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Abstract.We introduce a spatial stochastic model for the spread of tuberculosis.

After a primary infection an individual may become sick (and infectious) through an

endogenous reinfection or through an exogenous reinfection. We show that even in the

absence of endogenous reinfection an epidemic is possible if the exogenous reinfection

parameter is high enough. This is in sharp contrast with what happens for a mean field

model introduced by Feng et al. (2001).
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1. Introduction. Tuberculosis is usually acquired through airborne infection from

someone with active TB. After a primary infection, a small proportion of infected individ-

uals develop active TB but most die without ever developing active TB, see for instance

Enarson and Rouillon (1998). In the medical literature there is still a debate on whether

developing active TB is exclusively a consequence of a primary infection or whether it

may come from re-exposure to TB through individuals with active TB, see Styblo (1991),

Ziegler et al. (1985) and McMurray et al. (1989). This question is especially important

for some parts of the world (in particular South-East Asia) where at least 50% of indi-

viduals have had a primary infection and there is bound to have many contacts between

individuals with active and individuals with dormant TB, see Dye et al. (1999).
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In this paper we will analyze mathematical models with two types of reinfection. The

first type is a reactivation of a dormant infection and is called an endogenous reinfection.

The second type of reinfection is acquired from another individual and is called an ex-

ogenous reinfection. Both reinfections are assumed to make an individual with dormant

TB develop active TB. Our aim is to examine the relative importance of the two types

of reinfection in the spread of an infectious disease such as TB. We introduce a spatial

stochastic model for which we show that even with no endogenous reinfection (in that case

the only route to active TB is a primary infection followed by an exogenous reinfection)

the infectious disease may spread provided the exogenous reinfection parameter is large

enough. In contrast, following Feng et al. (2001), we show that for a mean field model (cor-

responding to our spatial stochastic model) with no endogenous reinfection the infectious

disease cannot spread.

Our results seem interesting in at least two ways. By introducing a spatial stochastic

model one sees that (at least in theory) exogenous reinfection may be crucial in the spread

of an infectious disease. It is also interesting to note that this is one of the few cases for

which a spatial stochastic model and its corresponding mean field model behave strikingly

differently.

2. A spatial stochastic model. We consider a continuous time spatial stochastic

model on Zd where each site may be in one of three states: 0, 1 or 2. There is always

exactly one individual at each site. If the individual at site x is healthy then we say that

site x is in state 0, if the individual at x is infected but not infectious we say that site x is

in state 1, if the individual at x is infected and infectious then site x is said to be in state

2. In the case of tuberculosis it is thought that the vast majority of the people infected

(in state 1) die without developping the disease so they never get to state 2.

If the model is in configuration η, let n1(x, η) and n2(x, η) be the number of nearest

neighbors of x (among the 2d nearest neighbors of x) that are in state 1 and in state 2,

respectively. Assume that the model is in configuration η, then the state at a given site x
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evolves as follows:
0 → 1 at rate λ0n2(x, η)

1 → 2 at rate γ + λ1n2(x, η)

1 → 0 at rate 1

2 → 0 at rate δ

In words, infectious individuals infect nearest neighbors that are healthy at rate λ0. In-

fected individuals that are not infectious may become infectious by two different routes:

by an endogenous reinfection at rate γ and by an exogenous reinfection caused by an in-

fectious nearest neighbor at rate λ1. Infected individuals that are not infectious die at rate

1 and infectious individuals die at rate δ ≥ 1.

The model above is related to the contact process for which there are only two possible

states, say 0 and 1, and that evolves according to

0 → 1 at rate λn1(x, η)

1 → 0 at rate 1

It is known that there is a critical value λc such that if λ ≤ λc then starting with

any initial configuration the 1’s die out while if λ > λc then, for any configuration having

1’s, there is a positive probability that there will always be 1’s. For more on the contact

process, see for instance Liggett (1999).

We also note that the special case λ1 = 0 (no exogenous reinfection) was examined

by Krone (1999).

We say that an epidemic is possible if starting with a single infectious individual there

is a positive probability that there will be infectious individuals at all times. We are now

ready to state our results.

Theorem. We consider the spatial stochastic model on Zd for any d ≥ 1.

(a) If λ0 ≤ λc (the critical value of the contact process) then no epidemic may take

place for any γ, λ1 in [0,∞) and δ ≥ 1.

(b) If λ0 > δλc and δ ≥ 1, for any γ ≥ 0 there is a positive probability for an epidemic

provided λ1 is large enough.

(c) There is c > 0 such that if γ + λ1 < c then no epidemic can take place for any λ0.
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Not surprisingly, Theorem (a) states that it is enough to control primary infections

in order to avoid an epidemic. More interestingly, Theorem (b) tells us that even with

no endogenous reinfection (i.e. γ = 0) an epidemic is possible provided the exogenous

reinfection parameter is high enough. Finally, we see that if both reinfection parameters

are below a certain threshold then no epidemic may take place even for very high primary

infection rates. We will see that Theorem (b) and (c) are not true for the mean field model

corresponding to our spatial stochastic model.

