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Abstract

We investigate several aspects of the fractional telegraph equations, in an effort to better
understand the anomalous diffusion processes observed in blood flow experiments. In the
earlier work Eckstein et al. [Electron. J. Differential Equations Conf. 03 (1999) 39–50],
the telegraph equation D2u + 2aDu + Au = 0 was used, where D = d/dt , and it was
shown that, as t tends to infinity, u is approximated by v, where 2aDv + Av = 0; here
A = −d2/dx2 on L2(R), or A can be a more general nonnegative selfadjoint operator.
In this paper the concern is with the fractional telegraph equation E2u + 2aEu + Au = 0,
whereE = Dγ and 0< γ < 1; after solving this equation it is shown that u is approximated
by v, where 2aEv + Av = 0.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Of concern are suspension flows. These combine directed and random
motion and are traditionally modelled by parabolic partial differential equations.
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Sometimes they can be better modelled (in terms of fitting the data generated by
certain blood flow experiments) by hyperbolic equations such as the telegraph
equation, which have parabolic (or analytic) asymptotics. In particular, the
experimental results described in [2,3,8] seem to be better modelled by the
telegraph equation than by the heat equation. Some of the related mathematics
was discussed in [2].
In Section 6 of [2], a fractional telegraph equation

(
Dγ

)2
u + 2aDγ u + Au = 0 (1)

was proposed as an alternative model. Here A is a positive self-adjoint operator
on a Hilbert spaceH, the example we have in mind being

A = −∆= −
n∑

j=1

∂2

∂x2j
onH = L2

(
R

n
)
,

especially with n = 1; also a is a positive constant and Dγ is the fractional
derivative with respect to time of order γ ∈ (0,1). When γ = 1, this becomes
the telegraph equation. For γ < 1 we call (1) the fractional telegraph equation.
The motivation for this model comes from experimental considerations. The
results look similar on many scales. Such self-similar behavior leads to fractional
derivatives.We offer a simple heuristic discussion to motivate the use of fractional
derivatives. LetX1, . . . ,Xn, . . . be independent, identically distributed symmetric
random variables with the property that for each n = 1,2, . . . and for suitable
positive constants an, an

∑n
j=1Xj has the same distribution asX1, and this holds

for all n. Thus the distribution of
∑n

i=1Xi , suitably scaled, is that of X1. This is
a kind of self-similarity, independent of the sample size. Necessarily (see [7]) the
distribution of X1 has Fourier transform e−c|ξ |b , for ξ ∈ R, for certain constants
c > 0 and b ∈ (0,2]. These are precisely the symmetric stable laws, including the
normal distribution (b = 2) and the Cauchy distribution (b = 1). The infinitesimal
generator of the corresponding Feller–Markov semigroup is given by a positive
multiple of the fractional Laplacian −(−d2/dx2)b/2.
Fractional differential equations have been studied extensively in the literature.

Independent of the considerations in this paper, it is worth mentioning at least
the work [11], in which the authors study a second order ODE of the form
D2u + 2aDγ u + F(u) = 0, with a fractional damping term of order 0< γ < 2.
F is a locally Lipshitz function. An interesting and closely related work is [5].
Here is an outline of our paper. Section 2 treats fractional derivatives, fractional

ordinary differential equations, and Laplace transform methods. Section 3
deals with well-posedness for fractional telegraph equation. Section 4 treats
asymptotics.
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2. Reinventing the wheel

We briefly review Laplace transform, fractional calculus and fractional
differential equations. While this is all “well-known,” it seems worthwhile to
collect the results we need in a concise format, since there are various different
and inequivalent treatments of fractional differential equations in the literature.

