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Abstract.We introduce a spatial stochastic model for infectious diseases, such as

influenza, that do not confer immunity and from which one usually recovers. We prove

the existence of an endemic state in any dimension for any strictly positive value of the

recovery rate. This is in sharp contrast with what happens for the model with no recovery

in d = 1 for which it is known that the disease dies out for all parameters values.
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1. Introduction. Spatial stochastic models for the transmission of infectious dis-

eases have been studied since at least Bartlett (1957). In this paper we consider a model

that generalizes several of the models previously studied, see Mollison (1977), Kuulasmaa

(1982), Sato, Matsuda and Sasaki (1994), Andjel and Schinazi (1996). We call the fol-

lowing model the basic spatial epidemic. It is a continuous time stochastic process on Zd

where there is at most one individual per site. Healthy individuals give birth to healthy

individuals on empty nearest neighbor sites, infected individuals infect their healthy near-

est neighbors and individuals die at certain rates. We say that an endemic state is possible

if there exists a stationary measure for the process with infected and healthy individu-

als. The existence of an endemic state (this is also called a coexistence result) has not

been proved for the basic spatial epidemic. The problem of showing coexistence for this

model seems mathematically challenging. However, coexistence results have been obtained

for modified models. In particular, Durrett and Neuhauser (1991) show coexistence for a

model in which births of healthy individuals occur spontaneously, see also Andjel and Schi-

nazi (1996). Schinazi (1996) and (2000) proves coexistence for models in which infected

individuals may give birth to healthy or infected individuals.

In this paper we allow infected individuals to recover (they still may die). We propose

a (very naive) model for diseases such as influenza for which we believe that this is the first

spatial stochastic model. We show that for any stricly positive value of the recovery rate an

endemic state in any dimension is possible for appropriate values of the other parameters.

This is in sharp contrast to what happens for the basic spatial epidemic for which it is

known that there can be no coexistence in d = 1, see Mollison (1977) and Andjel and

Schinazi (1996).

2. The spatial stochastic model. We consider a continuous time spatial stochastic

model on Zd where each site may be in one of three states: 0, 1 or 2. State 0 corresponds

to an empty site, state 1 to a site with a healthy individual and state 2 to a site with an

infected individual. There is at most one individual per site.

If the model is in configuration η, let n1(x, η) and n2(x, η) be the number of nearest

neighbors of x (among the 2d nearest neighbors of x) that are in state 1 and in state 2,
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respectively. Assume that the model is in configuration η, then the state at a given site x

evolves as follows:
0 → 1 at rate λ1n1(x, η)

1 → 2 at rate λ2n2(x, η)

2 → 1 at rate r

1 → 0 at rate δ1

2 → 0 at rate δ2

In words, healthy individuals give birth on empty nearest neighbor sites at rate λ1.

Infected individuals infect nearest neighbors that are healthy at rate λ2. Infected indi-

viduals recover at rate r (and are immediately susceptible to the disease again). Finally,

healthy and infected individuals die at rate δ1 and δ2, respectively. What we have called

the basic spatial epidemic is the special case r = 0.

In the absence of infected individuals we have a population of 0’s and 1’s only. In this

particular case, the system evolves as

0 → 1 at rate λ1n1(x, η)

1 → 0 at rate δ1

The model above is called a contact process. It is known that it has critical value λc(d)

(that depends on the dimension d of the grid Zd) such that if λ1/δ1 ≤ λc(d) then the 1’s

die out while if λ1/δ1 > λc(d) then there is a positive probability that there will be 1’s at

all times if the process starts with at least one 1. We will denote λc(1) = λc. For more on

the contact process, see for instance Liggett (1999). We are now ready to state our results.

Theorem 1. Assume that r > 0, λ1 > 0 and that λ2 is such that λ2/r > λc (the

critical value for the one-dimensional contact process). There exists a constant c > 0

(depending on r, λ1, λ2) such that if δ1 < c and δ2 < c then

(a) Starting with any initial configuration on Zd (d ≥ 1) with at least one healthy and

one infected individual there is a positive probability that healthy and infected individuals

will exist at all times.

