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Abstract. It is known that an HIV infection when concomitant with another disease
such as tuberculosis or pneumonia is a lot more lethal than HIV alone. We introduce
two mathematical models for which if the concomitant diseases are prevalent enough in a
given population and if double infections are lethal enough then HIV cannot take hold in
this population. This provides an alternative (or a complement) to the theory that what
determines whether a population will suffer an HIV epidemic is its sexual behavior. Our
point of view may be relevant to the situation in Southeast Asia.

1. Introduction. There are many infectious diseases that plague the poorest popu-
lations: tuberculosis, pneumonia, sexually transmitted diseases. The combination of one
of these infectious diseases with HIV is known to be more lethal than HIV alone. For
instance, it is thought that today at least one billion people are infected with tubercu-
losis. Of these, if they are not also infected with HIV, only a fraction (between 5% and
15%) will develop the disease during their lifetime, see Enarson and Rouillon (1998). The
appearance of HIV in an individual infected with TB disrupts the balance between the
tubercle bacillus and its human host. It is believed that more than 30% of people infected
with both HIV and TB develop TB during their lifetime. Moreover, the response to TB
treatment is much better in people who are HIV negative than in people who are HIV
positive, see Enarson and Rouillon (1998), Rieder et al. (1989) and Chum et al. (1996).

The HIV pandemic has hit very hard some populations (in particular in Africa) while
it has largely spared some other populations (in particular in some parts of Asia). A widely
accepted explanation for that is the difference in sexual behavior in different populations
(see UNAIDS (1998) and (1999)). In this paper we propose an alternative theory. If
the double infection by HIV and a given concomitant infection is lethal enough and if a
given population has a high enough density of the concomitant infection then HIV cannot
take hold in the population. It is known that if a given disease is too virulent (such as
Ebola, for instance) then it cannot spread. Our hypothesis is that many double infections
such as TB/HIV are too virulent to spread. We are in particular interested in Southeast
Asia where TB is highly prevalent (more than 50% of the population is infected in some
countries) and which has been somewhat spared by the HIV pandemic so far, see Dye et
al. (1999). We will use two simple mathematical models to make our point more precise.
In the first model we will assume that all individuals mix together. In the second model
there will be a spatial structure and the individuals will be able to mix only with their
nearest neighbors. Our results will show that the two models have the same qualitative
behavior. Since these two models are at opposite ends in terms of mixing and they show
the same qualitative behavior we think this is a good indication that our results hold for
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a rather general class of models. The models used below are variations of models used in
Schinazi (2001) for another question.

2. A model with total mixing. We consider a population for which there is at least
one endemic disease such as TB, pneumonia or a sexually transmitted disease which is not
HIV. An individual taken at random in the population is infected with the endemic disease
with probability p. For each individual in the population there are three possible states: 0
(HIV negative), 1 (HIV positive, no concomitant infection) or 2 (HIV positive, concomitant
infection). Our (very) simple minded model evolves as follows. An individual in state 0 is
infected by HIV at a rate proportional to the density of HIV infected individuals in the
population. A newly HIV infected individual is in state 2 with probability p or in state 1
with probability 1 − p, depending whether he was already infected by something else or
not. Individuals in states 1 and 2 die at rate δ1 and δ2, respectively. We will assume the
biologically meaningful hypothesis that

δ1 < δ2.

Let ui, i = 0, 1, 2, be the density of individuals in state i. In particular, u0 + u1 + u2 = 1.
Assuming that all individuals mix with each other we get the following system of differential
equations:

du1

dt
=λ(1 − p)u0(u1 + u2) − δ1u1

du2

dt
=λpu0(u1 + u2) − δ2u2

where λ is the infection rate. It is clear that (u1, u2) = (0, 0) is an equilibrium for the
system above. This is the HIV free equilibrium. If this equilibrium is unstable we will say
that an HIV epidemic is possible. If (0,0) is stable then we will say that an HIV epidemic
is not possible. We know that an equilibrium is stable if and only if all eigenvalues of
the Jacobian matrix have strictly negative real parts. For an elementary introduction
to stability see for instance Boyce and DiPrima (1992). The Jacobian of the system of
differential equations at (0,0) is

(
λ(1 − p) − δ1 λ(1 − p)

λp λp − δ2

)
.

The determinant of this matrix is

Det = λp(δ2 − δ1) − δ2(λ − δ1)

and its trace is
Tr = λ − (δ1 + δ2).