2.1. Laplace transform

The Laplace transform of u is

L(u)(λ) = U(λ) =
∞∫

0

e−λtu(t) dt,

defined for complex λ with sufficiently large real part. When we write L(u) or U ,
we always assume it exists.
Recall that

L(Du)(λ) = λU(λ) − u(0), (2)

where Du = u′ = du/dt .
Next we solve the Cauchy problem for the constant coefficient ODE

D2u + 2aDu + bu = h(t), u(0) = f1, Du(0) = f2, (3)

by Laplace transforms. Using (2) we obtain
(
λ2 + 2aλ+ b

)
U(λ) − λf1 − f2 − 2af1 = H(λ),

where H = L(h), thus

U(λ) = H(λ) + (λ+ 2a)f1 + f2
λ2 + 2aλ+ b

. (4)

Next, we factor λ2 + 2aλ+ b = (λ− λ+)(λ− λ−), where

λ± = −a ±
√

a2 − b. (5)

We assume λ+ &= λ− (i.e., b &= a2). Then, since

L
(
eαt

)
(λ) = 1

λ− α ,

the solution u of (3) is obtained by inverting (4)

u(t) = eλ+t g1 + eλ−t g2 + k(t),

where
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g1 = (
√

a2 − b + a)f1 + f2

2
√

a2 − b
, g2 = (

√
a2 − b − a)f1 − f2

2
√

a2 − b
,

L(k)(λ) = H(λ)

λ2 + 2aλ+ b
,

so that k ≡ 0 when h ≡ 0.
Note also that for suitable choices of function spacesX, Y , L can be viewed as

a continuousmap fromX to Y . The same applies toL−1, thus L can be thought of
as a linear homeomorphism in certain specific contexts. This bicontinuity property
allows one to conclude that initial value problems solved by Laplace transform
depend continuously on the initial data (f1, f2) and the inhomogeneous term h(t)

in a certain precise sense as in [9,10].

2.2. Fractional derivatives and integrals

For 0< α < 1 define

D−αf (x) = 1
Γ (α)

x∫

0

f (y)

(x − y)1−α
dy.

Here we assume f ∈ C([0,∞)) for simplicity. As α→ 1,

D−αf (x) → D−1f (x) =
x∫

0

f (y) dy,

and

DD−1f (x) = f (x), D−1Df (x) = f (x) − f (0)

(where in the latter equality we assume f ∈ C1[0,∞)). It is easy to check that
D−αD−β = D−(α+β) for positive α,β with α + β < 1. Define, for 0< γ < 1,

Dγ f = Dγ−1Df

(which is not the same as DDγ−1f ). To be more precise, we define Dγ f in this
way for f ∈ C1[0,∞). Then Dγ will be a closable operator in the setting of
certain function spaces and Dγ f will be defined for more general f by closure.
For 0< α,γ < 1,

L
(
D−αf

)
(λ) = 1

Γ (α)

∞∫

0

t∫

0

e−λtf (s)

(t − s)1−α
ds dt

= 1
Γ (α)

∞∫

0

∞∫

s

e−λt

(t − s)1−α
dt f (s) ds
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= 1
Γ (α)

∞∫

0

( ∞∫

0

e−λr

r1−α
dr

)

e−λsf (s) ds

= λ−αL(f )(λ);
also

L
(
Dγ f

)
(λ) =L

(
Dγ−1f ′)(λ) = λγ−1L(f ′)(λ)

= λγL(f )(λ) − λγ−1f (0), (6)

by (2).

2.3. Fractional differential equations

Let u satisfy

Dγ1
(
Dγ2u

)
+ 2aDγ3u + bu = h(t), (7)

where 0< γ1, γ2, γ3 < 1. This equation becomes (3) when each γj is 1. Note that,
by (2),

L
(
Dγ1

(
Dγ2u

))
(λ) = λγ1L(

Dγ2u
)
(λ) − λγ1−1(Dγ2u)

(0)

= λγ1+γ2U(λ) − λγ1+γ2−1u(0) − λγ1−1
(
Dγ2u

)
(0).

Using this calculation, the Laplace transform of (7) becomes

λγ1+γ2U(λ) + 2aλγ3U(λ) + bU(λ) − λγ1+γ2−1u(0) − λγ1−1
(
Dγ2u

)
(0)

− 2aλγ3−1u(0) = H(λ).

