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Abstract. We show that a branching random walk that is supercritical on Zd, that

is, starting with a single particle there is a positive probability that there will be particles

at all times somewhere on Zd is also supercritical, on a rather strong sense, on a large

enough finite ball of Zd. This implies that the critical value of branching random walks on

finite balls converges to the critical value of branching random walks on Zd as the radius

increases to infinity. Our main result also implies coexistence of an arbitrary finite number

of species for an ecological model.

1. Introduction and results.

Consider a branching random walk (ξt : t ≥ 0) on {Z+}Z
d

= {0, 1, 2, . . .}Zd

. Multiple

indeed unbounded number of individuals are permitted at each site. More precisely, for

x ∈ Zd and ξ in {0, 1, 2, . . .}Zd

,

ξ(x) = 0 will represent a vacancy site x for configuration ξ, ξ(x) = n > 0 will represent

the presence of n individuals at site x.

Individuals die at rate 1 and at a site new individuals are born according to the

number of individuals that are present at neighboring sites. The system is a spin system
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in that changes can occur at a single site at most for any time t; this change must consist

of a change in value (up or down) of precisely 1. For n > 0, ξ(x) = n, the up rate is

c+(x, ξ) = lim
t→0

P ξ(ξt(x) = n + 1)
t

= λ1

∑

y∈Zd:x∼y

ξ(y)/(2d),

where x ∼ y means that y is one of the 2d nearest neighbors of x. The down rate is

c−(x, ξ) = lim
t→0

P ξ(ξt(x) = n − 1)
t

= n = ξ(x).

The process ξt can be constructed using Harris’ graphical construction. See, for in-

stance, Section 3 in Pemantle and Stacey (2001).

Remark. Since we are dealing with unbounded spins (that is, an unbounded number

of individuals is possible at each site) the process will not be defined for all ξ0 but following

e.g. methods of Kesten & Van den Berg (2000) one can show the existence of a non

explosive process satisfying the above conditions for ξ0(x) bounded over x.

Let |ξt| =
∑

y∈Zd ξt(y) be the number of particles of ξt at time t, for an initial config-

uration ξ0 such that |ξ0| < ∞. Note that if |ξt| = n

|ξt| → n + 1 at rate nλ1

|ξt| → n − 1 at rate n.

That is, the process |ξt| is a continuous time (non spatial) branching process. Clearly its

critical value is 1: starting with one individual, there is a positive probability that the

process does not become extinct if and only if λ1 > 1.

In this paper we are concerned with branching random walks restricted to a finite set:

births from outside the finite set into the finite set are not permitted. Let |.| denote the

Euclidean norm on Zd and let

Bn = {x ∈ Zd : |x| ≤ n}.

A branching random walk restricted to the set Bn is the Markov chain on {0, 1, 2, . . .}Bn

with transition rates, for x in Bn,

c̄+(x, ξ) = λ1

∑

y∈Bn:x∼y

ξ(y)/(2d)
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and

c̄−(x, ξ) = c−(x, ξ).

Theorem 1. If λ1 > 1 then there exists an integer n such that the branching random

walk restricted to Bn survives in the following (strong) sense: there exists a function fn

on Bn such that for any α > 0 there exists N = N(α, n) such that

if ξ0(x) > Nfn(x), ∀x ∈ Bn,

then with probability at least 1 − α we have for any δ ∈ (0, 1)

ξt(x) > N(1 − δ)fn(x)e(λ1−1)t/2, ∀x ∈ Bn, and ∀t > 0.

Theorem 1 is concerned with the behavior of a branching random restricted to a finite

set when the unrestricted branching random walk is supercritical. A dual point of view is

to examine the local behavior of unrestricted branching random walks. This has been done

for continuous space branching random walks, see, for instance, Englander and Kyprianou

(2004) or Englander and Pinsky (1999) and the references there.

We now turn to two applications of Theorem 1.

It is easy to see by the attractiveness of the systems (see e.g. Liggett(1985)) that the

branching random walk restricted to Bn has a critical value λn
c such that, starting with a

single particle, this process gets extinct with probability 1 for λ1 below λn
c and becomes

extinct with probability strictly less than 1 for λ1 above λn
c . It is also not difficult to show

that λn
c is larger than 1 (the critical value of the unrestricted branching random walk) and

is finite but an exact computation seems out of the question. This is so because the birth

rate of a particle depends on where the particle is: near the boundary or inside Bn. For

this process (unlike what happens for the unrestricted process) the critical value depends

on the geometry of the space on which the process is restricted. However, as a direct

consequence of Theorem 1 we get

Corollary 1. The critical value λn
c of the branching random walk on Bn converges

to the critical value of the branching random walk on Zd as n → ∞.
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Proof of Corollary 1.