There are three cases to consider.

(a) Assume that λ < δ1 < δ2. In this case the determinant is positive and the trace is
negative for any p in [0,1] and δ2 > δ1. Thus, the eigenvalues of the Jacobian have negative
real parts. The equilibrium (0,0) is stable and no epidemic can take place.
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(b) Assume that δ1 < λ < δ2. Note that the determinant is negative if and only if

p < pc

where

pc =
δ2

δ2 − δ1
(1 − δ1/λ).

Observe that under the assumption δ1 < λ < δ2 the critical value pc is strictly between 0
and 1.

If
p > pc

then the determinant is positive and the trace is negative. Thus, no epidemic is possible.
In conclusion, under the assumption δ1 < λ < δ2 an epidemic is possible if and only

if p is smaller than pc.

(c) Assume that δ1 < δ2 < λ. In this case the determinant is negative for all p in [0,1].
For, using that p ≤ 1 we get

Det = λp(δ2 − δ1) − δ2(λ − δ1) ≤ λ(δ2 − δ1) − δ2(λ − δ1) = δ1(−λ + δ2) < 0.

Thus, in this case an epidemic is always possible.

Case (b) is the most interesting one. There, we assume that δ1 < λ < δ2. That is,
an HIV epidemic is possible in the absence of concomitant diseases (p = 0 and δ1 < λ)
but is not possible in the case where the whole population is infected by a concomitant
disease (p = 1 and λ < δ2). We have shown that an HIV epidemic is possible if and only if
the proportion p of the population infected with a concomitant infection is above a certain
threshold pc. So, at least in theory, if the double infection is lethal enough (mathematically
this is translated by λ < δ2) then an HIV epidemic is not possible in a population where
other infections are highly prevalent (that is, if p > pc).

3. A model with little mixing

We now consider a continuous time spatial stochastic model ηt on Zd where each site
may be in one of three states: 0, 1 or 2. If the model is in configuration η, let n1(x, η) and
n2(x, η) be the number of nearest neighbors of x (among the 2d nearest neighbors of x)
that are in state 1 and in state 2, respectively. Assume that the model is in configuration
η, then the state at a given site x evolves as follows:

0 → 1 at rate λ(1 − p)(n1(x, η) + n2(x, η))
0 → 2 at rate λp(n1(x, η) + n2(x, η))
1 → 0 at rate δ1

2 → 0 at rate δ2
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In words, 1’s and 2’s infect nearest neighbors that are in state 0 at rate λ. Newly infected
individuals are 1 with probability 1 − p or 2 with probability p. Infected individuals in
state 1 and 2 die at rates δ1 and δ2, respectively. For this model we will say that an
HIV epidemic is possible if there is a positive probability that the process never hits the
configuration where all sites are in state 0.

In the absence of concomitant infection, i.e. p = 0, we have a population of 0’s and
1’s only. In this particular case, the system evolves as

0 → 1 at rate λn1(x, η)
1 → 0 at rate δ1

The model above is called a contact process. It is known that there is a critical value λc

(that depends on the dimension d of the grid Zd) such that if λ ≤ λc then an epidemic is
not possible (the 1’s die out) while if λ > λc then an epidemic is possible. For more on
the contact process, see for instance Liggett (1999). We are now ready to state our result.

Theorem. (a) If λ
δ1

< λc then no HIV epidemic can take place for any p in [0,1] and
any δ2 > δ1.

(b) If λ
δ2

< λc then for any δ1 < δ2 there is a pc(λ, δ1, δ2) in (0,1) such that no HIV
epidemic can take place for any p > pc.

(c) If λ
δ2

> λc then for any δ1 < δ2 and any p in [0,1] an epidemic is possible.

Observe that the spatial stochastic model has the same qualitative behavior as the
mean field model. We see again in (b) that if a large proportion of a population is already
sick and if the double infection with HIV is lethal enough then HIV will not be able
to invade this population. This might be one explanation why Southeast Asia has been
largely spared (so far) by the HIV pandemic: this is one of the regions in the world where
TB prevalence is the highest (see Dye et al. (1999)). However, there are certainly other
explanations why some populations have been hit harder than others by the HIV pandemic.
In particular, sexual practices such as the number of partners per individual seem to play a
pivotal role, see Rotello (1997), UNAIDS (1998) and (1999). It might be the case that the
proportion in the population of concomitant infection is useful as a secondary explanatory
variable (after sexual practices) to predict whether HIV will invade a given population.