Consequently

U(λ) = H(λ) + λγ1+γ2−1u(0) + λγ1−1(Dγ2u)(0) + 2aλγ3−1u(0)
λγ1+γ2 + 2aλγ3 + b

. (8)

For the special case when γ1 = γ2 = γ3 = γ , this reduces to

U(λ) = H(λ) + λ2γ−1u(0) + λγ−1(Dγ u)(0) + 2aλγ−1u(0)
λ2γ + 2aλγ + b

. (9)

This formula is exactly (4) for γ = 1. More generally, (8) (or (9)) gives the unique
solution of (7) with the initial conditions u(0) and Dγ2u(0) specified. Notice
that U (and hence u) depends on the ordered pair (γ1, γ2) as well as γ3. Thus
Eq. (7) differs from both

Dγ1+γ2u + 2aDγ3u + bu = h

and

Dγ2
(
Dγ1u

)
+ 2aDγ3u + bu = h,



150 R.C. Cascaval et al. / J. Math. Anal. Appl. 276 (2002) 145–159

which differ from one another (for γ1 &= γ2). In particular, (7) requires two initial
conditions for uniqueness, even though the order of the equation is max{γ1 + γ2,
γ3}, which can be any number in the interval (0,2), including 1 (as well as 0.83).
Return now to the case of γj = γ for all j . Let f1 = u(0) and f2 = Dγ u(0) be

the initial data. The denominator in (9) factors as
(
λγ − µ+

)(
λγ − µ−

)
,

where µ± = −a ±
√

a2 − b, as was previously the case (see (5)). When b = a2

we have a double root µ. We omit the analysis in this case and assume b &= a2.
Write U = U0 + Ũ , where

U0(λ) = (λ2γ−1 + 2aλγ−1)f1 + λγ−1f2
λ2γ + 2aλγ + b

, Ũ(λ) = H(λ)

λ2γ + 2aλγ + b
.

Write

U0(λ) = λγ−1(αλγ + β)

(λγ − µ+)(λγ − µ−)
,

where α = f1 and β = 2af1 + f2. A partial fraction analysis yields

U0(λ) = λγ−1Q1

λγ − µ+
+ λγ−1Q2

λγ − µ−
, (10)

where

Q1 = αµ+ + β
µ+ − µ−

and Q2 = −αµ− + β
µ+ − µ−

.

More explicitly,

U0(λ) = λγ−1((
√

a2 − b + a)f1 + f2)

2
√

a2 − b(λγ + a −
√

a2 − b)
+ λγ−1((

√
a2 − b − a)f1 − f2)

2
√

a2 − b(λγ + a +
√

a2 − b)
.

(11)

Thus finding u0 = L−1(U0) reduces to finding v where

L(v)(λ) = V (λ) = λγ−1

λγ − µ0
,

for Reµ0 < 0. (We take a > 0, b > 0, but a2 − b could be either positive or
negative.)
Define the Mittag–Leffler functions Eα,β for α,β > 0 by

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, for z ∈ C.

Then, (see [9, p. 21]) we have for µ0 ∈ C,
{

f (t) = tβ−1Eα,β
(
µ0tα

)
,

F (λ) = L(f )(λ) = λα−β
λα−µ0

.
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Using the above formula with α = γ and β = 1 we obtain

u1(t) = Q1Eγ,1
((

−a +
√

a2 − b
)
tγ

)
+ Q2Eγ,1

((
−a −

√
a2 − b

)
tγ

)
,

(12)

where

Q1 = (
√

a2 − b + a)f1 + f2

2
√

a2 − b
, Q2 = (

√
a2 − b − a)f1 − f2

2
√

a2 − b
. (13)

Note that formula (12) yields a real valued solution u1, provided all the data are
real. In this case we are adding two complex conjugate quantities.
We then obtain the solution of our Cauchy problem

(
Dγ

)2
u + 2aDγ u + bu = h(t), u(0) = f1, Dγ u(0) = f2 (14)

to be u(t) = u1(t) + u2(t), where u2(t) = L−1(U2) needs to be computed
separately. From a more general perspective, let C be the operator of complex
conjugation. View each of the equations in (14) as Lu = k, where L is a linear
operator. When a, b,h,f1, f2 are all real (or real-valued), then L commutes
with C, so that Cu = ū is a solution whenever u is. By uniqueness, u = Cu is
real whenever all the k’s are real. This completes our explanation of how to solve
(14) uniquely and with suitable continuous dependence on (f1, f2, h).
In the next subsection we specialize some of the previous calculations in the

special case γ = 1/2, with the idea of emphasizing the differences from the
classical case γ = 1. We will take advantage of the explicit formulas available
for the half-derivative, which will also give a first glimpse into the asymptotics of
solutions. The general γ will be treated in Section 4.

