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ABSTRACT We present a simplified one-dimensional model for pulse wave prop-
agation through fluid-filled tubes with elastic walls, which takes into account the
elasticity of the wall as well as the tapering effect. The spatial dynamics in this
model is governed by a variable coefficient KdV equation with conditions given at
the inflow site. We discuss an existence theory for the associated evolution equa-
tion, based on a semilinear Hille-Yosida theory, which was previously developed for
the classical KdV equation.
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1 INTRODUCTION

The study of pulse wave propagation in blood vessels constitutes a major component
in the effort to better understand the dynamics of the circulatory system, both in
normal and pathological conditions. The blood is a suspension of cells and other
particles in plasma. Due to the complexity of blood rheology, a mathematical
description of blood itself has not yet been completely formulated. Nevertheless,
there have been many attempts of describing the dynamics in the circulatory system
through mathematical models built on various simplifying assumptions, see [9], [16],
[17], [19], [20], [21]. In the systemic circulation, the large vessels are approximated
by tubes with thin, elastic walls, while the blood filling the vessels is considered as a
continuum, incompressible fluid. For smaller vessels, the continuum assumption is
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no longer valid. The walls of the smaller arteries and arterioles become less elastic
and consist of a muscular tissue with important role in controlling the arterial
pressure.

The pressure wave, initiated in the ascending aorta by the heart, is propagated
along the arterial tree until it reaches the smallest sites of the circulation, the
capillaries. A major factor in the wave propagation is the elasticity of the wall. If
the vessel walls were rigid, the wave motion would be in bulk, even in the pulsatile
regime, with any disturbance at one end of the tube propagating with infinite speed
along the tube. This is not the case when the vessels walls are compliant, as in
the sistemic portion of the circulation. The compliance of the walls is reflected
by the presence of a circumferential stress corresponding to a given amount of
wall displacement from its initial configuration. This pressure is similar to the
hydrostatic pressure which appears in the models of the water waves in shallow
channels.

The heart plays the role of a wave maker in the systemic circulation. As an
analogy, there are mathematical models of wave generation in water channels, de-
scribed by Korteweg-de Vries equations in a quarter plane. The initial-boundary
value problem has been studied extensively, including well-posedness and regularity
of solutions (see, e.g., [1], [2], [3].) As noted in [2], laboratory coordinates are pre-
ferred for studying the initial-boundary value problem, since it restricts the (t, x) in
the quarter plane. Nevertheless, in case of a variable depth channel, other coordi-
nates were used, such as in [13] and [14]. It has been proven that with a particular
choice of a moving frame, the equation describing the wave propagation over an
uneven bottom is a variable coefficients Korteweg-de Vries equation. The evolution
is described with respect to the spatial variable x rather than the physical time t.
The advantage of such a description is that the inflow boundary condition becomes
an initial condition of the evolution. This is similar to the case of wave propaga-
tion in fiber optics, where the nonlinear Schrödinger equation describes the spatial
dynamics of the optical signal rather than its temporal evolution.

2 THE GOVERNING EQUATIONS

Throughout this paper we will assume that our fluid-filled tube has compliant walls
and circular cross-sections, at rest and during deformations. We assume that the
fluid is incompressible and inviscid, and therefore its motion is governed by the Euler
equations. We also assume that the motion is axisymmetric, therefore ū = ū(t̄, x̄, r̄)
and same for v̄, p̄, while the circumferential component of the velocity is identically
zero. Written in cylindrical coordinates, the equations of the fluid motion are

ūt̄ + ūūx̄ + v̄ūr̄ +
1
ρ
p̄x̄ = 0, (2.1)

v̄t̄ + ūv̄x̄ + v̄v̄r̄ +
1
ρ
p̄r̄ = 0, (2.2)

ūx̄ + v̄r̄ +
1
r̄
v̄ = 0, (2.3)

whenever 0 ≤ r̄ ≤ r̄w(t̄, x̄) = r̄o(x̄) + η̄(t̄, x̄). Here r̄w = r̄w(t̄, x̄) is the inner radius
of the tube, with r̄o = r̄o(x̄) is the radius of the unstressed tube and η̄ = η̄(t̄, x̄) the
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wall displacement from the unstressed position.
To obtain the boundary conditions at the wall, we assume that the fluid velocity

at the wall equals the velocity of the wall itself, (no-slip condition), i.e.

