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Abstract

In this note, we prove that the maximally defined operator associated with the Dirac-type differ-
ential expression

d g )
_+f dx'm

where Q represents a symmetrig x m matrix (i.e.,Q(x)T = Q(x) a.e.) with entries irLlloc(R),

is J-self-adjoint, where7 is the antilinear conjugation defined kf = 01C, o1 = (10 16’) and

Clat,....am,b1,....bw) | = @i,...,am,b1,....bm) " . The differential expression(Q) is of
significance as it appears in the Lax formulation of the non-abelian (matrix-valued) focusing nonlin-
ear Schrodinger hierarchy of evolution equations.
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To set the stage for this note, we briefly mention the Lax pair and zero-curvature repre-
sentations of the matrix-valued AblowitKaup—Newell-Segur (AKNS) equations and the
special focusing and defocusing nonlinear Schrédinger (NLS) equations associated with it.
Let P = P(x,t) andQ = Q(x,t) be smoothn x m matricesn € N, and introduce the
Lax pair of 2n x 2m matrix-valued differential expressions
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wherez € C denotes a (spectral) parameter dpds the identity matrix inC”. Then the
Lax equation

d
M —[L.M]=0 (5)

is equivalent to the: x m matrix-valued AKNS system

i
Q1 = 50 +iQPQ =0,
i (6)
PI+§PXX_IPQP=07

where[-, -] denotes the commutator symbol. Similarly, the zero-curvature equation
U —-Vy+[U,V]=0 (7)

is also equivalent to the x m matrix-valued AKNS system (6). Two special cases of this
formalism are of particular importance: TfecusingNLS equation,

focusing: O, — %Qxx —iQQ0*0 =0, (8)

obtained from (1)—(7) in the special case whére- —Q*, and thedefocusind\LS equa-
tion,

defocusing: Q; — %Q” +iQQ0*0 =0, (9)

obtained from (1)—(7) in the special case where- 0*. HereQ* denotes the adjoint (i.e.,
complex conjugate and transpose) matrixQof

In this note, we will restrict our attention to the focusing NLS c#se- —Q*. (See,
e.g., [1, Section 3.3, Chapter 8], [13] and [14, Section 3.1] in which an inverse scattering
approach is developed for the matrix NLS equation (8).) Actually, (6), (8), and (9) are just
the first equations in an infinite hierarchy of nonlinear evolution equations (the non-abelian
AKNS, and focusing and defocusing NLS hierarchies) but we will not further dwell on this
point.
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Recently, it has been proved in [3] that the 2 matrix-valued Lax differential expres-
sion

& —q
M) =i ( & ) (10)
-7 -4
corresponding to the scalar focusing NLSrharehy defines, under the most general hy-
pothesisy € L (R) on the potential, a 7-self-adjoint operator irL2(R)2, whereJ is
the antilinear conjugationf = 01C, with o1 = (2 é) andC is complex conjugation ifC2.
This is the direct analog of a recently provercfin [4, Lemma 2.15] that the Dirac-type
Lax differential expression in the defocusing nonlinear Schrédinger (NLS) case is always
in the limit point case attoco. Equivalently, the maximally defined Dirac-type operator
corresponding to the defocusing NLS case is always self-adjoint.

In this paper we present an extension of the result in [3], far22m matrix-valued
Dirac-type differential expressions of the form

d
Oy —
M(Q)=i ("" nf ) (12)
_Q>k _Elm
associated with the non-abelian (matrix-valued) focusing NLS equation (8).
We will assume the following conditions af from now on AT denotes the transpose
of the matrixA):

Hypothesis 1. AssumeQ € L} (R)™*™ satisfies

0=0" ae. (12)

Next, we briefly recall some basic facts abgi#tsymmetric and7-self-adjoint opera-
tors in a complex Hilbert spack (see, e.g., [5, Section 111.5] and [6, p. 76]) with scalar
product denoted by, -)3; (linear in the first and antilinear in the second place) and corre-
sponding norm denoted Hy- ||. Let J be a conjugation operator i, that is,7 is an
antilinear involution satisfying

(Ju, vy =(Jv,u)y forallu,veH, J?=I. (13)
In particular,

(Ju, Jv)yy = (w,u)y, u,veH. (14)
A linear operatotS in H, with domain doniS) dense irf, is called.7-symmetric if

SCJS*T (equivalently,if JSJ C S%). (15)

Clearly, (15) is equivalent to
(Ju, Sv)y = (T Su,v)y, wu,vedoms). (16)

Here S* denotes the adjoint operator §fin . If S is 7-symmetric, so is its closurs.
The operatof is called.7-self-adjoint if

S=JS*J (equivalently,if JSJ =S5%). a7)
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Finally, a densely defined, closable operdiors called essentially/-self-adjoint if its
closure,T, is 7-self-adjoint, that is, if

T=JT*J. (18)

Next, assuming to be J-symmetric, one introduces the following inner product ).
on dom(J §*J) = J dom(S§*) according to [8] (see also [12]),

U, V) = (Ju, Jv) + (S*Tu, S* Tv)y, u,vedom(JTS*T), (19)

which renders doiiy/ $* 7) a Hilbert space. Then thelfowing theorem holdsk, denotes
the identity operator ift).