2.4. Special case γ = 1/2

Attention will be restricted here to the initial value problem
(
D1/2)2u + 2aD1/2u + bu = 0, u(0) = f1, D1/2u(0) = f2. (15)

Note that this is a “first order” equation with leading term (D1/2)2 &= D (see the
remark below). The solution is

yu(t) = Q1E1/2,1
(
µ+t1/2

) + Q2E1/2,1
(
µ−t1/2

)
,

where µ± = −a ±
√

a2 − b andQ1,Q2 are constants given in (13). As in [9], the
explicit formula for E1/2,1 reads

E1/2,1(z) =
∞∑

k=0

zk

Γ (k/2+ 1) = ez2(1+ erf(z)
)
,
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where erf(z) is the error function, defined by

erf(z) = 2√
π

z∫

0

e−τ 2 dτ.

Note that the formula above defines erf(z) for all z ∈ C.
For µ ∈ C and t ! 0 define

ψµ(t) = eµ2t(1+ erf
(
µ

√
t
))

= E1/2,1
(
µ

√
t
)
.

A straightforward calculation shows that

D1/2eµ2t = µeµ2t erf
(
µ

√
t
)
, D1/2eµ2t erf

(
µ

√
t
) = eµ2t . (16)

Thus ψ =ψµ satisfies

D1/2ψ(t) = µψ(t), ψ(0) = 1,

i.e., ψµ is eigenfunction for D1/2 corresponding to the eigenvalue µ. This is
equivalent also to the fact that the Laplace transform Ψ := L(ψ) is given by

Ψ (λ) = λ−1/2

λ1/2 − µ
,

which agrees with Section 2.3. Thus we can rewrite the solution of the initial value
problem (15) as

u(t) = Q1ψ+ + Q2ψ−,

where D1/2ψ± = µ±ψ±, ψ±(0) = 1.
It is convenient to record, for later use, the following asymptotic expansion (as

z tends to +∞):

ez2(1+ erf(−z)
)
= 1√

πz
− 1
2
√
πz3

+ O

(
1
z5

)
,

which implies, for µ < 0, t → +∞,

ψµ(t) = − 1√
πµt1/2

+ 1
2
√
πµ3t3/2

+ O

(
1

t5/2

)
.

This expansion holds true even for complex numbers µ with Reµ < 0 (see
Section 4).
We conclude this part with a remark that the formulas (16) imply that

(
D1/2)2eµ2t = µ2eµ2t ,

(
D1/2)2eµ2t erf

(
µ

√
t
)
= µ2eµ2t erf

(
µ

√
t
)
.

Clearly (D1/2)2 &= D.
For comparison purposes, if one considers, instead of (15), the initial value

problem for the fractional differential equation

Du + 2aD1/2u + bu = 0,
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then one notices that only one initial datum, u(0) = f1, determines the solution
completely, namely u(t) = f1(C1ψ+ +C2ψ−), whereC1 = (1+µ+)/(µ+ −µ−)

and C2 = −(1+ µ−)/(µ+ − µ−).

3. The fractional telegraph equation

Let A be a positive (i.e., nonnegative and injective) self-adjoint operator on
a Hilbert space H. (More generally, we can treat equations involving several
commuting normal operators, but we will stick to this simple but useful case.)
By the spectral theorem (cf., e.g., [4]), there is an L2-space L2(Ω,Σ,µ)

and a unitary operator U :H → L2(Ω) such that UAU−1 is the operator of
multiplication by m :Ω → (0,∞). More precisely, there is a Σ-measurable
function m :Ω → R, unique (modulo changes on sets of µ-measure zero) and
positive (µ a.e.) such that

UAU−1f = mf, (17)

for

f ∈ D
(
UAU−1) =

{
f ∈ L2(Ω,Σ,µ): mf ∈ L2(Ω,Σ,µ)

}
.

