
Moment of Inertia - 1 

 

 

 

 

Moment of Inertia 
 

PES 1160 Advanced Physics Lab I 
 

 

 

 

Purpose of the experiment 

  
  

 Learn to measure the moments of inertia of a rotating body. 

 Learn how the moment of inertia changes with a respect to mass and 

location. 

 To understand what rotational inertia is and how it depends on the 

size, shape, and mass distribution of an object, as well as the axis the 

object is rotated about. 

 To dynamically measure the rotational inertia of a disk, bar, and ring. 

 To verify the Parallel Axis Theorem. 

 FYI 

 

 

 

 

 

 

 

 

 

                                                 
FYI If you toss a penny 10000 times, it will not be heads 5000 times, but more like 4950.  The heads picture 

weighs more, so it is slightly more likely to end up on the bottom. 
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 Background  

 

Torque 

 

Torque is the rotational analog to force.  You should recall that a force is a push 

or a pull that produces an acceleration.  Similarly, torque is an influence that produces an 

angular acceleration.  To understand torque, let’s compare Newton’s 2nd law to its 

rotational equivalent for a fixed axis: 

∑ 𝐹⃑ =   𝑚     𝑎⃑ 

∑ 𝜏 =     𝐼      𝛼⃑ 

 

 

 

 

So, by this comparison, we can see that torque is the cause of angular acceleration.  The 

resistance to angular acceleration, called rotational inertia and has the symbol 𝐼, is the 

subject of this lab (see the section ‘Rotational Inertia’ below).     

The fundamental mathematical expression of torque is: 

 

𝜏 = 𝑟×𝐹⃑ 

 

where the ‘×’ symbol is the vector product or cross product.  If you know what a cross 

product is, you are ahead of the game.  If not, a physical interpretation of the cross 

product follows below.   

When you apply the cross product, the magnitude of the torque is shown to be: 

 

𝜏 = 𝑟𝐹 sin 𝜃 

 

From this equation, you can see that the torque depends on the applied force (𝐹), the 

distance the force is applied from the pivot (𝑟), and the angle 𝜃 between 𝐹 and 𝑟. 

“Force” term. 

Cause of 

acceleration. 

“Inertia” term. 

Resistance to  

acceleration. 

“Acceleration” term. 
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 To clarify this mathematical relationship, let us take a look at the simple case of a 

wrench that is being used to loosen a bolt: 

 

 

 

 

 

 

 
Figure 1: Applying a torque to loosen a bolt. 

 

From this example you can see that the perpendicular component of the force (𝐹 sin 𝜃) 

will cause the wrench to rotate counterclockwise.  Whereas, the component of the force 

that is parallel to the wrench (𝐹 cos 𝜃) will only pull the wrench off the bolt and will not 

contribute to the rotation.  This is why the cross product is used in the torque equation: to 

only include those forces (or components of forces) directly responsible for rotation, and 

to eliminate those forces (or components) that do not contribute to the torque. 

If you take another look at the expression of torque, it is proportional to the 

distance from the pivot point where the force is applied.  Therefore, the same force 

applied at a greater distance will produce a greater torque.  If the force is applied at the 

pivot point the object will not rotate.  Have you ever tried to open a door from the hinge 

side?  The door will not rotate open when pushed on the hinge.  However, if you try to 

open the door from the handle side the door rotates open quite easily. 

In summary, torque is based on not only the perpendicular component of the force 

applied, but also the distance from the pivot.  Therefore, a larger torque can be applied, 

when the force remains constant, by simply increasing the distance from the pivot. 

 

 

 

Figure 2: “Give me a long enough lever and a place to put it and I can move the world.”  -Archimedes 

𝐹⃑ 

𝜃 
𝑟 

𝐹 sin 𝜃 

𝐹 cos 𝜃 
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Rotational Inertia 

 

As we have seen, rotational inertia is the resistance to angular acceleration in a 

similar sense to the way mass is the resistance to linear acceleration. You may see 

another term for rotational inertia, called moment of inertia. These two terms are used 

interchangeably. However, the term moment of inertia is unfortunate because the word 

“moment” invokes the notion of time. As we shall see, rotational inertia does not (directly 

anyway) depend on time. Rather, it is a function of the size, shape and mass of the object, 

as well as the distribution of mass about the rotational axis. 