Theorem 2 (Race [12])Let S be a densely defined closgdsymmetric operator. Then
dom(7 §*7) = dom(S) &.. ker((S*7)? + I1), (20)
where @, means the orthogonal direct sum with respect to the inner prodyet,. In
particular, a densely defined closgtisymmetric operato§ is 7-self-adjoint if and only
if
ker((S* )%+ I¢) = {0}. (21)

Theorem 2 will be used to prove the principal result of this note that the (maximally
defined) Dirac-type operator associated with the differential expreasi@) in (11) (rel-
evant to the focusing matrix NLS equation (8)) is alwgiself-adjoint under most general
conditions on the coefficien® in Hypothesis 1 (see Theorem 4). This will be done by ver-
ifying a relation of the type (21).

To this end, it is convenient to introduce some standard notations to be used throughout
the remainder of this paper. The Hilbert spd¢ds chosen to be&.2(R)2" = L2(R)" &
L?(R)™. The space oft x m matrices with entries il (R) is denoted byLL (R)"™*™.

An antilinear conjugatiot in the complex Hilbert space?(R)?" is defined by

J =o01C, (22)
where
(0 I,
”‘(m 0)’
Clat,....am, b1, ....by) = (@1,...,am,b1,....bm)" . (23)

Given Hypothesis 1, we now introduce the following maximal and minimal Dirac-type
operators inL?(R)?" associated with the differential expressig(Q):

Dmax(Q)F = M(Q)F, (24)
F € dom(Dmax(Q)) = |G € L2 R)*" | G € ACioc(R)?", M(Q)G € LA(R)*"},
Dmin(Q)F = M(Q)F, (25)

F € dom(Dmin(Q)) = {G € dom(Dmax(Q)) | supaG) is compac}.

It follows by standard techniques (see, e[fj0, Chapter 8] and [15]) that under Hypoth-
esis 1,Dmin(Q) is densely defined and closable £#(R)2" and Dmax(Q) is a densely
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defined closed operator it?(R)2". Moreover one infers (see, e.g., [10, Lemma 8.6.2] and
[15] in the analogous case of symmetric Dirac operators)

Dmin(Q) = Dmax(—Q)*,  or equivalently  Dmin(Q)* = Dmax(— Q). (26)

The following result will be a crucial ingredient in the proof of Theorem 4, the principal
result of this note.

Theorem 3. Assume Hypothesls Let N(Q) be the followingformally self-adjoin} dif-
ferential expression

ilm -0
N(Q) =i ("x ) (27)
l Q*

d
ax Im

and denote bﬁmax(Q) the maximally defined Dirac-type operatoriif(R)?" associated

with N(Q),

Dmax(Q)F = N(Q)F, (28)
F e dom(Dmax(Q)) = {G € L2R)*" | G € ACioc(R)*", N(Q)G € LA(R)*"}.
Then,
(i) The following identity holds
M(—=Q)M(Q) = N(Q)*. (29)
(i) LetUp = Ugp(x) satisfy the initial value problem

, 0
UQ:(_Q* g>UQ, Ug(0) = Iom. (30)

Then{Ug(x)}er is a family of unitary matrices i©2" with entries iNACjoe(R) N
L*°(R) satisfying

d
USIN(Q)WUp =i— Ioy. 31
0 N(Q)Ug i1 (31)
(i) Letly denote the multiplication operator withip (-) on L2(R)2". Then Dmax(Q)

is unitarily equivalent to the maximally defined operatotif(R)%" associated with
the differential expression I,

~ d
Uy Dmax( QU = (ialzn) : (32)

max

dom((iilzm) ) = HL2(R)?"
dx max

={F e LAR)®" | F € ACioc(R)?", F' € L3(R)*"}.
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Moreover,

_ d?
Uy Dimax(— Q) Dmax(Q)Up = (—lem)max, (33)

2
dom((—d—zlz,ﬂ) ) = H%2(R)?"
dx max

={F e L2(R)*" | F, F' € ACioc(R)*", F', F" € LA(R)?"}.

Proof. That N(Q) is formally self-adjoint andv (— Q)M (Q) = N(Q)?3, as stated in (i),
is an elementary matrix calculation.