We identify m with the operator Mm of multiplication by m on L2(Ω,Σ,µ).
Then for any Borel function G : (0,∞) → C we can define G(A) by G(A) =
U−1MG(m)U . From the point of view of differential equations, this effectively
allows us to treat A as a fixed positive real number.
We want to solve the Cauchy problem

(
Dγ

)2
u(t) + 2aDγ u(t) + Au(t) = h(t), (18)

u(0) = f1, Dγ u(0) = f2, (19)

for a function u : [0,∞) →H. More generally, consider the initial value problem
in a Banach space X

E2u(t) + 2aEu(t) + Au(t) = 0,

u(0) = f1, Eu(0) = f2. (IVP, f1, f2)

Here E :D(E) ⊂ Y → Y is a linear operator in Y = C([0,∞),X), A is a closed
densely defined operator on X. In our context X = H, a > 0, E = Dγ , with
0< γ " 1. In particular, for γ = 1, E = D = d/dt is the usual time-derivative.
A strong solution of (IVP, f1, f2) is a function u ∈ Y such that Eu,E2u

are in Y , u(t) ∈ D(A) for each t ∈ (0,∞) and (IVP, f1, f2) holds. u ∈ Y is
a mild solution of (IVP, f1, f2) if there exist strong solutions un of a sequence
of problems (IVP, f1,n, f2,n) such that, as n → ∞, f1,n → f1, f2,n → f2 and
un(t) → u(t), uniformly for t in compact intervals in R+.
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Similar definitions apply to Eu(t) + Au(t) = 0, u(0) = f . In this case γ = 1
and strong solutions correspond to f ∈ D(A) and mild solutions correspond to
f ∈ X (= D(A)).
For (IVP, f1, f2) with γ = 1 and A = A∗ > 0, strong solutions correspond to

(f1, f2) ∈ (D(A),D(A1/2)), while mild solutions correspond to (f1, f2) in the
energy space (D(A1/2),X).
For general 0 < γ < 1 we do not specify where f1 and f2 are, but merely

require that the expressions we construct make sense. In fact we are constructing
mild solutions which turn out to be strong solutions if (f1, f2) ∈ (D(A),D(A1/2))
as above. It seems plausible that in order to guarantee strong solutions, it is enough
to have the initial data in some interpolation space.
Let U be as in (17). Then u(t) = U−1(ũ(t, ·)) where ũ(t, ·) ∈ L2(Ω,Σ,µ) and

ũ satisfies
(
Dγ

)2
ũ(t,ω) + 2aDγ ũ(t,ω) + m(ω)ũ(t,ω) = h̃(t,ω), (20)

ũ(0,ω) = f̃1(ω), Dγ ũ(0,ω) = f̃2(ω), (21)

for all ω ∈Ω . This problem is, for fixed ω, exactly the problem considered in the
previous section. Taking h ≡ 0 and suppressing the ω variable the unique solution
is

ũ(t) = (
√

a2 − m + a)f̃1 + f̃2

2
√

a2 − m
Eγ,1

((
−a +

√
a2 − m

)
tγ

)

+ (
√

a2 − m − a)f̃1 − f̃2

2
√

a2 − m
Eγ,1

((
−a −

√
a2 − m

)
tγ

)
(22)

and the corresponding unique solution of (18), (19) is

u(t) = U−1ũ(t).

Using the regularity theory of Laplace transforms one can give a precise sense in
which this solution for (18) (with h ≡ 0) depends continuously on (f1, f2), but
we omit doing so. (A useful reference in this regard is [1].)