(b) There is a stationary measure for the spatial stochastic epidemic that concentrates

on configurations with healthy and infected individuals.
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Theorem 1 shows the existence of an endemic state for low virulence (that is, for low

δ2). Conversely, one can show that if the virulence is too high then an endemic state is

not possible. This is what we do next.

Theorem 2. For any r ≥ 0 and any λ2 ≥ 0, if δ2 > λ2
λc(d) − r then the infected

individuals die out in the following two senses. There is no stationary measure with

infected individuals. Starting with finitely many infected individuals, with probability one

there are no infected individuals after a finite random time.

In particular, in d = 1 there can be no epidemic if λ2
λc

< r and Theorem 1 tells us that

epidemics are possible if λ2
λc

> r and δ2 and δ1 are low enough.

3. The mean field model. We now consider the mean field model associated with

our spatial stochastic epidemic. This is a model which is deterministic and non spatial.

We like to think of it as a model where all individuals mix together. Since the spatial

stochastic model above is rather rigid (infections and births occur at nearest neighbors) it

is interesting to compare its behavior to the behavior of the mean field model.

Let ui ≥ 0 be the density of individuals in state i, for i = 0, 1, 2, in particular

u0 + u1 + u2 = 1. Assuming total mixing we get the following system of differential

equations.
u′

1 = λ1u1u0 + ru2 − λ2u1u2 − δ1u1

u′
2 = λ2u1u2 − ru2 − δ2u2

Note that there are two trivial equilibria (u1, u2) = (0, 0) and (u1, u2) = (1−δ1/λ1, 0),

provided

δ1 < λ1

The condition above is necessary and sufficient for the disease free population not to die out,

a hypothesis that we assume. We now examine the stability of the equilibrium (u1, u2) =

(1 − δ1/λ1, 0). The Jacobian of the system of differential equations at (1 − δ1/λ1, 0) is(
−λ1 + δ1 −(λ1 + λ2)(1 − δ1/λ1) + r

0 λ2(1 − δ1/λ1) − r − δ2

)

There are two eigenvalues: −λ1 + δ1 and λ2(1 − δ1/λ1) − r − δ2. The first one is strictly

negative. The second one is strictly positive if and only if

(3.1) δ1/λ1 + (r + δ2)/λ2 < 1
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Thus, condition (3.1) is necessary and sufficient for the unstability of the disease free

equilibrium (1−δ1/λ1, 0) (see for instance Hirsh and Smale (1974), p 181, p 187). Therefore,

an epidemic is possible (in the sense that the disease free equilibrium is not stable) if and

only if (3.1) holds.

4. Discussion. It is known that coexistence does not hold for the basic spatial

epidemic (r = 0) when d = 1, see Mollison (1977) and Andjel and Schinazi (1996) (the

argument there is written in the case δ1 = 0 but can easily be adapted for any δ1 ≥ 0).

Thus, our Theorem 1 shows that the introduction of a recovery rate (even a very small

one) drastically changes the behavior of the model, at least in dimension one. We believe

this is due to the fact that the recovery rate r in the spatial model adds some mixing. In

particular, in d = 1 a block that has 2’s at both endpoints and no 1’s in between remains

free of 1’s until it disappears if r = 0. If r > 0 then 1’s may appear inside a block of 2’s

and this gives more fuel to the epidemic. This picture is consistent with what happens

to the mean field model: coexistence may occur for r = 0. This is so because everybody

mixes with everybody else and r is not needed. Similarly, it is generally believed that

coexistence holds for the basic spatial epidemic in d ≥ 2 with r = 0, see Sato, Matsuda

and Sasaki (1994). In d ≥ 2 a block of 0’s and 2’s may split into several smaller blocks

and that helps coexistence. Again this is consistent with our picture that mixing helps

coexistence for this type of model. However, the reverse may happen for other types of

models (see Schinazi (2003)).