v̄(t̄, x̄, r̄)
∣∣
r̄=r̄w(t̄,x̄)

=
d

dt̄
r̄w(t̄, x̄)

= η̄t̄(t̄, x̄) + (r̄o(x̄) + η̄(t̄, x̄))x̄ ū(t̄, x̄, r̄)
∣∣
r̄=r̄w

,

or, ommiting the independent variables,

v̄ = η̄t̄ + (r̄ox̄ + η̄x̄) ū, (2.4)

whenever r̄ = r̄w(t̄, x̄) = r̄o(x̄) + η̄(t̄, x̄). Note that, under the incompresibility
assumption (2.8), the equation (2.4) is equivalent to

∂Ā

∂t̄
+
∂Q̄

∂x̄
= 0, (2.5)

where Ā = π(r̄o(x̄) + η̄(t̄, x̄))2 is the cross-sectional area and Q is the flux at site x
and time t.

Q̄(t̄, x̄) = π

∫ r̄w(t̄,x̄)

0

su(t̄, x̄, s)ds. (2.6)

Note that (2.5) is precisely the equation of conservation of total mass of the fluid.
The wall motion is determined by the transmural pressure p̄w = p̄ − p̄o (dif-

ference between pressure exerted by the fluid particles “pushing” the wall and the
atmospheric pressure) and the circumpherential stress, Sθθ, which has the form

Sθθ =
Ēσh

r̄2
o

η̄.

Here Ēσ = Ē
1−σ2 , Ē is the Young modulus of elasticity (may vary along the length

of the tube), σ is the Poisson ratio of the elastic wall (usually one takes σ = 1/2,
since the wall is considered incompressible), and h is the thickness of the tube. In
reality the strain-stress relation for the arterial wall is nonlinear, which means that
the Young modulus is dependent on the wall displacement as well as on the pulse
frequency. Nevertheless, in this paper we neglect such effects and consider only
linear elastic properties of the wall. We also neglect any gravitational effects.

If ρw denotes the density of the tube wall, then the equation of the wall motion
is

ρwh η̄t̄ t̄ = p̄w − Ēσ(x̄)h
r̄o(x̄)2

η̄. (2.8)

Note that we neglect the wall motion in the axial direction due to stretching.
Finally, the last restriction imposed is that the radial velocity vanishes in the

center of the tube,
v̄
∣∣
r̄=0

= 0, (2.9)

follows from the axisymmetry of the physical system.
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The first step in analyzing the system of equations (2.1)–(2.9) is to rewrite it in
terms of non-dimensional variables. To this end, consider new variables (t, x, r), η
as follows;

x̄ = Λ̄x, r̄ = R̄ r, η̄ = Ā η, (2.10)

t̄ =
Λ̄
c̄MK

t, (2.11)

where Λ̄ is a typical wave length of the waves propagating in the tube, R̄ is a
typical radius of a cross-section of the tube, and Ā is a typical amplitude of the
wall displacement from the unstressed position. The quantity c̄MK =

√
Ēh
2R̄ρ

is the
Moens-Korteweg velocity of a wave propagating along an elastic tube when all non-
linear terms are neglected. Here ρ is the density of the fluid and Ē is the Young
modulus of elasticity of the vessel wall.

Let ε = Ā
R̄

and δ = R̄
Λ̄

. In the sequel we assume that the following long-wave
hypothesis holds true:

ε << 1, δ2 = kε, k = O(1). (2.12)

In vivo, the ratios ε and δ vary considerably, depending on the vessel type; thus the
subsequent analysis and the model derived herein are valid only on scales compatible
with those satisfying (2.12). As a typical example of an artery under consideration
is the brachial artery, with typical radius R̄ = 0.3 mm and ratio ε = 0.1 and δ = 0.4.