Consider a point mass undergoing uniform circular motion of radius r: 

 

 

 

 

 

Figure 3: Point mass in uniform circular motion. 

The object’s kinetic energy is given by: 

K = ½ mv2  

where m is the mass of the object and v is its speed around the circle. Using the 

relationship between linear speed v and angular speed . 

v =  r 

we can rewrite the kinetic energy: 

K = ½ m(r)2 

Next, simply move the parentheses: 

K = ½ (mr2) 2 

 

We now define the rotational inertia as the term in parentheses.  So: 

K = ½ I 2 Rotational Kinetic Energy 

where:  I = m r2 

I  

𝑟 

𝑚 

𝑣 
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I is the rotational inertia of a point mass. As you can see, the rotational inertia of a point 

mass depends only on its mass m and its distance r from the axis it is rotating about. 

Now, let me emphasize something about that last calculation. I didn’t really change 

anything about the kinetic energy. All I did was rewrite the kinetic energy in terms of 

other variables. The physical quantity remains unchanged. The equations K = ½ mv2 and 

K = ½ I 2 are exactly the same thing for the point mass, just written in linear (m and v) 

and rotational (I and ) term respectively. 

Point masses are fine. However, there are many objects that aren’t point masses. 

So, what if we want to know the rotational inertia of something other than a point mass, 

such as a disk, ring or ball? The answer is simple. All we need to do is build the other 

objects (disk, ring, ball, etc.) out of a suitable arrangement of point masses. Then, we add 

up the inertial contributions of each point mass to find the total rotational inertia of the 

object. In doing so, we find that objects typically have a rotational inertia whose 

mathematical form looks like: 

I = CMR2 

where C is a constant that depends on the shape of the object and the axis the object is 

rotated about (different axes have different rotational inertias). Additionally, R is usually 

some measure of the size of the object, such as the radius of a disk or sphere. Again, M is 

the mass of the object. Therefore, the rotational inertia depends on: 

1.) The mass of the object (M).    3.) The shape of the object (C). 

2.) The size of the object (R).       4.) The axis the object is rotated about (C and R). 

 

Please notice that the rotational inertia does not depend on whether or not the object is 

actually rotating. That is, it is independent of how fast the object is rotating. Rotational 

inertia is mostly a geometric quantity that depends on sizes, shapes and distances, and not 

on motion. 

In this lab, you will dynamically determine the rotational inertia of several objects 

and compare your answer to what the rotational inertia should be based on the mass, size, 

shape and rotational axis. 
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The Parallel-Axis Theorem 

 

 The Parallel-Axis Theorem is a simple relationship between the rotational inertia 

about an axis through an object’s center of mass (called the center-of-mass axis) and any 

other axis that is parallel to the center-of-mass axis.  The diagram below shows this 

configuration: 

 

 

 

 

 

 

 

 

 

 

Figure 3: The Parallel Axis Theorem. 

 

 The relationship between the rotational inertia about the center-of-mass axis and 

the parallel axis is simple: 

𝐼𝑃𝐴𝑅𝐴𝐿𝐿𝐸𝐿 = 𝐼𝐶𝑀 + 𝑀𝑑2 (Parallel Axis Theorem) 

While the size, shape and mass of the object have not changed, the axis about which the 

object is rotated has changed.  When rotating the object about the parallel axis, the object 

is further on average from the rotational axis than it is when it is rotating about the 

center-of-mass axis.  Consequently, every part of the object would be moving around in a 

bigger circle on average, and this situation results in a larger rotational inertia.  

Mathematically, this is because when 𝑑 = 0, the rotational inertia is as small as possible.   

 In Part IV of this lab, you will verify the Parallel Axis Theorem in the case of a 

ring whose center has been offset from the rotational center. 

 

 

 

Center of 

Mass 

Center-of-

Mass Axis 
Parallel 

Axis 

𝑑 

𝑀 
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Measuring the moment of inertia 

 

 

We can now simplify our discussion somewhat by focusing on the specific configuration 

we will be using today: an arm rotating on an axle.  The setup can be changed by moving 

masses to different intervals along the length of the arm. 