Take any λ1 > 1, according to Theorem 1 there exists n0 such that there is a positive

probability for the branching random walk restricted to Bn0 to survive (using the Markov

property of the process it is easy to see that if the process may survive starting from

a particular finite distribution it may also survive starting from any non empty finite

distribution). Thus, for any λ1 > 1 there is n0 such that λn0
c ≤ λ1. Since the sequence

(λn
c )n≥1 is also decreasing and bounded below by 1 we get that it converges to 1 as n goes

to infinity. This completes the proof of Corollary 1.

Note that Liggett (1999) has computed asymptotics for λn
c (as n goes to infinity) for

branching random walks on finite trees but even in that case an exact computation of λn
c

seems impossible.

Consider now a model in which ν species compete for space. Each species gives birth

and dies according to a branching random walk. Species i has birth rate λi and death

rate 1 (we could take different death rates as well). There is no bound on the number of

individuals per site but we have at most one species per site. That is, birth attempts on

sites that are already colonized by another species are suppressed. This process can be

viewed as a process (ξ
t
= (ξ1

t , ξ2
t · · · ξν

t ) : t ≥ 0) where ξi(x) gives the number of individuals

of type i present at position x. The prohibition of multiple species at the same site implies

for the process that for each t ≥ 0, x ∈ Zd and distinct i, j ∈ {1, 2 · · ·ν}, ξi
t(x)ξj

t (x) = 0.

As before the process is a spin system and if ξi(x) = n ≥ 0 and
∑

j 6=i ξj(x) = 0

c+(x, ξ, i) = lim
t→0

P ξ(ξi
t(x) = n + 1)

t
= λ1

∑

y∈Zd:x∼y

ξi(y)/(2d),

where x ∼ y means that y is one of the 2d nearest neighbors of x. The down rate (for

ξi(x) = n > 0) is

c−(x, ξ, i) = lim
t→0

P ξ(ξi
t(x) = n − 1)

t
= n = ξi(x).

If the initial configuration has individuals of all ν species it is easy to see that at time

1, say, there is a positive probability that ν balls of a given radius in Zd are occupied each

by a single species. Moreover, there is a positive probability that each species will occupy
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a ball with a radius and a number of individuals per site large enough to apply Theorem 1.

Since there is a positive probability that every site of each colonized ball will be occupied

forever by the same species there is a positive probability that all ν species will coexist

forever. This proves the following

Corollary 2. Consider an ecological model with ν species where each species gives

birth and dies according to a branching random walk. Let the birth rates be λi > 1,

1 ≤ i ≤ ν and the death rates be 1. Each site may be occupied by at most one species.

For any initial configuration containing all ν species there is a positive probability that all

species will coexist.

Note that coexistence occurs even if some birth rates are much larger than the others.

This is in sharp contrast with a model in which there is a limit of one individual per site.

For such a model, it has been shown that two species may coexist if and only if λ1 = λ2

and d ≥ 3, see Neuhauser (1992).

2. Proof of Theorem 1.

We will use coupling arguments as well as some simple quasi stationary properties

of random walks. Our starting point is the existence of quasi stationary distributions

(defined as an eigenvector corresponding to the largest eigenvalue of the transition matrix)

for the simple random walk on a finite connected subset of Zd with Dirichlet boundary

conditions (the random walk is killed on exiting the set). The largest eigenvalue for the

quasi stationary distribution tends to 1 as the finite set tends pointwise to Zd, in particular

Lemma 1. For all a > 0 there exists an integer N0 so that the largest eigenvalue

of the subprobability matrix for the simple random walk on BN0 with Dirichlet boundary

condition is greater than 1 − a.

Proof of Lemma 1 We reference Aldous and Fill (2003), chapter three, section 6.5

for details on quasistationary distributions. We consider the sub Markov chain obtained

by killing the simple random walk, starting in Bn when it leaves Bn. For this Markov

chain the sub probability matrix Pn is given simply by

Pn
ij =

1
2d

for i, j neighbours in Bn;
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= 0 otherwise. There is a quasistationary distribution fn
i for i ∈ Bn which is an eigenvector

for Pn corresponding to µ(n) the largest eigenvalue of this matrix. That is for each i ∈ Bn

fn
i = µ(n)

∑

j

Pn
jif

n
j =

µ(n)
2d

∑

j

fn
j ,

where in both cases the summation is over j in Bn that are neighbors to site i.