Rescaling the axial and radial velocity and the pressure,

ū =εc̄MKu, v̄ = εc̄MKδv, (2.13)

p̄− p̄yo = ερc̄2MK p, (2.14)

then the non-dimensional variables u = u(t, x, r), v = v(t, x, r) and p = p(t, x, r)
satisfy the system

ut + εu ux + εv ur + px = 0, (2.15)

δ2 [vt + εu vx + εv vr] + pr = 0, (2.16)

ux + vr +
1
r
v = 0, (2.17)

in the region 0 ≤ r ≤ rw(t, x) = ro(x) + εη(t, x), with the boundary conditions

v = ηt + rox(x)u+ εηxu, (2.18)
ρwh

ρR
δ2 ηtt = pw − 2

E(x)
ro(x)2

η, (2.19)

whenever r = rw(t, x) = ro(x) + εη(t, x). Here pw(t, x) = p(t, x, rw(t, x)) and
E(x) = Ēσ(x)

Ē
is non-dimensional quantity depending on the axial position x. In the

case of a tube with same elasticity throughout its length, one can choose E(x) ≡ 1.
Finally, the axisymmetry assumption translates into

v = 0, whenever r = 0. (2.20)
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Next, consider new independent variables τ and ξ, similar to those used in [13],
to account for the variable “landscape” (radius and elasticity) in which the wave
propagation occurs, namely

τ = εx, ξ = G(x; ε)− t. (2.21)

The choice for G(x; ε) will be indicated below. The change of variables implies

∂t = −∂ξ, (2.22)
∂x = ε∂τ + g(τ)∂ξ, (2.23)

where g = dG
dx . Thus, the new set of equations satisfied by the velocity, pressure

and displacement in terms of the new variables, u = u(τ, ξ, r), v = v(τ, ξ, r), p =
p(τ, ξ, r) and η = η(τ, ξ), is

−uξ + εu (εuτ + g(τ)uξ) + εvur + εpτ + g(τ)pξ = 0, (2.24)
kε [−vξ + εu (εvτ + g(τ)vξ) + εvvr] + pr = 0, (2.25)

εuτ + g(τ)uξ + vr +
1
r
v = 0, (2.26)

whenever 0 ≤ r ≤ ro(τ) + εη(τ, ξ), together with

v = −ηξ + εroτu+ ε (εητ + g(τ)ηξ)u, (2.27)

γkεηξξ = pw − 2
E(τ)
ro(τ)2 η. (2.28)

whenever r = ro(τ) + εη(τ, ξ). For convenience, the notation γ = ρwh
ρR̄

was intro-
duced. In addition,

v = 0, when r = 0. (2.29)

A standard method of solving the system (2.24)–(2.29) is to look for solutions
η, u and v (similarly for p) in the form

η(τ, ξ; ε) = η0(τ, ξ) + εη1(τ, ξ) + o(ε), (2.30)
u(τ, ξ, r; ε) = u0(τ, ξ, r) + εu1(τ, ξ, r) + o(ε), (2.31)
v(τ, ξ, r; ε) = v0(τ, ξ, r) + εv1(τ, ξ, r) + o(ε). (2.32)

The zero-order terms must satisfy the system
−u0ξ + g(τ)p0ξ = 0
p0r = 0 0 ≤ r ≤ ro(τ)
g(τ)u0ξ + v0r + 1

rv0 = 0
(2.33)

and {
v0 = −η0ξ r = ro(τ)
0 = p0 − 2 E(τ)

ro(τ)2 η0.
(2.34)



6

In addition, v0 = 0 when r = 0. From (2.33) it follows that p0 is independent of r,

p0(τ, ξ, r) = pw0 (τ, ξ) = 2
E(τ)
ro(τ)2 η0, for all 0 ≤ r ≤ ro(τ). (2.35)

After a few computations, one obtains

v0 = −rg(τ)2 E(τ)
ro(τ)2 η0ξ, for all 0 ≤ r ≤ ro(τ). (2.36)

Note that v0 depends linearly on r. To satisfy the condition (2.34) at r = ro(τ),
the following must hold

g(τ) =
ro(τ)1/2

E(τ)1/2
, (2.37)

which is equivalent to choosing (in (2.21))

G(x; ε) =
∫ x

0

ro(εx′)1/2

E(εx′)1/2
dx′ =

1
ε

∫ εx

0

ro(y)1/2

E(y)1/2
dy. (2.38)

It is worth mentioning that in the case of an uniform tube (same radius and elasticity
along its length), then G(x; ε) = gx for some constant g, which means that our
choice of the variable ξ in (2.21) represents the moving frame (to the right) with
constant speed c = 1/g.