To prove (ii), we note that the initial value problem (30) is well-posed in the sense of
Carathéodory sinc@ e L%C(R)mxm (cf., e.g., [7, Lemma IX.2.2]) with a solution matrix
Ug with entries inACjoc(R). Moreover, for eachx € R, Ug(x) is a unitary matrix in
c2m, sincelU;, = —B(Q)Ug, with B(Q) = (QO* _OQ) being skew-adjoint. Thus, the entries

Ug,jk 1< j, k<2mof Uy (as well as those dflél) actually satisfy
Ug.jk € AClocR) NLTR), 1< j,k<2m. (34)

(Since Uy is a bounded matrix-valued ogagor of multiplication in L?(R)?", its en-
tries Ug ;« are all in L>*(R), as one readily verifies by studying scalar products
of the form (F;, Ug Fi)r2yen = (fj, Ug.jkfi) 2wy, 1 < j,k < 2m, where F; =
©,...,0, £;,0,...,00 T with f; € L?2(R), 1< j < 2m.) Next, fix F € ACjoc(R)?", such
thatt,' F € H-(R)?". Then

Uo(i- Lo Ut F =i F yiv i(U—l)iniFJriU (UoB(O)*)F
e\lax'?" )70 dx Cax\e dx e

=N(Q)F, (35)

where we used the fact thett ;") = U, B(Q)*. Thus, (i) follows.

Moreover, by (34), the fact thal/p is unitary in C?", and by (35) one concludes
dom(Dmax(Q)) =Uo H-2(R)?". This proves (32).

Clearly, (i) and (ii) yield the relation

_ d?
Ug M(=Q)M(Q)Ug = ——— Ion.

Thus, (33) will follow once we prove the following facts:

(i) UgF eL?R)®" ifandonlyif FeL%(R)?", (36)
(i) UgF e ACe(R)?" ifandonlyif F e ACic(R)?", (37)
(i) M(QUgQF e L>(R)®" ifandonlyif F’ e L?(R)>", (38)
(V) M(Q)UgF € ACioc(R)?" ifandonlyif F' € ACioc(R)?", (39)

(V) M(—Q)M(Q)UgF e L2(R)®" ifandonlyif F”e L?R)?". (40)
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Clearly (36) and (40) hold sind€,, is unitary inC2". (37) is valid since
Ug.jk»Uglis € ACoc®) NL®R),  j k=1,...,2m.

Next, for F = (F|', F,)T, F1, F> € L2(R)™, an explicit computation yields

@ gy 77 g
Uy F;+U;,F.
M(Q)UQF=i< Ol % 2/>, F=(F.F)" (41)
~USF-USF
whereU(Q’), 1=1,2,3,4, are blocks of the matrik/,
O 50
U U
0] 0]
Ug = ( ) . (42)
® B
Ug Up
Introducing
U(Ql) _U(QZ)
Vo =03Ugo3 = ( > s (43)
3 ()]
—Ug Up
one infersVy ., VQ"lj)k € ACloc(R)NL®(R), j,k=1,...,2m, and
VotM(QUQF =i(F{. - F3)", (44)

and hence (38) and (39) hold. This proves (33
The principal result of this note then reads as follows.

Theorem 4. Assume Hypothesis. Then the minimally defined Dirac-type operator
Dnin(Q) associated with the Lax differential expression

M(Q) =i (%I'" L ) (45)
-0 _%Im
introduced in(25)is essentially7-self-adjoint inL2(R)?", that is,
Dnin(Q) = J Dmin(Q)* 7, (46)
where7 is the conjugation defined i{22). Moreover,
Drin(Q) = Dmax(Q) (47)

and henceDmax(Q) is J-self-adjoint.

Proof. We first recall (cf. (26))
Dmin(Q)* = Dmax(—Q) (48)
and also note

I Dmax(— Q)T = Dmax(QT) = Dmax(Q). (49)
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Here we employed the symmetry @ (see (12)). SinceDmin(Q) is closed and7-
symmetric (this follows from (48) and (49)), ité-self-adjointness is equivalent to showing
that (cf. (21))

ker(Dmin(Q)*ijin(Q)*j + ILZ(R)Z»I) = ker(Dmax(—Q)Dmax(Q) + ILZ(]R)Zm)
= {0}. (50)

Since Dmax(— Q) Dmax(Q) is unitarily equivalent to(—d?12,, /dx%)max > 0 by Theo-
rem 3(iii), one concludes that

Dmax(—Q) Dmax(Q) > 0 (51)
and hence (50) holds. The fact (47) now follows from (46) and (48),
Dmin(Q) = ijin(Q)*j = J Dmax(—0)T = Dmax(Q). o (52)

As mentioned in the introductory paragraph, Theorem 4 in‘thself-adjoint context
can be viewed as an analog of [4, Lemma 2.15] in connection with self-adjoint Dirac-
type operator relevant in the non-abelian (matrix-valued) defocusing nonlinear Schrédinger
hierarchy (cf. also [9] for results of this type).

We conclude with a short remark. The special case where

g1 0 ... O
g2 0 ... O

o= . . . .| or Qo=@ 0, (53)
gn 0 ... O

is known as the vector NLS equation (cf. [2])

1
i+ 50l + lal?q =0, (54)

a generalization of the well-known Manakov system [11] (far= 2). Here q =
@1.---.gm) ", (I1? = g*q = Y71 19;1%). Unfortunately, the methods applied in this

note forced us to restrict our attention to symmetric matrigesnly (i.e.,Q = Q') and
hence our current result does not apply to the vector NLS case.
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