Condition (3.1) shows that whether or not an epidemic may occur, for the mean field

model, depends on the density of healthy individuals in the disease free equilibrium. In

particular, if δ1/λ1 approaches 1 (that is, the equilibrium density of healthy individuals

approaches 0) then in order for (3.1) to be met (r + δ2)/λ2 must approach 0 (that is, each

infected individual must in average infect more and more people). We suspect that the

same type of result holds for the spatial epidemic model but we dont know how to show

it.

5. Proofs. We now give the so called graphical construction of the spatial stochastic

process. Consider a collection of independent Poisson processes: {Nx,y
1 , Nx,y

2 , Dx
1 , Dx

2 , Rx :
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x, y ∈ Zd, ||x − y|| = 1}. For x and y in Zd such that ||x − y|| = 1 let the intensities of

Nx,y
1 , Nx,y

2 , Dx
1 , Dx

2 , Rx be λ1, λ2, δ1, δ2 and r, respectively. At every arrival time of Dx
1 ,

if there is a 1 at x we put a 0 at x. Likewise at every arrival time of Dx
2 , if there is a 2 at

x we put a 0 at x. At an arrival time of Nx,y
1 if there is 1 at x and a 0 at y we put a 1 at

y. At an arrival time of Nx,y
2 if there is 2 at x and a 1 at y we put a 2 at y. Finally, at

the arrival times of Rx if there is a 2 at x we replace it by a 1.

In this way we obtain a version of our spatial epidemic model. The process is said to

be restricted to a space-time region A if we only use the arrival times inside A. For more

on graphical constructions, see Liggett (1999).

Proof of Theorem 1

We prove Theorem 1 first in d = 1 and then we will explain how the same proof

actually extends to any d ≥ 2.

We define

L = {(m, n) ∈ Z2 : m + n is even}

B = (−4L, 4L) × [0, T ] Bm,n = (2mL, nT ) + B

I = [−L, L] Im = 2mL + I

where L, T are parameters to be chosen later. Let k = [
√

L] (where [a] is the integer part

of a). We declare (m, n) ∈ L wet if at time nT there are no 0’s in Im and there are at

least k 2’s in Im and if at time (n + 1)T there are no 0’s in Im−1 and in Im+1 and at least

k 2’s in each of these intervals. Moreover, we require that the event just described occur

for all possible states of the sites −4L and 4L between times nT and (n + 1)T . This is

important to ensure a finite range of dependence for the percolation process defined on L.

We will now show that by choosing L and T sufficiently large the probability of a site

(m, n) being wet can be made arbitrarily close to 1. By translation invariance, it is enough

to show this for the site (0,0).

There are three steps in this proof. In the first step we will show that starting with

no 0’s in I there will be no 0’s in (−4L, 4L) by a certain time T1, with high probability. In

the second step we will show that at time T1 there are still many 2’s in I. Finally, in the

third step we will show that by a certain time T there are at least k 2’s in I1 and in I−1.
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We start by setting δ1 = δ2 = 0 in the box B. In particular a site that is occupied in

B does not become empty again. Let Rt be the rightmost non empty site in (−4L, 4L) at

time t. We assume that there are no 0’s in I at time 0, thus, R0 ≥ L. Under the assumption

δ1 = δ2 = 0, Rt increases with time and never decreases. The rate at which Rt jumps to

Rt +1 depends on the state of the sites Rt, Rt−1 and Rt +1. By definition of Rt the state

of Rt +1 is 0 and the state at Rt cannot be 0. Since δ1 = δ2 = 0 the state at Rt−1 cannot

be 0 either. Thus, there are four possibilities for the states of (Rt − 1, Rt). If, for instance

(Rt − 1, Rt) = (2, 2) then after a rate r exponential time we get that (Rt − 1, Rt) = (2, 1)

and after a rate λ1 exponential time Rt jumps to Rt + 1 provided Rt is not infected by

Rt−1. Similarly for the other three possibilities for (Rt−1, Rt) we see that after a random

time with finite mean Rt jumps to Rt + 1. Therefore, Rt is larger than a renewal process

with finite mean renewal time. By the renewal theorem we get that there exists a > 0 such

that almost surely

lim inf
t→∞

Rt

t
≥ a.

Thus, for any ε > 0 there is an L large enough such that if T1 = 5L/(2a) then

P (RT1 > 3L) ≥ 1 − ε.