Thus far, the following relations hold true for the zero-order terms;

v0 = − r

ro(τ)
η0ξ, (2.39)

p0 = 2
E(τ)
ro(τ)2 η0, (2.40)

u0ξ = 2
E(τ)1/2

ro(τ)3/2
η0ξ. (2.41)

We note that u0ξ is also independent of r, although u0 is not.
The first-order O(ε) terms, evaluated for r = ro(τ), obey the system of equations

−u1ξ + g(τ)u0u0ξ + v0u0r + p0τ + g(τ)p1ξ = 0,
−kv0ξ + p1r = 0, 0 ≤ r ≤ ro(τ)
u0τ + g(τ)u1ξ + v1r + 1

rv1 = 0
(2.42)

and{
η0v0r + v1 = −η1ξ + roτ (τ)u0 + g(τ)u0η0ξ, r = ro(τ)
γkη0ξξ = po

1 − 2 E(τ)

ro(τ)2 η1.
(2.43)

Additionally, v1 = 0 when r = 0.
Our goal is to derive, from this system, equations for η0 and u0. First, (2.42)

yields
p1r = kv0ξ = −k r

ro(τ)
η0ξξ,
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thus

p1(τ, ξ, r) = −k r2

2ro(τ)
η0ξξ + p1(τ, ξ, 0), (2.45)

which implies (setting r = ro(τ))

po
1(τ, ξ) = −k ro(τ)

2
η0ξξ + p1(τ, ξ, 0).

From (2.43) we can write

−η1 =
ro(τ)2

2E(τ)

[
γ +

ro(τ)
2

]
kη0ξξ −

ro(τ)2

2E(τ)
p1

∣∣
r=0

.

and

vo
1 =

1
ro(τ)

η0η0ξ +
ro(τ)2

2E(τ)

[
γ +

ro(τ)
2

]
kη0ξξξ

− ro(τ)2

2E(τ)
p1ξ

∣∣
r=0

+ roτ (τ)uo
0 +

ro(τ)1/2

E(τ)1/2
uo

0η0ξ. (2.48)

We now turn to (2.42). Eliminating u1ξ yields

1
r

(rv1)r =− u0τ −
ro(τ)
E(τ)

u0u0ξ +
r

ro(τ)1/2
E(τ)1/2

u0rη0ξ

− 2
ro(τ)1/2

E(τ)1/2

[
E(τ)
ro(τ)2 η0

]
τ

− ro(τ)
E(τ)

p1ξ. (2.49)

Let

Q0 = Q0(τ, ξ) =
∫ ro(τ)

0

ru0(τ, ξ, r)dr (2.50)

be the “zero-order” flux at “time” τ and “position” ξ. Solving (2.49) for v1 and
substituting r = ro(τ), (vo

1 = v1

∣∣
r=ro(τ)

), we obtain

vo
1 =− 1

ro(τ)
Q0τ + roτ (τ)uo

0 −
4

ro(τ)3/2
E(τ)1/2

Q0η0ξ

+
ro(τ)1/2

E(τ)1/2
uo

0η0ξ −
ro(τ)3/2

E(τ)1/2

[
E(τ)
ro(τ)2 η0

]
τ

+ k
ro(τ)3

8E(τ)
η0ξξξ −

ro(τ)2

2E(τ)
p1ξ

∣∣
r=0

. (2.51)

Comparing this with the expression (2.48) we obtain

E(τ)1/2

ro(τ)1/2
η0τ +

ro(τ)3/2

E(τ)1/2

[
E

ro(τ)2

]
τ

η0 +
1

ro(τ)
η0η0ξ + k

ro(τ)2

2E(τ)

[
γ +

ro(τ)
4

]
η0ξξξ

+
1

ro(τ)
Q0τ +

4

ro(τ)3/2
E(τ)1/2

Q0η0ξ = 0. (2.52)
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Now, since u0ξ is independent of r (see (2.41)), we have

Q0ξ =
∫ ro(τ)

0

rdr u0ξ = E(τ)1/2ro(τ)1/2
η0ξ,

therefore
Q0(τ, ξ) = E(τ)1/2ro(τ)1/2

η0(τ, ξ) + f(τ), (2.54)

where f(τ) is independent of ξ. This is an important observation; it allows us to
determine f(τ) from the initial state of the tube, by setting t = 0 or, equivalently,
ξ = G(x; ε). Once f is known, the equation governing the τ -evolution of the wall
displacement reads

η0τ +
3
4

[
Eτ (τ)
E(τ)

− roτ (τ)
ro(τ)

]
η0 +

5
2

1

ro(τ)1/2
E(τ)1/2

η0η0ξ

+
k

2
ro(τ)5/2

E(τ)3/2

(
γ +

ro

4

)
η0ξξξ +

1

2ro(τ)1/2
E(τ)1/2

f ′(τ) +
2

ro(τ)E(τ)
f(τ)η0ξ = 0.