 

 

 

The apparatus is made up of several parts.  A flat bar located on the top connected to a 

block which is screwed to an axle with a step pulley.  Masses can then be placed 

anywhere along the length of the arm to change the inertial setup.  From what you know 

from lecture class you could combine the equations of all the cylinders and bars that 

make up the apparatus and come up with an equation for the moment of inertia of this 

object!  The point of this lab is to test the theory not to beat it to death!  Let’s then simply 

measure the moment of inertia of this “arm”.  Later we will test the theory by applying 

point-masses along the arm (a much easier calculation) and measure how the inertia 

changed then compare the experimental data to the expected result. 

 The “arm” is rotated by a mass attached to a string that is then wrapped around 

the pulley.  When the mass is released the arm will rotate.  The mass will fall at a rate 

based on the moment inertia of the arm.  Change the moment of inertia of the system (by 

adding and/or repositioning masses) on the arm and the “hanging mass” will fall at a 

different rate.   

 

The “arm” 

pulley 

Rotating 

base 

“point mass” 

Step-pulley 
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The reason the arm rotates is because the hanging mass applies a torque on the pulley. 

T = r x F 

Since the force (F) is tangential to the pulley the cross product can be simplified to  

T = r F 

Using the rotational analog to Newton’s Second Law we get: 

T = I    

where I is the moment of inertia (of whatever is being spun) and  is the angular 

acceleration.  The angular acceleration of the pulley is related to the linear acceleration 

(a) of the hanging mass by:          

a = r       

where r is the radius of the pulley. 

Putting all this together we get a new expression for the Torque: 

r

a I
  T   

 If we now switch to an analysis of the hanging mass we can 

get some more information.  To avoid confusion between the 

tension in the string and the torque on the pulley I will write 

out Tension instead of using T.  From Newton’s Laws we get: 

-Tension + mg = ma 

In this case the tension in the string is the same force acting on 

the surface of the pulley.  The torque (T) can be written as:   

Torque = r F 

Torque = r (Tension) mg 

Tension 

𝑎Ԧ 

+ 
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Therefore, when we put everything together we get: 

  𝑟(𝑚𝑔 − 𝑚𝑎) = 𝐼𝛼 

Solving for I we get: 

𝐼 =
𝑚𝑟

𝛼
(𝑔 − 𝑎)  since 𝑎 = 𝑟𝛼 then, 

𝐼 =
𝑟

𝛼
𝑚𝑔 − 𝑚𝑟2   equation 1 

 

We now have the moment of inertia in terms of things we can measure: hanging mass 

(m), radius of the pulley (r) and the angular acceleration of the platform (α). 

 

 

Moment of inertia of some common shapes 

 

 

The moment of inertia has been predetermined for some common geometric shapes: 

Description Figure Moment(s) of inertia 

Point mass m at a 
distance r from the 
axis of rotation. 

 

I = mr2 

Rod of length L and 
mass m, rotating 
about its center. 

 

𝐼𝑐𝑒𝑛𝑡𝑒𝑟 =
1

12
𝑚𝐿2 

https://en.wikipedia.org/wiki/File:PointInertia.svg
https://en.wikipedia.org/wiki/File:Moment_of_inertia_rod_center.svg
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Solid cylinder of 
radius r, height h  
and mass m. 
 

 

𝐼𝑧 =
1

2
𝑚𝑟2 

𝐼𝑥 = 𝐼𝑦 =
1

12
𝑚(3𝑟2 + ℎ2) 

Thick-walled 
cylindrical tube,  
of inner radius r1, 
outer radius r2, 
length h and  
mass m. 
 

 

𝐼𝑧 =
1

2
𝑚(𝑟1

2 + 𝑟2
2) 

𝐼𝑥 = 𝐼𝑦 =
1

12
𝑚(3(𝑟1

2 + 𝑟2
2) + ℎ2) 

Regular octahedron  
of side s and  
mass m 

 

𝐼ℎ𝑜𝑙𝑙𝑜𝑤 =
1

6
𝑚𝑠2 

𝐼𝑠𝑜𝑙𝑖𝑑 =
1

10
𝑚𝑠2 

Solid 
sphere (ball) of 
radius r and 
mass m. 

 

 

𝐼 =
2

5
𝑚𝑟2 

 

 

https://en.wikipedia.org/wiki/File:Moment_of_inertia_solid_cylinder.svg
https://en.wikipedia.org/wiki/File:Moment_of_inertia_thick_cylinder_h.svg
https://en.wikipedia.org/wiki/File:Octahedral_axis.gif
https://en.wikipedia.org/wiki/File:Moment_of_inertia_solid_sphere.svg