4. Asymptotics

Let

u(t) =
2∑

j=1
QjEγ,1

((−a + (−1)j+1√a2 − b
)
tγ

)
(23)

be the unique solution for
(
Dγ

)2
u + 2aDγ u + bu = 0, u(0) = f1, Dγ u(0) = f2. (24)
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Here Qj are given by (13). According to [9, p. 34] we note the asymptotic
behavior

Eγ,1(z) = −
N∑

k=1

(
1

Γ (1− kγ )

)
1
zk

+ O

(
1

|z|N+1

)
(25)

for all N ∈ N as |z| → ∞ with ν " | argz| " π , ν is an arbitrary number in
(πγ /2,πγ ). For b < a2 the coefficient of tγ in (23) is negative, while for b ! a2

it has nonpositive real part. In all cases of interest for us, (25) applies.
Note that in the case γ is rational, the summation in (25) has repeated vanishing

terms, namely those corresponding to k such that 1− kγ is nonpositive integer.
This is due to the fact that the Gamma function has poles at 0,−1,−2, . . . . For
example, when γ = 1/2, the summation contains only odd k’s (see Section 2.4).
Also, for γ = 1, all the terms in the summation are zero.
Now take N = 1 in (25). Thus the solution u of (24) satisfies

u(t) =
2∑

j=1
QjEγ,1

((
−a + (−1)j+1√a2 − b

)
tγ

)

= 1
Γ (1− γ )

(
Q1

a −
√

a2 − b
+ Q2

a +
√

a2 − b

)
1
tγ

+ O

(
1

t2γ

)

= 1
Γ (1− γ )

(
2af1 + f2

b

)
1
tγ

+ O

(
1

t2γ

)

as t → ∞.
Let us return to (24) with γ = 1. The unique solution is (see Section 2)

u(t) = g1e
(−a+

√
a2−b)t + g2e

(−a−
√

a2−b)t .

For b < a2 and g1 &= 0,

u(t) = g1e
(−a+

√
a2−b)t + w,

where w is an error term which is (relatively) negligible for large t . Using√
1− x ≈ 1− x/2 for 0< x , 1 by the Taylor series approximation, we have

u(t) = e−a(1−(1−b/a2)1/2)tg1 + w = e− b
2a t g1 + w̃,

where w̃ is similar to w. This principal term v(t) = e− b
2a tg1 solves

2aDv + bv = 0,

which can be obtained from the ODE

D2v + 2aDv + bv = 0

by dropping the highest order term. In [2] it was shown (for a positive self-adjoint
operator A) that the solution of

D2u + 2aDu + Au = 0, u(0) = f1, Du(0) = f2,
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asymptotically equals a solution of

2aDv + Av = 0,

which (viewing A = −∆) explains the term asymptotic analyticity.
Now return to the fractional telegraph equation with γ < 1.

(
Dγ

)2
u + 2aDγ u + bu = 0.

If we drop the term (Dγ )2u, we are left with the equation

2aDγ v + bv = 0. (26)

The Laplace transform satisfies

V (λ) = λγ−1v(0)
2aλγ + b

= λγ−1Q
λγ + δ ,

whereQ = v(0)
2a and δ = b

2a . Consequently,

v(t) = QEγ,1(−δtγ ) = v(0)
2a

1
Γ (1− γ )

1
δtγ

+ O

(
1

t2γ

)

= v(0)
bΓ (1− γ )

1
tγ

+ O

(
1

t2γ

)
.

In order to match the first term in the asymptotic expansions for u(t) and v(t),
it is enough to choose, for the initial value problem (26), the initial data

v(0) = 2af1 + f2.

In short,

u(t) − v(t) = O

(
1

t2γ

)
.

Thus we can say that v(t) approximates “asymptotically” u(t). To be more
precise, in what follows we estimate the relative error

ε(t) = |u(t) − v(t)|
v(t)

.

From (24) with N = 2 we obtain

u(t) = − 1
Γ (1− γ )

(
Q1
µ+

+ Q2
µ−

)
1
tγ

− 1
Γ (1− 2γ )

(
Q1

µ2+
+ Q2

µ2−

)
1

t2γ

+ O

(
1

t3γ

)
,

or,
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u(t) = 2af1 + f2
b

(
1

Γ (1− γ )tγ
− 2a

b

1
Γ (1− 2γ )t2γ

)
+ f1

b

1
Γ (1− 2γ )t2γ

+ O

(
1

t3γ

)

and

v(t) = 2af1 + f2
b

(
1

Γ (1− γ )tγ
− 2a

b

1
Γ (1− 2γ )t2γ

)
+ O

(
1

t3γ

)
.