(2.55)

This is a variable coefficient Korteweg-de Vries equation with a forcing term (both
in wave amplitude and in wave velocity) which depends on the initial state of the
tube.

Remark 2.1. (i) As noted earlier, if one considers that the tube is initially in a
quiescent state (zero flux), then in the above equation one has f(τ) = 0, for all τ .

(ii) In the case of an uniformly elastic tube, when the elasticity does not change
along the tube one can take without loss of generality E(τ) ≡ 1 and thus obtain

η0τ −
3
4
roτ (τ)
ro(τ)

η0 +
5

2ro(τ)1/2
η0η0ξ +

k

2
ro(τ)5/2

(
γ +

ro(τ)
4

)
η0ξξξ = 0. (2.56)

If, in addition, the radius of the unstressed tube remains constant, then ro(τ) ≡
ro and the equation reads

η0τ + ση0η0ξ + κη0ξξξ = 0, (2.57)

with σ = 5
2ro1/2 , κ = k

2 ro
5/2
(
γ + ro

4

)
. This is the classical (constant coeficient)

KdV equation, derived in the context of elastic tubes in [7], [19], [20].
(iii) Another special case worth mentioning is when the elasticity of the tube

is proportional to the radius of the cross-section (without loss of generality, taking
E(τ) = ro(τ).)

3 INITIAL VALUE PROBLEM

In this section we will restrict our attention to the equation (2.55) with the forcing
term f(τ) = 0, and show that under appropriate conditions, the corresponding
initial value problem is well-posed. We will consider that the walls are thin compared
to the radius of the tube and thus we can take γ = 0. (this is only for simplicity of
the formulas.)
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Let q be defined by

η0(τ, ξ) =
ro(τ)3/4

E(τ)3/4
q(τ, ξ), (3.1)

so that q satisfies the equation

qτ +
5
2
ro(τ)1/4

E(τ)5/4
qqξ +

k

8
ro(τ)7/2

E(τ)3/2
qξξξ = 0. (3.2)

Introducing the new “time” variable τ ′ satisfying

dτ ′

dτ
=

5
2
ro(τ)1/4

E(τ)5/4
, (3.3)

we finally obtain,

qτ ′ + qqξ +
k

20
ro(τ ′)13/4

E(τ ′)1/4
qξξξ = 0. (3.4)

Denote the time dependent coefficient, appearing in the equation above, by α(τ ′) =
k
20
ro(τ ′)13/4

E(τ ′)1/4 . Then one has the variable coefficient KdV equation (we write, for
simplicity, τ instead of τ ′)

qτ + qqξ + α(τ)qξξξ = 0. (3.5)

Often “constant coefficient” problems are easier to solve, but spatially dependent
coefficients appear more often in models coming from the physical world, when the
phenomenon under consideration occurs on a variable landscape. The coefficient
α(τ) in (3.5) looks like a real valued function of time alone, but it is actually spatially
dependent, since τ is a variable that comes from rescaling x. This way of writing
the problem leads to significant simplifications.

We assume that the original system is periodic in time (i.e. laboratory time
t) with period T , that is we assume the system is in basal condition. Therefore
the same is true for the system described in the new coordinate ξ. Under this
assumption, all solutions of the equation (3.5) are ξ−periodic

q(τ, ξ) = q(τ, ξ + T ), for all τ, ξ. (3.6)

The initial data for (3.5) corresponds to τ = 0, which, in laboratory coordinates,
means x = 0, i.e. the inflow condition.

q(τ = 0, ξ) = q0(ξ) [= q0(−t, x = 0)]. (3.7)

One can verify that the following functional is invariant under the flow governed by
equation (3.5).