The eigenvalue µ(n) is endowed with the following probabilistic meaning

∀i ∈ Bn P i(τn ≥ N) ∼ (µ(n))N (1)

where τn is the death time for the subMarkov chain (or equivalently the quitting time of

Bn for the unrestricted simple random walk).

Here ∼ means that the ratio of he two quantities tends to a finite, strictly positive

constant as N tends to infinity. We will use Donsker’s invariance principle.

Consider a speed 1
d

Brownian motion (Wt : t ≥ 0) starting at x0 of magnitude 1/2.

Let σa = inf{t > 0 : |Wt| = a}, then (see e.g. Ito and MacKean (1965)) there exists

cd ∈ (0,∞) so that independent of the particular x0,

P (σ1/3 < σ1) = cd.

For instance if d ≥ 3, cd = 2d−2−1
3d−2−1

. Thus by path continuity and the isotropy of

Brownian motion, there exists hd > 0 so that for all x0 of magnitude 1/2

P x0(σ1/3 < σ1 ∧ hd) > cd/2.

By Donsker’s invariance principle and a simple compactness argument we have that for n

sufficiently large, uniformly over all initial positions x0 on δ(Bn/2), the boundary of Bn/2,

the probability that starting from x0 a simple random walk hits Bn/3 before leaving Bn

after time hdn
2 is at least cd/2.

Thus (using repeatedly the Strong Markov property) for n sufficiently large the simple

random walk starting at x0 on δ(Bn/2) will exit Bn after time n2hdN with probability at

least (cd/2)N .
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This fact and (1) imply that

µ(n) ≥ (cd/2)
1

n2hd > 1 − a

for n sufficiently large. This completes the proof of Lemma 1.

We fix ε = λ1 − 1 > 0. Consider a simple branching process so that particles die at

rate 1 and split in two at rate 1 + ε/2, alternatively (Xt : t ≥ 0) is a birth & death process

with 0 absorbing

qn,n+1 = n(1 + ε/2)

qn,n−1 = n

It is well known that if X0 = 1, (Xte
−tε/2 : t ≥ 0) is an L2 bounded martingale. Let this

bound be K.

Lemma 2. ∀δ > 0, we have

P (sup
t>0

|Xt

X0
e−εt/2 − 1| > δ) <

2
δ

K√
X0.

Proof of Lemma 2.

Note that

Mt =
Xt

X0
e−εt/2 − 1 is a martingale

with M0 = 0. Thus, for any T > 0

P ( inf
t≤T

Mt ≤ −δ) ≤ E(M+
T )/δ

see for instance (2.47) in Ethier and Kurtz (1986). Similarly, we have

P (sup
t≤T

Mt ≥ δ) ≤ E(M+
T )/δ.

Therefore,

P (sup
t≤T

|Mt| ≥ δ) ≤ 2E(M2
T )1/2/δ.

We now compute

E(M2
T ) =

1
X2

0

||XT e−εT/2 − X0||22
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where ||.||2 denotes the L2 norm. We write Xt as a sum of X0 i.i.d. processes, denoted by

Y
(i)
t , 1 ≤ i ≤ X0, having the same rates as Xt and with initial state 1. Thus,

E(M2
T ) =

1
X2

0

||
X0∑

i=1

(Y (i)
T e−εT/2 − 1)||22.

We use the independence of the Y
(i)
T , 1 ≤ i ≤ X0 to get

E(M2
T ) =

1
X2

0

X0||Y (1)
T e−εT/2 − 1||22 ≤ K2/X0.

This completes the proof of Lemma 2.

Pick a > 0 so that
(1 + ε)(1 − a)

1 + ε/2
> 1.

We choose N0 satisfying Lemma 1 for the a above. We now go back to the eigenfunction,

f ≡ fN0 corresponding to the largest eigenvalue, µ(n), of the subprobability matrix for

the simple random walk, with Dirichlet boundary conditions, on B ≡ BN0 . By Perron-

Frobenius f is strictly positive on B. Thus, it has a minimum value m > 0 and for all x

in B and N1

f(x)N1 + 1
f(x)N1

≤ mN1 + 1
mN1

.

Pick δ > 0 small enough for
(1 + ε)(1 − a)

1 + ε/2
1 − δ

1 + δ
> 1.

Then, there are integers N1 large enough to have

(1 + ε)(1 − a)
1 + ε/2

1 − δ

1 + δ
>

mN1 + 1
mN1

.