4. Proof of the Theorem. We now give the explicit graphical construction for the
process ηt. The graphical construction takes place in the space-time region Zd × (0,∞).
Consider a collection of independent Poisson processes: {Nx,y, Dx : x, y ∈ Zd, ||x−y|| = 1}.
For x and y in Zd such that ||x − y|| = 1 let the intensities of Nx,y, Dx be λ and δ2,
respectively. For each x in Zd, at each arrival time of the Poisson process Dx, if there is a
2 at x it is replaced by a 0. If there is a 1 at x then it is replaced by a 0 with probability
δ1/δ2. With this recipe deaths of 2’s occur at rate δ2 and deaths of 1’s occur at rate δ1.
Moreover, the deaths are coupled in a way that will be useful in our proof. At an arrival
time of Nx,y if there is a 1 or a 2 at x and a 0 at y we put a 1 at y with probability 1 − p
or a 2 at y with probability p. In this way we obtain a version of our spatial stochastic
process. We construct the process restricted to a space-time region A if we only use the
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arrival times of the Poisson processes Nx,y and Dx for x and y inside A. For more on
graphical constructions, see p 32 in Liggett (1999).

Proofs of Theorem (a) and (c)
Consider the contact process ξt with only states 0 and 1 and rates:

0 → 1 at rate λn1(x, ξ)
1 → 0 at rate δ1

We construct the process ξt with the same Poisson processes Nx,y and Dx that we use
for ηt. However, for ξt we take p = 0 in this construction. It is easy to check that if we
take initial configurations ξ0 and η0 such that if there is a 1 or 2 at x for the configuration
η0 then there is a 1 at x for the configuration ξ0 then the same is true at any time t for
configurations ηt and ξt. This is due to the fact that birth rates for ξt and ηt are the same
but death rates are lower for ξt than for ηt. Under the assumption λ

δ1
< λc, the 1’s in ξt

die out for any initial configuration thus the 1’s and 2’s in ηt must die out as well. An
epidemic is not possible. This completes the proof of (a).

The proof of (c) is quite similar to the proof of (a). We consider a contact process ζt

that evolves according to the following rates:

0 → 2 at rate λn2(x, ζ)
2 → 0 at rate δ2

We also construct ζt in the same probability space as ηt by using the same Poisson processes
to construct both processes. However, for ζt we take p = 1 in this construction. This time
ζt is below ηt in the following sense. If we take initial configurations ζ0 and η0 such that if
there is a 2 at x for the configuration ζ0 then there is a 1 or a 2 at x for the configuration
η0 then the same is true at any time t for configurations ζt and ηt. This is due to the fact
that birth rates are the same for both processes but death rates are higher for ζt than for
ηt. Under the assumption λ

δ2
> λc, starting with at least one 2, the 2’s in ζt have a positive

probability of surviving forever. The same must be true for ηt. An epidemic is possible.
This completes the proof of (c).

Proof of Theorem (b)
This has essentially been proved in Schinazi (2001). However, the 1’s there correspond

to the 2’s here, p near 0 there corresponds to p near 1 here. Since the proof is not that
long we decided to give a complete proof with the necessary modifications.

We prove (b) under the assumption d = 2, in order to avoid more cumbersome nota-
tion. The same ideas work in any d ≥ 1.

We define two space–time regions:

A = [−2L, 2L]2 × [0, 2L], B = [−L, L]2 × [L, 2L]

where L is an integer to be chosen later. Define C to be part of the ‘boundary’ of the box
A:

C =
{

(m, n, t) ∈ A : |m| = 2L or |n| = 2L or t = 0
}
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We will compare our spatial stochastic model to a certain dependent percolation process
on the set L = Z2 × Z+, where Z+ = {0, 1, 2, . . .}. For a short introduction to oriented
percolation, see p 13 in Liggett (1999). We say that the site (k, m, n) in L is wet if there
are no 1’s and no 2’s in (kL, mL, nL) + B whatever the configuration in (kL, mL, nL) + C
is for the process restricted to (kL, mL, nL) + A. Sites which are not wet are called dry .

For any ε > 0, given λ
δ2

< λc and δ1 < δ2 we will show that there is an integer L and
a proportion pc such that:

P
(
(k, m, n) is wet

)
≥ 1 − ε if p > pc.

