Exponential Numbers

ID1050-Quantitative & Qualitative Reasoning

In what ways can you have \$2000?

Just like fractions, you can have a number in some denomination

Number	Denomination	Mantissa	Power of 10
20,000	Dimes	20,000.	10 ⁻¹
2000	Singles	2,000.	10 ⁰
200	Tens	200.0	10 ¹
20	Hundreds	20.00	10 ²
2	Thousands	2.000	10 ³
0.2	Ten Thousands	0.2000	10 ⁴

- A number in this form has a mantissa (the number) and an exponent of 10 (the denomination)
- Notice the pattern: as the decimal moves left in the mantissa (decreasing its value), the exponent of 10 moves up (increasing its value), and vice versa.

Numbers in Exponential Notation

- Any number can be expressed in this type of exponential format.
- It is especially useful for really big and really small numbers.
 - One trillion = 1,000,000,000 = 1.00 X 10¹²
 - One billionth = 0.00000001 = 1.00 X 10⁻⁹
- Scientific calculators allow you to enter numbers in this format.
 - (see the calculator tutorial)

Numbers in Floating Point Notation

- This is our common way of expressing numbers.
- The number is written with the decimal point in whatever place is appropriate.
- There is no multiplication by a power of ten.
 - Example: 456.78 is in floating point notation.
- A number in floating point notation can be easily converted to exponential notation:
 - The floating point number becomes the mantissa
 - Multiply by ten to the zero power (which is, after all, equal to one)
 - Example: 456.78 in exponential notation becomes 456.78 x 10^o

Numbers in Scientific Notation

- A particular form of exponential notation is called scientific notation
- In this form, the mantissa must be between 1 and 10.
- This results in a single, non-zero digit, followed by the decimal point, and then perhaps more digits.
 - Examples: 1.2345 x 10³ and 5.0 x 10⁻⁴ (but not 0.65 x 10¹)
- Most calculators use scientific notation as their default way to express exponential numbers.
 - A number in exponential format can have the decimal anywhere in the mantissa, but the calculator will convert this into scientific notation.

Precision and Rounding

- The number of digits in the mantissa is a measure of the number's precision. We call this the number of significant figures.
- We could require the mantissa to have only 3 digits of precision, for example.
- We would need to truncate (drop) any digits after the third one (the second digit after the decimal point)
- If the mantissa has fewer than three digits, fill in with zeros on the right.
- Before we drop the 4th digit and beyond, we need to check to see if we should round the 3rd digit first:
 - If the 4th digit is between 0 and 4, don't change the 3rd digit
 - If the 4th digit is between 5 and 9, increase the 3rd digit by one
 - Example: 1.234 x 10³ becomes 1.23 x 10³
 - Example: 4.56789 x 10^{-8} becomes 4.57 x 10^{-8}
 - Example: 5.0 x 10¹ becomes 5.00 x 10¹

Addition/Subtraction in Exponential Format

There is a simple method for adding numbers in exponential format:

- Get both number's exponents to be the same by adjusting the decimal point of one of them. Use the rules 'exponent up, decimal left' or 'exponent down, decimal right'
- Keeping this common exponent for the power of ten, add the mantissas.
- Adjust the decimal and exponent to put the answer into proper scientific notation, and round to 3 significant figures

• Example:	1.23x10 ³	1.23 x10 ³	1.23 x10 ³	
	$+ 4.56 \times 10^{2}$	+ 0.456 $\times 10^3$	$+ 0.456 \times 10^3$	
			1.686 x10 ³	1.69 x10 ³

- Subtraction is done in exactly the same way, except you *subtract* the mantissas
- You can also just use a scientific calculator.

Multiplication/Division in Exponential Format

Multiplication of numbers in exponential format is even simpler:

- Multiply the mantissas.
- The power of 10 in the answer is the sum of the powers of 10 of the two numbers.
- Adjust the decimal and exponent to put the answer into proper scientific notation, and round to 3 significant figures
- Example: 3.7×10^5 * 5.6×10^1 3.7×10^5 + 5.6×10^1 20.72×10^6 2.07 $\times 10^7$
- Division works exactly the same, except you *divide* mantissas and *subtract* the powers

•	Example:	3.7	x10 ⁵		3.7	x10 ⁵		
		÷ 5.6	x10 ¹	÷	5.6	x10 ¹		
				0.	.66071	x10 ⁴	6.61	x10 ³

Conclusion

- Exponential notation is a form of expressing numbers, especially big and small numbers.
- Scientific notation is a particular type of exponential notation
- We can specify a precision in our answer and round to that precision
- The operations of addition, subtraction, multiplication, and division can be performed using a certain method, or using a calculator.