replacing (3) in (2) and letting Fd = Ud , we obtain the
following system of 2(K +1) differential equations to be
solved:
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The method is completed with a second-order Adams-
Bashforth time-integration scheme:
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in which Dt is the time step and n the number of ev-
ery time step. To calculate the integrals we use a Gauss
quadrature formula of order q � K +1.

The upwinded fluxes Fu are computed solving a Rie-
mann problem that takes into account the characteristic
information moving away. At a time t, each interface
separates two constant states, (AL,UL) and (AR,UR), and
we need to determine the two upwinded states, (Au

L,U
u
L )

and (Au
R,U

u
R), originated on each side of interface at time

t +Dt. To do this, the following equations are required:
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R,U

u
R),

Au
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RUu

R ,

r
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2
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R)

2

2 +P(Au
R).

(4)

The first two equations come from the assumption
that the flow between two initial states is inviscid, and
the forward characteristic information, Wf , and the
backward characteristic information, Wb .

4. SIMULATION RESULTS
In this section we describe simulation results obtained by
considering the 55-edge network presented above. We
have taken input data, such as length, radius, terminal co-
efficient and b for each edge from (Formaggia, Lamponi,
Tuveri and Veneziani 2006).

We perform a 4-second simulation of the entire 55-
edge network with variable external pressure (to account
for respiration). The timing of the heart beat and respira-
tory cycle are taken from real data collected on a healthy
individual in the physiology lab at University of Colorado
(see Figure 2).

Figure 2: Real data for EKG (black), middle cerebral
artery flow velocity in cm/s (red) and arterial blood pres-
sure in mmHg (blue).

Since pressure and flow data are collected only at two
sites in the network (radial artery for pressure and middle
cerebral artery for flow), the simulation accomplishes to
describe the dynamics in all other edges, hence complet-
ing the picture of the entire network. While the focus was
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on developing a working model, no data fitting was done
for pressure and flow.

Figure 3: Simulated data in edge 1 (ascending aorta), 11
(right ulnar artery), 18 (thoracic aorta), 26 (intercostal
artery) and 49 (anterior tibial artery). Red line is the flow
velocity (cm/s), blue is the arterial pressure (mmHg) and
green line is the left ventricular pressure.

In the root edge (edge 1) we see the valve in action:
the valve is closed hence zero flow goes through it when
the left ventricular pressure is lower than the aortic pres-
sure; the valve opens when the left ventricular pressure
exceeds the aortic pressure. The timing of the opening
of the valve is important, since it determines the total
amount of cardiac output. At the other extreme, in edge
49, the pulsatility of the flow is minimal, but still the in-
fluence of the respiratory cycle is evident.

There are several noticeable features in this simulation
results. The edges depicted in Figure 3 are chosen to
illustrate the various aspects of the dynamics. Firstly,
the slow variation of the left ventricular pressure (e.g.
due to respiration) causes visible variation in the systolic
pressure. Secondly, the characteristics of the pressure
and flow dynamics is significantly different across the
network: in some parts of the network there is small
amount of backflow (e.g. edge 11, 18) while in others
there is no backflow, (e.g. edge 26). In fact backflow
is significant in edges 4, 7, 19 and 21 (only edge 4 is
depicted below). Backflow is known to be physiological.

Figure 4: Simulated data in edge 4 (subclavian artery).
For the color coding we refer to Figure 3.

For the remaining of this section, we apply the numer-
ical model to a different scenario, that of a tilt test: The
body is initially on a horizontal bed, with no orthostatic
pressure differences throughout the network. After 2 sec-
onds, a tilt of the table is performed, in such a fashion
that the level of the heart remains the same. This means
that the majority of the body is sent downward with the
exception of the head and shoulders, creating an added
orthostatic pressure value in most parts of the network.

Mathematically, this translates to a modification of the
external pressure in our working model, to account for
the gravitational effect (orthostatic pressure) as it appears
during the tilt table test (see e.g. Olufsen, Ottesen, Tran,
Ellwein, Lipsitz, and Novak 2005).

Pext = Pext(t) = rgh(t) = rgDhsinat

where a = p

2 is the angular velocity, chosen in such a
way that after 1 second the tilt table is in upright posi-
tion, g = 9.8m/s2 is the gravitational constant. Dh is el-
evation change between the middle of the edge and the
heart when the person is upright. Dh can be positive (if
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the edge is below the heart) or negative (for edges that lie
above the heart level.) Depending on what the center of
the tilt is, Dh values would have more negative values.

Figure 5: Comparison between the simulated pressure
data (in mmHg) in normal conditions (blue) and in pres-
ence of the tilt (magenta) in edge 1 (ascending aorta),
11 (right ulnar artery), 18 (thoracic aorta), 26 (intercostal
artery) and 49 (anterior tibial artery)

Next we display the simulated data for the flow veloc-
ity for both horizontal position and during and after tilt,
choosing the same edges as for pressure.

Figure 6: Comparison between the simulated flow ve-
locity data (in cm/s) in normal conditions (blue) and in
presence of the tilt (magenta) - same edges chosen for
visualization as for pressure on the left
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The tilt is performed for 1 second (seconds 2-3 after
the beginning of the simulations), time in which the
table is raised from horizontal to vertical positions. Then
the table is left at that level. We note that several edges
come with negative external pressure. Nevertheless, the
simulated data shows an increase of diastolic pressure
throughout the board. At the same time, the picture with
the flow pattern is much more diverse, several edges
exhibiting a drop in flow velocity. The simulations are
done without changing the Heart Rate calculations, for
clarity of the comparison. In reality there is a response
of the HR to the change in pressures (baroreceptor
control), which would further alter the flow pattern.
But even in absence of this complexity, we see that the
systolic pressure is decreased immediately after the end
of the tilt period, while the diastolic pressure is increased.

5. CONCLUSIONS
A numerical model has been developed here to simulate
variable external conditions and their effect on the
cardiovascular system, as presented in certain realistic
physiological situations. The model includes a valve at
the inflow, which accounts for change in the systolic
pressure, while the variability of the diastolic pressure
is due primarily to the external conditions. The focus
has been on comparing the dynamics in various parts of
the network in presence and absence of the changes. A
real control of the heart rate and peripheral resistance is
not present in our paper, but it will be reported elsewhere.
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