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ANGULAR MOMENTUM

PES 1000 – PHYSICS IN EVERYDAY LIFE



KINETIC ENERGY

• When an object is spinning, each point of mass on it has a velocity
depending on its distance from the spin axis.

• Any mass that moves has kinetic energy (𝐾𝑝𝑜𝑖𝑛𝑡 =
1

2
∗ 𝑚 ∗ 𝑣2), regardless of 

its direction.

• The total rotational kinetic energy is the sum over all of these points of 
mass.

• The shape of the mass is described by its rotational inertia, I

• The total kinetic energy due to an object’s rotation turns out to be:

• 𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1

2
∗ 𝐼 ∗ 𝜔2

• Note the similarity of this formula to the kinetic energy of a point mass.

• The units are still energy units, Joules.
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KINETIC ENERGY

• If the object is also translating, then the rotational kinetic 
energy is added to the translational kinetic energy due to 
the center of mass speed, vcm

• 𝐾𝑙𝑖𝑛𝑒𝑎𝑟 =
1

2
∗ 𝑀 ∗ 𝑣𝑐𝑚

2

• 𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1

2
∗ 𝐼 ∗ 𝜔2

• 𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑙𝑖𝑛𝑒𝑎𝑟 +𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

• Kinetic energy of the center of mass
plus

kinetic energy about the center of mass

w

vcm



TORQUE AND WORK

• For linear motion, we found that when a force, F, moves through a distance, Dx, work is 
done: 𝑊 = 𝐹 ∗ ∆𝑥

• When that force makes an object turn through an angle, Dq, then the torque, t, due to 
that force does work on the object.

• The work is 𝑊 = 𝜏 ∗ ∆𝜃

• Note the similarity to the linear work formula.

• The work units are still energy units, Joules.

• For linear motion, we found the Principle of Work and Energy

• Net work changes the kinetic energy:  𝑊𝑛𝑒𝑡 = ∆𝐾

• If rotational motion is included, then the net work can now also contain work done by a 
torque turning the object.

• DK now can include the rotational kinetic energy in addition to the linear kinetic energy.
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CONSERVATION OF ENERGY

• Conservation of Energy

• Recall that if the only forces involved in a situation are gravity and springs, then the total 
mechanical energy is constant:

• 𝑃𝐸𝑡𝑜𝑡𝑎𝑙 + 𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• Recall that gravitational potential energy depends on mass, gravity, and height:

• 𝑃𝐸𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚 ∗ 𝑔 ∗ ℎ

• Recall that spring potential energy depends on the spring constant, k, and the stretch or
compression, s:

• 𝑃𝐸𝑠𝑝𝑟𝑖𝑛𝑔 =
1

2
∗ 𝑘 ∗ 𝑠2

• With rotational motion now considered, the total kinetic energy is the sum of linear and 
rotational energy of motion:

• 𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑙𝑖𝑛𝑒𝑎𝑟 + 𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1

2
∗ 𝑀 ∗ 𝑣2 +

1

2
∗ 𝐼 ∗ 𝜔2



EXAMPLE: CONSERVATION OF ENERGY

• Imagine a downhill race between three shapes, a 
cylinder, a sphere, and a block.   All have the same 
mass, and the round objects have the same radius.

• The ramp under the block is ice (no friction) so 
that the block slides.

• The ramp under the other two shapes is rough 
enough that the other two shapes roll.

• If they all have the same mass and start at the 
same height, then they all have the same
gravitational potential energy.

• Whichever shape has the greatest translational 
speed will win the race.  So, who will win the race?
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EXAMPLE: CONSERVATION OF ENERGY

• Conservation of energy says:

• 𝑃𝐸𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐾𝐸𝑙𝑖𝑛𝑒𝑎𝑟 + 𝐾𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

• Note than whichever shape transfers the least potential 
energy into rotational energy will have the most left in 
translational energy (which wins the race.)

• The block transfers no potential energy into 
rotational energy, so the block wins the race.

• Since 𝐾𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1

2
∗ 𝐼 ∗ 𝜔2, the shape with the

least value of I will come in second.

• The sphere’s is 𝐼 =
2

5
∗ 𝑀𝑅2, while the cylinder’s is        

𝐼 =
1

2
∗ 𝑀𝑅2

• So the sphere is second, and the cylinder is last.
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ANGULAR MOMENTUM

• When an object is spinning, each point of mass on it has a velocity
depending on its distance from the spin axis.

• Any mass that moves has linear momentum (𝑝𝑝𝑜𝑖𝑛𝑡 = 𝑚 ∗ 𝑣).

• Its angular momentum (called orbital angular momentum) is defined as a vector:

• The direction is along the spin axis (all points have the spin axis in common)

• Its magnitude is 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 𝑚 ∗ 𝑣 ∗ 𝑟

• The total orbital angular momentum is the sum over all of these points of mass.

• The shape of the mass is contained in the rotational inertia, I

• The combined angular momentum due to an object’s spin turns out to be:

• 𝐿𝑠𝑝𝑖𝑛 = 𝐼 ∗ 𝜔

• Note the similarity of this formula to the linear momentum of a point mass.
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ANGULAR MOMENTUM

• If the object is also translating, then the spin angular 
momentum is added to the orbital angular momentum of the 
center of mass

• 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 𝑀 ∗ vcm ∗ 𝑑 where M is the total mass, vcm is the 
velocity of the center of mass, and d is the distance from 
center of mass from the origin.