The relative error in approximating u by v is, in this case,

ε(t) = f1
2af1 + f2

Γ (1− γ )

Γ (1− 2γ )

1
tγ

+ O

(
1

t2γ

)
. (27)

When γ = 1/2 one can obtain a slightly better estimate (see also Section 2.4).
Using (24) with N = 3,

u(t) = − 1√
π

(
Q1
µ+

+ Q2
µ−

)
1

t1/2
+ 1
2
√
π

(
Q1

µ3+
+ Q2

µ3−

)
1

t3/2
+ O

(
1

t5/2

)
,

or, using the formulas (13) forQ1 andQ2,

u(t) = 2af1 + f2
b

1√
πt1/2

− (2af1 + f2)(4a2 − 2b) + f2b

b3
1

2
√
πt3/2

+ O

(
1

t5/2

)

= 2af1 + f2
b

(
1√
πt1/2

− 4a2

b2
1

2
√
πt3/2

)
+ 4af1 + f2

b2
1

2
√
πt3/2

+ O

(
1

t5/2

)
.

On the other hand,

v(t) = 2af1 + f2
b

(
1√
πt1/2

− 4a2

b2
1

2
√
πt3/2

)
+ O

(
1

t5/2

)
.

Thus,

ε(t) = 4af1 + f2
4af1 + 2f2

1
bt

+ O

(
1
t2

)
. (28)

We can now state the main result, which generalizes Theorem 5.1 in [2].

Theorem. Let A = A∗ be a positive self-adjoint operator on a Hilbert space H
and let a be a positive constant. Let f1 and f2 be arbitrary and let u = u(t) be
the unique solution of the initial value problem

(
Dγ

)2
u + 2aDγ u + Au = 0, u(0) = f1, Dγ u(0) = f2. (29)
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Then there exists v = v(t), a solution of

2aDγ v + Av = 0, (30)

which has the same asymptotic behavior as u, in the sense that

u(t) = v(t) + o
(
v(t)

)
as t → +∞.

Here the convergence is in a weak sense which is explained in the proof.

Proof. Recall from Section 3 that we can regard the termA in the fractional tele-
graph equation as being constant. Then u(t) = U−1(ũ(t, ·))where ũ(t, ·) ∈ L2(Ω,

Σ,µ) and ũ satisfies

(
Dγ

)2
ũ(t,ω) + 2aDγ ũ(t,ω) + m(ω)ũ(t,ω) = 0, (31)

ũ(0,ω) = f̃1(ω), Dγ ũ(0,ω) = f̃2(ω), (32)

for all ω ∈ Ω . Here Ω is the transform space, which comes from the spectral
theorem applied to the operatorA. The convergence referred to in the last sentence
of the theorem is pointwise for each ω in the transform spaceΩ .
Fix ω ∈Ω . Using the estimates above with b = m(ω), we conclude that there

exists ṽ = ṽ(t,ω), a solution of

2aDγ ṽ(t,ω) + m(ω)ṽ(t,ω) = 0,

such that

ũ(t,ω) = ṽ(t,ω) + δ̃(t,ω),

where δ̃(t,ω) = O(1/(t2γ )) as t → ∞. In the case γ = 1/2 the approximation is
even better, in the sense that δ̃ = O(1/(t3/2)).

Note that the rate of decay of ũ(t,ω) − ṽ(t,ω), as t → ∞, is estimated for
each ω and it may, in principle, depend on m(ω) (see (28)). Therefore, when
returning to the x-space by U−1, one cannot guarantee a uniform decay rate.
In the case when A has a bounded inverse A−1 (which does not hold for the
Laplacian appearing in the Kac model [6]), this issue is resolved by the fact that
m(ω) ! m0 > 0 for all ω. For the general case of a positive self-adjoint operator
A this asymptotic analyticity should be understood in the sense given in the proof
of the theorem, that is pointwise convergence in the Fourier space. The asymptotic
behavior and the limited ability to perform inverse operations may be crucial to
modeling particle motions in suspension flows, which appear to involve abrupt,
erratic changes in physical space, but would be expected to be well described by
the states of an energy space.
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