Lemma 3. There exists a system of identically distributed birth and death processes

with rates qi,j denoted by (Xx
t : t ≥ 0)x∈B and such that if for all x in B, Xx

0 = ξ0(x) =

df(x)N1e then the following coupling holds

Xx
t ≤ ξt(x) for all t ≤ τ and for all x ∈ B

8



where

τ = inf{s : ∃x ∈ B,
Xx

s

Xx
0

e−εs/2 6∈ (1 − δ, 1 + δ)}

Proof of Lemma 3.

We now construct (Xx
t : t ≥ 0)x∈B from the process (ξt(x) : t ≥ 0)x∈B, providing a

coupling of the two processes.

Let (Y x
t (n) : t ≥ 0)x∈B,n≥1 be independent Poisson processes, independent of (ξt(x) :

t ≥ 0)x∈B and such that Y x
t (n) has rate n. If there is a death at t for ξt(x) and if

Xx
t ≤ ξt(x) then there is a death at t for Xx

t with probability

Xx
t

ξt(x)
.

If Xx
t = n > ξt(x) and there is a birth at time t for the Poisson process Y x

t (n) then there

is a death at t for Xx
t .

For births we do something similar. Let (Zx
t (n) : t ≥ 0)x∈B,n≥1 be independent

Poisson processes, independent of (ξt(x) : t ≥ 0)x∈B and such that Zx
t (n) has rate n(1 +

ε/2).

If there is a birth at x at t for ξt(x) and if (1 + ε/2)Xx
t− ≤ λ1

∑
y∼x ξt(y)/(2d) there

is a birth at the same time for Xx
t with probability

2d(1 + ε/2)Xx
t−

λ1

∑
y∼x ξt(y)

If (1 + ε/2)Xx
t− = n > λ1

∑
y∼x ξt(y)/(2d) and there is a birth at time t for the process

Zx
t (n) then there is a birth at the same time for Xx

t .

The condition ξt(x) ≥ Xx
t ∀x ∈ B can evidently never be violated by a death (recall

that for all x in B Xx
0 = ξ0(x)), so it remains to check that for t < τ the domination

relation holds good for births as well.

Assume that t < τ and x ∈ B, the flip rate upwards for Xx
t is (1+ ε/2)Xx

t−, while the

flip rate upwards for ξx
t at time t is

(1 + ε)
∑

y∼x

ξt−(y)/(2d).
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By hypothesis ξt−(y) ≥ Xy
t− for each relevant y and so this flip rate exceeds

(1 + ε)
∑

y∼x

Xy
t−/(2d).

By the fact that t < τ this is more than

(1 + ε)
∑

y∼x

df(y)N1eeεt/2(1 − δ)/(2d)

≥ (1 + ε)d
∑

y∼x

f(y)N1eeεt/2(1 − δ)/(2d)

and, by Lemma 1, this is more than

(1 + ε)d(1 − a)2df(x)N1eetε/2(1 − δ)/(2d) ≥ (1 + ε)(1 − a)2df(x)N1e
tε/2(1 − δ)/(2d).

Recall that N1 has been chosen so that

(1 + ε)(1 − a)
1 + ε/2

1 − δ

1 + δ
>

mN1 + 1
mN1

≥ f(x)N1 + 1
f(x)N1

.

Thus, for all x in B

(1 + ε)(1 − a)f(x)N1e
tε/2(1 − δ) ≥ (1 + ε/2)(1 + f(x)N1)etε/2(1 + δ).

This, in turn is more than

(1 + ε/2)df(x)N1eetε/2(1 + δ) ≥ (1 + ε/2)Xx
t−

where the last inequality comes again from the fact that t ≤ τ. This shows that the

domination conditions cannot be violated for t < τ and concludes the proof of Lemma 3.

We now conclude the proof of Theorem 1. Assume that ξ0(x) = df(x)N1e for every

x ∈ B. Let A be the event

A = {∃t > 0, ∃x ∈ B, ξt(x) < (1 − δ)df(x)N1eeεt/2}.

Note that, by Lemma 3, the intersection of the events {τ = ∞}) and A is empty. Thus,

P (A) ≤ P (τ < ∞) ≤
∑

x∈B

2
δ

K√
df(x)N1e
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where the second inequality comes from Lemma 2. Since f is strictly positive on B we

may pick N1 large enough so that

min
x∈B

df(x)N1e ≥ 4
K2

δ2α2
|B|2

and

P (A) ≤ α.

This concludes the proof of Theorem 1 for δ small enough but this implies the theorem for

every δ ∈ (0, 1).
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