• 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 + 𝐿𝑠𝑝𝑖𝑛 (these are added as vectors, tip-

to-tail)

• Angular momentum of the center of mass
plus

angular momentum about the center of mass d
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TORQUE AND ANGULAR IMPULSE

• For linear motion, we found that when a force, F, moves 
acts over a time interval, Dt, impulse is transferred: 
∆p = 𝐹 ∗ ∆t

• When that force makes an object turn, then the torque, t,
due to that force transfers angular impulse to the object: 
∆L = 𝜏 ∗ ∆t

• Note the similarity to the linear impulse formula.

• Forces can cause both a change in linear momentum and 
a change in angular momentum (if it also causes a 
torque).
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TORQUE AND ANGULAR MOMENTUM

• Recall Newton’s 2nd Law: F=m*a

• If mass is constant, then mass*acceleration = m*(change in velocity) 

• force = m*(change in velocity) = (change in momentum)

• So force causes a change in momentum over time, in the 
direction of the force.

• Newton’s 2nd Law applied to spinning objects is similar: 𝜏 = 𝐼 ∗ 𝛼

• If rotational inertia, I, is constant, then 𝐼 ∗ 𝛼 = I *(change in w) 

• torque = I *(change in w) =(change in angular momentum)

• So torque causes a change in angular momentum over time

• This leads to the gyroscopic effect that makes spinning wheels and toy 
tops behave in such a complicated way.

• The spinning wheel turns sideways instead of falling down due to 
its weight.

• Here is a video of this phenomenon: https://www.youtube.com/watch?v=NeXIV-wMVUk

https://www.youtube.com/watch?v=NeXIV-wMVUk


CONSERVATION OF ANGULAR MOMENTUM

• Conservation of Linear Momentum

• Recall that if the only significant forces involved in a situation are internal, then the total linear 
momentum is constant.

• For multiple objects, this says: 𝑚𝐴 Ԧ𝑣𝐴1 +𝑚𝐵 Ԧ𝑣𝐵1 = 𝑚𝐴 Ԧ𝑣𝐴2 +𝑚𝐵 Ԧ𝑣𝐵2

• For a single object, this is trivial: 𝑚 Ԧ𝑣1 = 𝑚 Ԧ𝑣2 or, in other words, velocity remains constant if 
no net force acts on it.  This is just a restatement of Newtons 1st Law.

• Conservation of Angular Momentum

• If the only significant torques involved in a situation are internal, then the total angular 
momentum is constant.

• For multiple objects (about some axis), this says: 𝐼𝐴𝜔𝐴1 + 𝐼𝐵𝜔𝐵1 = 𝐼𝐴𝜔𝐴2 + 𝐼𝐵𝜔𝐵2

• This becomes interesting when a single object can change its shape, however, thus changing its 
rotational inertia, I .

• 𝐼1𝜔1 = 𝐼2𝜔2 or 𝜔2 = ( Τ𝐼1 𝐼2)𝜔1



EXAMPLES OF CONSERVATION OF ANGULAR MOMENTUM

A single object: an ice skater going into a spin

• The skater has an initial angular velocity, w1, and a spread-out mass 
distribution, I1.

• Part-way into the spin, she brings her arms in, nearer to the spin axis.  This 
reduces her rotational inertia to I2.

• There is no net external torque on the skater, and the shape-changing 
forces are internal to the system, so angular momentum is conserved.

• Since the product of 𝐼 ∗ 𝜔 is constant before and after, and if I2 reduces, 
then w2 must increase.

w1



EXAMPLES OF CONSERVATION OF ANGULAR MOMENTUM

Two objects: Earth and Moon

• The angular momentum of the Earth/Moon system is a combination of the 
Moon’s orbital angular momentum and the Earth’s spin angular momentum.

• (We can ignore the relatively slow spin of the Moon’s spin and Earth’s small 
orbital motion about the Earth/Moon center of mass.)

• The total angular momentum of the Earth/Moon system is constant; there are 
no external torques that change it.

• The moon pulls on the water of Earth, causing tidal bulges on the Earth/Moon 
line.



EXAMPLES OF CONSERVATION OF ANGULAR MOMENTUM

Two objects: Earth and Moon

• The Moon makes Earth’s water bulge toward itself.  The bulge causes friction
on the ocean beds as Earth turns underneath it, slowing the Earth’s rotation, 
and therefore lowering Earth’s spin angular momentum.

• Since the total angular momentum is constant, the Moon’s orbital momentum 
must increase.  The Moon does this by moving farther from the Earth.

• This phenomenon is observable using laser reflection from mirrors left on the 
Moon during the Apollo program

• The Earth’s rotation is slowing by 2.3 milliseconds/century, and the Moon is 
receding at 3 cm/year.



SUMMARY

• Newton’s Law approach:

• Torque causes angular acceleration

• Angular acceleration changes angular 
velocity

• Work and energy approach:

• Torque can do work

• Work can change the amount of rotational 
kinetic energy of an object, and thus its 
angular velocity.

• Momentum and impulse approach:

• Torque generates angular impulse

• Angular impulse changes angular
momentum, and thus its angular velocity.
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CONCLUSION

• Rotational motion may be analyzed using energy methods:

• Torque can do work, which changes total kinetic energy.

• Kinetic energy can be due to linear motion, rotational motion, or both.

• Conservation of Energy includes rotational kinetic energy, too.

• Rotational motion may be analyzed using momentum methods:

• Torque generates angular impulse, which changes angular momentum.

• Angular momentum can be due to orbital motion, spin motion, or both.

• Conservation of Angular Momentum includes orbital motion, spin motion, or both.