The leftmost occupied site behaves in a symmetrical way. Therefore, the probability that

all sites in [−3L, 3L] are occupied at time T1 is at least 1 − 2ε if L is large enough.

We now start the second step of our proof. Part of it has already appeared somewhere

else for a different model (see Schinazi (2001)) but we include it for the sake of completeness.

We want to show that by time T1 there are still plenty of 2’s in I. Note that there are no

0’s in I and that the death rates are taken equal to 0 in B. Therefore, the 2’s restricted

to I are a contact process with the following rates:

1 → 2 at rate λ2n2(x, η)

2 → 1 at rate r

A special coupling shows that, given a certain number of 2’s, the more spread out

the initial configuration the more 2’s it produces (see Theorem 1.9 (c) in Liggett (1985)).

Since we know we have at least k = [
√

L] 2’s in I, to start with, the worst case scenario
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(from the 2’s point of view) is to start with an interval C that has length k + 1 for which

each site is occupied by a 2.

We now restrict the 2’s to C, that is, we do not allow infection from outside to

inside C. This can only decrease the number of 2’s in C. We assume that λ2/r > λc,

therefore we have a supercritical contact process. Let τn be the (random) time it takes

for a contact process to become extinct when restricted to [−n, n]d and starting with a

particle on each site of [−n, n]d. Mountford (1993)(see his Proposition 2.1) has shown that

for a supercritical contact process we have

P (τn ≤ edn) < e−dn for large n.

At time 0 there is a 2 on each site of C, that is k + 1 particles. Let M be the integer

part of k1/2. We partition C into M intervals, where each one is a translate of [0, M ].

We run M contact processes each one restricted to one of the M sub-intervals of C. It is

easy to see that at any time there are at least as many 2’s in C than in the union of these

sub-intervals. If by time T1 none of the contact processes running on a sub-interval of C

has died out then there are at least M particles (one per sub-interval) in C. Thus, the

probability that there are at least M particles in C by time T1 is at least

P (τM ≥ T1)M ≥ P (τM ≥ eM )M ≥ (1 − e−M )M .

The preceding probability can be made larger than 1 − ε provided L is large enough.

The last paragraph shows that, with probability at least 1 − 3ε, at time T1 we have

at least M 2’s in I and no 0’s in [−3L, 3L]. Thereafter, the 2’s evolve as a supercritical

contact process in [−3L, 3L] (since we are assuming that δ1 = δ2 = 0 in B).

We now start the third and final step of this proof. It consists in showing that, with

high probability, we will have at least k 2’s in [−3L,−L] and in [L, 3L] at a certain time

T .

For any subset A of Z, let ηA
t be a contact process starting with a 2 at each site of A

and 1’s everywhere else. Let |ηA
t | be the number of 2’s at time t. The key to the proof is

the following result. There is α > 0 such that for any A there are strictly positive constants

C and γ such that

P (|ηA
t | 6= 0, ηA

t (x) 6= ηZ
t (x)) ≤ Ce−γt
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for all x = y + αt where y is in A. In words, ηA
t is coupled to ηZ

t inside a linearly growing

set. See (3.2) in Durrett and Schinazi (1993).

We can pick k large enough so that a contact process stating with at least M = [
√

k]

2’s has a survival probability of at least 1− ε, see (1.9) in Liggett (1999) and Theorem 1.9

(c) in Liggett (1985).

Let T2 = 9L
2a , it is easy to see that if we take L large enough then the contact process

starting with at least M 2’s in [−L, L], at time T1, will be coupled to ηZ
t on [−3L, 3L] with

probability at least 1 − ε at time T = T1 + T2. Moreover, it is not difficult to see that α

is also the speed at which the rightmost and leftmost 2’s travel. So by time T the contact

process started inside [−L, L] has not yet, with high probability, reached the boundary

of [−4L, 4L]. That is, the contact process restricted to B and the unrestricted contact

process are identical with probability at least 1 − ε, provided L is large enough, and the

coupling above works for the restricted process as well.