We start by showing the above property when p = 1. Then, using a continuity argument,
we will deduce that the inequality remains true for p close to but smaller than 1. By
translation-invariance, it suffices to consider the site (0, 0, 0) ∈ L. Note that if p = 1 then
1’s and 2’s do not give birth to 1’s in the space-time region A and the 1’s that are in
[−2L, 2L]2 at time 0 will rapidly disappear. Let E be the event that there are no 1’s left
at time L/2 in [−2L, 2L]2. Because there are (4L+ 1)2 sites in A and since the death rate
of 1’s is δ1 we have that

P (E) ≥ (1 − e−δ1L/2)(4L+1)2 .

By taking L large enough, the r.h.s. may be made larger than 1 − ε/4 for an arbitrarily
small ε > 0.

On E there are only 0’s and 2’s left in [−2L, 2L]2 by time L/2. Thereafter the 2’s
evolve as a subcritical contact process in A. Let F be the event that there are no 2’s in
the space time region B. On E, if there is a 2 in B there must be an infection path from
[−2L, 2L]2 × L/2 into B or from one of the sides of the box A into B. Let D be

D = {(m, n) ∈ Z2 : |m| = 2L or |n| = 2L}.

Let {(x, t) → B} denote the event that there is an infection path from (x, t) to B inside A.
We have that

P (∃x ∈ D, ∃t ∈ [0, 2L] : (x, t) → B) ≤
∫ 2L

0

∑

x∈D
P ((x, t) → B)dt.

An infection path from x in D to B has length at least L. Bezuidenhout and Grimmett
(1991) have shown, for the subcritical contact process, that the probability that an infection
path is at least L long is less than Ce−γL where C and γ are strictly positive constants.
Thus,

P (∃x ∈ D, ∃t ∈ [0, 2L] : (x, t) → B) ≤
∫ 2L

0

∑

x∈D
Ce−γLdt = 2L × 4(4L + 1)Ce−γL.

Similarly the probability of an infection path from [−2L, 2L]2 × L/2 to B is less than
(4L + 1)2Ce−γL/2. Therefore, we have

P (F |E) ≥ 1 − 8L(4L + 1)Ce−γL − (4L + 1)2Ce−γL/2.

6



By taking L large enough the probability above may be made larger than 1−ε/4. We have

P
(
(0, 0, 0) is wet

)
≥ P (EF ) = P (E)P (F |E) ≥ 1 − ε/2 if p = 1.

Since A is a finite box there is pc < 1 such that with probability at least 1− ε/2 there are
no arrivals inside A of Poisson processes with rate λ(1 − p). That is, by picking p close
enough to one there will be no birth of 1 inside A, with high probability. Therefore, we
get

P
(
(0, 0, 0) is wet

)
≥ 1 − ε if p > pc.

We define a percolation process on L for which the probability that a given site is wet
is 1 − ε. We position oriented edges between sites in L in order to obtain a percolation
model. For (k, m, n) and (x, y, z) in L, we draw an oriented edge from (k, m, n) to (x, y, z)
if n ≤ z and if the intersection between (kL, mL, nL) + A and (xL, yL, zL) + A is not
empty. Note that the event {(k, m, n) is wet} depends only on the graphical construction
within (kL, mL, nL)+A. Given (k, m, n) in L there is only a fixed number of sites (j, r, s)
in L such that (kL, mL, nL) + A and (jL, rL, sL) + A intersect. Given that events that
depend on disjoint regions of the graphical construction are independent, the percolation
process we have defined in L although dependent, has an interaction with only finite range.

A path of dry sites for this model is a connected oriented path which moves along
oriented edges (in the direction of the edge) and through dry sites only.

Since ε > 0 can be taken arbitrarily small, it is not difficult to see that the prob-
ability of a path of dry sites between sites x and y in the percolation process decreases
exponentially fast with ||x − y||, see (8.2) in Berg et al. (1998). Notice that a 1 or 2 at
x at time t implies an infection path from time 0 to time t. This infection path for the
spatial stochastic process corresponds to a path of dry sites for the percolation process.
But long dry paths for the percolation process are very unlikely. By using this comparison
it is possible to show that for any fixed site, after a finite random time, there will never be
a 1 or a 2 at that site if p > pc for the spatial stochastic process. See the proof of Theorem
4.4 in Berg et al. (1998) for more details. This completes the proof of Theorem (b).
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