ϕ0(τ, q) =
1
2

∫
T

q(τ, ξ)2dξ (3.8)

Consider also the functionals

ϕ1(τ, q) =
1
2

∫
T

[
α(τ)qξ(τ, ξ)2 − 1

3
q(τ, ξ)3

]
dξ (3.9)
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and

ϕ2(τ, q) =
1
2

∫
T

[
α(τ)qξξ(τ, ξ)2 + β(τ)q(τ, ξ)2qξξ(τ, ξ) +

β(τ)
6α(τ)

q(τ, ξ)4

]
dξ. (3.10)

For our purposes, the choice of the funtion β(t) will be

β(τ) =
α(τ) + 4
α(τ) + 5

.

A formal computation (assuming that q = q(τ, ξ) is a solution of the initial-value
problem (3.5)–(3.7) and all derivatives of q involved exist), yields

d

dτ
ϕ1(τ, q) =

1
2
α′(τ)

∫
T

q2
ξ (3.11)

and, similarly,

d

dτ
ϕ2(τ, q) =

1
2
α′(τ)

∫
T

q2
ξξ + γ′(τ)

∫
T

q2qξξ +
(
γ(τ)

6α(τ)

)′ ∫
T

q4. (3.12)

Thus a sufficient condition for controlling the growth of the functionals ϕ1 and ϕ2

is
α′(τ) ≤ 0. (3.13)

The main result of this paper is a generalization of the results of [5] and [6], to the
nonautonomous case.

Theorem 3.1. Assume that α = α(τ) ∈ W 1,∞ is defined on some (possibly in-
finite) interval τ ∈ [0, L]. Then the initial value problem (3.5)–(3.7) is well-posed
in the space H2(T). If, in addition, q0 ∈ H3(T), then q(τ, ξ) is a classical solu-
tion. Moreover, if α(τ) is positive, nonincreasing function, then the solution exists
globally in time τ .

The semilinear Hille-Yosida theory presented in [5] and [6] finds a stongly con-
tinuous semigroup solution to the autonomous problem

dq

dτ
= Aq, q(0) = f, (3.14)

in circumstances in which the Crandall-Liggett theory (and various others as well)
does not apply. For the nonautonomous case,

dq

dτ
= A(τ)u, q(s) = f, (3.15)

A(τ) can be approximated on [s, τ ] by Aπ(τ) = A(τ̃i) on [τi−1, τi), for a given
partition π, s = τ0 < τ1 < . . . < τn = τ , and a choice of τ̃i ∈ [τi−1, τi). Thus

qπ(τ) =
n∏
j=1

T (τj − τj−1;A(τ̃j)) f, (3.16)
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where T (s;A(τ)) is the semigroup generated by A(τ) and initial time s, and the
product is ordered so that

∏n
j=1 Sjf means SnSn−1 . . . S2S1f . Finally one shows

that the solution of the IVP in the nonautonomous case is

q(t) = lim qπ(t)

where the limit is taken as the mesh of π (= maxj(τj − τj−1)) tends to zero.
The proof of our theorem relies upon writing the IVP as the abstract Cauchy

problem (on the Hilbert space H = L2(T))

dq

dτ
(τ) =α(τ)Aq(τ) +B(q(τ)) [=: A(τ)q] , (3.17)

q(0) = q0 ∈ H, (3.18)

where A = −∂3
ξ generates a C0 semigroup on H and B(u) = −u∂ξu is a nonlinear

operator satisfying a local quasi-dissipative condition. “Local” here means that the
quasi-dissipative constant depends on the level set of the functionals ϕ0, ϕ1 and ϕ2.
The estimates on the growth of these functionals along solutions follow from (3.11)
and (3.12), using Holder inequalities. More precisely, for all τ ,

ϕ0(τ, q) = ϕ0(0, q0), (3.19)
ϕ1(τ, q) ≤ ϕ1(0, q0), (3.20)
ϕ2(τ, q) ≤ eωτϕ2(0, q0), (3.21)

(3.22)

where ω = ω(‖q0‖H1(T)). The last inequality allows us to extend solution for all
“times” τ , thus obtaining global solutions. The solution itself is obtained as a
limit of approximate solutions obtained by discretizing the “time”. Thus it will be
sufficient to solve (for q) the resolvent equation

q − λαAq = λB(q) + p (3.23)

for every p ∈ H, and for sufficiently small λ > 0. This can be done via a fixed point
argument similar to the one presented in [5].
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