The process ηZ
t is known to be stochastically larger than the so called upper invariant

measure of the contact process. The upper invariant measure of a supercritical contact

process has positive density ρ > 0 of 2’s. Moreover, since µ is ergodic (see Proposition

2.16 p 143 in Liggett (1985)) we have that

lim
L→∞

1
2L + 1

x=−L∑

x=−3L

η(x) = ρ > 0

µ-almost everywhere. This shows that under µ there are at least k 2’s in [−L, L], with

probability 1− ε if L is large enough. Since ηZ
t is coupled to the contact process restricted

to B with probability at least 1 − ε , we get that for L large enough there are at least k

2’s in [−3L,−L] with probability at least 1 − 2ε at time T . Similarly, we have at least k

2’s in [L, 3L] with probability at least 1 − 2ε at time T .

For any ε > 0 we may pick L (depending on ε and λ2) large enough so that

P ((0, 0) is wet) > 1 − 7ε for δ1 = δ2 = 0.

Since B is a finite space time box, we may pick c > 0 so that the probability that no flip

from 1 to 0 and that no flip from 2 to 0 occur inside the box B is at least 1− ε, for δ1 < c
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and δ2 < c. Thus,

P ((0, 0) is wet) > 1 − 8ε for δ1 < c and δ2 < c.

Note that the event (m, n) is wet for the percolation model defined on L involves only a

finite range of dependence. Standard percolation arguments show that we may take ε > 0

small enough so that there is an infinite cluster of wet sites in L with positive probability.

If we start the process with at least one 1 and at least one 2 then there is a positive

probability of having at least k 2’s in [−L, L] by time 1. We then start the construction

above and there is a positive probability of an infinite cluster of wet sites. This in turn

guarantees that there will be 1’s and 2’s at all times and completes the proof of Theorem

1 (a) in d = 1.

The existence of a stationary distribution concentrating on configurations with 1’s

and 2’s is a consequence of our comparison with oriented percolation. To see this, start

the process with a 2 at each site and take Cesaro averages of the law of the process;

extract a convergent subsequence of the Cesaro averages. Since our process is Feller, any

limit is a stationary distribution. Since we start the process with infinitely many 2’s we

have infinitely many trials at our disposal to succeed in our construction of an infinite wet

cluster for the oriented percolation on L. We will eventually succeed since each trial has

the same probability of success. Moreover, this infinite cluster has a positive density of

wet sites, provided ε is small enough, so we get that the limit of the Cesaro average must

have a positive density of 2’s. This completes the proof of Theorem 1 (b) in d = 1.

For the proof of the Theorem in d > 1 we may embed the preceding 1-dimensional

construction in Zd. The only difference is that the boundary of each Bm,n is larger in

d > 1 but this may only provoke the appearance of more 1’s and 2’s inside the box (since

there are no deaths inside the box) and so the same construction will work in d > 1.

Proof of Theorem 2

We are going to couple the epidemic process to the contact process with rates:

1 → 2 at rate λ2n2(x, η)

2 → 1 at rate δ2 + r
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Fix an initial configuration for the epidemic model and to get the initial configuration for

the contact process replace all the 0’s by 1’s. We construct the contact process above

in the same probability space as the epidemic model by using some of the same Poisson

processes used in the construction of the epidemic model. More precisely, we use the

Poisson processes Nx,y
2 , Dx

2 and Rx that have rates λ2, δ2 and r, respectively. At the

arrival times of Dx
2 and Rx we put a 1 at x. At the arrival times of Nx,y

2 , if there is a 2 at

x and a 1 at y we put a 2 at y. It is easy to check that at all times the contact process has

more 2’s than the epidemic model in the sense that if there is a 2 at a site for the epdemic

model there must be a 2 at the same site for the contact process. This is due to the fact

that in the contact process 2’s have more opportunities to infect their neighbors than in

the epidemic model since there are no 0’s in the contact process. Under the assumption of

Theorem 2 this is a subcritical contact process and the 2’s die out in the two senses stated

in the theorem. Thanks to the coupling just described the 2’s in the epidemic model must

die out as well. This completes the the proof of Theorem 2.
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