3. The mean field equations. Let ui ≥ 0 be the density of individuals in state i,

for i = 0, 1, 2, in particular u0 + u1 + u2 = 1. Assuming total mixing of the population we

get the following system of differential equations.

u′
1 = λ0u0u2 − γu1 − λ1u1u2 − u1

u′
2 = λ1u1u2 + γu1 − δu2

Note that (u1, u2) = (0, 0) is the disease free equilibrium. The equilibrium (0,0) is

said to be stable if for every neighborhood U of (0,0) there is a neighborhood U1 ⊂ U of

(0,0) such that every solution (u1(t), u2(t)) with (u1(0), u2(0)) in U1 is defined and in U for

all t > 0, see for instance 9.2 in Hirsch and Smale (1974). For this model, we will say that

an epidemic is possible if (0, 0) is not stable. Note that this is analogous to our definition

of an epidemic for the spatial stochastic model, in both cases we say that an epidemic is

possible if starting close to the disease free equilibrium the disease may grow.

We now investigate the stability of the disease free equilibrium. The Jacobian at (0,0)

is (
−γ − 1 λ0

γ −δ

)

By looking at the determinant and the trace of this matrix, one sees that it has at most

one positive eigenvalue. The Jacobian has exactly one positive eigenvalue if and only if its

determinant is negative. That is, if and only if

(3.1) λ0γ > δ(γ + 1)

The condition above is necessary and sufficient for an epidemic to be possible (see the

Theorems p 181 and p 187 in Hirsh and Smale (1974)).
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We now point to two properties of the mean field model that are not true for the

spatial stochastic model. Condition (3.1) cannot be met if γ = 0. That is, for the mean

field model, if there is no endogenous reinfection then no epidemic is possible. In contrast

Theorem (b) shows that an epidemic is possible for the spatial stochastic model even if

γ = 0. Another difference with the spatial stochastic model is that even if γ is arbirarily

low (but strictly positive) it is possible to pick λ0 large enough so that (3.1) is met and an

epidemic is possible for the mean field model. Theorem (c) shows that if γ + λ1 is below

a certain threshold then no epidemic is possible for the spatial stochastic model even for

arbitrarily large λ0.

4. Discussion. Our Theorem (b) shows that even if γ is 0 then if λ1 is large enough an

epidemic is possible for the spatial stochastic model. In contrast if γ = 0 then no epidemic

may take place in the mean field model. Thus, the exogenous reinfection parameter λ1

may be crucial for the appearance of an epidemic in the spatial stochastic model while λ1

does not even appear in condition (3.1). However, Feng et al. (2000) show for a mean field

model similar to ours the existence of a non trivial equilibrium when (3.1) does not hold

but λ1 is large enough. Therefore, in the mean field model the exogenous parameter λ1 is

not relevant to the start of an epidemic but may be important in maintaining an epidemic.

We will now explain the difference in behavior between the two models by an intuitive

argument. Assume γ = 0 and start the mean field model with a very low density of 2’s

and a high density of 0’s (no 1’s). Then the 2’s are going to infect 0’s and 1’s are going to

appear. Because of the constant mixing of the population in this model the 1’s and 2’s are

likely to be separated and the 2’s are not going to be able to reinfect the 1’s. So the infected

individuals are going to disappear. Our intuitive scenario is confirmed mathematically by

the fact that if γ = 0

u′
2 = λ1u1u2 − δu2.

For u1 and u2 small λ1u1u2 is of smaller order than −δu2 and the 2’s die out.

In contrast to what happens for the mean field model there is little mixing in the

population for the spatial stochastic model. If we put a 2 in a sea of 0’s then the 2 will

infect its neighbors. These neighbors are now 1’s and if the exogenous reinfection rate λ1
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is large then it is likely that the 2 will reinfect its neighbors before dying. The neighbors

of the original 2 are now 2’s as well and the infection is spreading. We believe that our

results hold for spatial stochastic models with finite range interaction. We have dealt here

with nearest neighbor interaction only because it is simpler to analyze mathematically.

The introduction of a spatial stochastic model has shown that (at least in theory)

exogenous reinfection may be as important as endogenous reinfection in order to start an

epidemic. Our results also illustrate the fact that mean field models do not always capture

the whole picture. There are other examples in the mathematical biology literature of

difference in qualitative behavior between mean field and low dimensional spatial models.

See for instance Mollison (1977) and Schinazi (2000). However, note that in this paper

we see a difference in behavior between a spatial model and the corresponding mean field

model in all dimensions.

5. Proof of the Theorem We start by giving the graphical construction of our spa-

tial stochastic process. Consider a collection of independent Poisson processes {Nx,y
0 , Nx,y

1 ,-

Dx : x, y ∈ Zd, ||x−y|| = 1}. For x and y in Zd such that ||x−y|| = 1 let the intensities of

Nx,y
0 , Nx,y

1 and Dx be λ0, λ1 and δ respectively. The graphical construction takes place in

the space-time region Zd × (0,∞). At each arrival time t of Nx,y
0 if there is a 2 in x and a

0 in y we replace the 0 in y by a 1. At each arrival time t of Nx,y
1 if there is a 2 in x and a 1

in y we replace the 1 in y by a 2. At each arrival time of Dx if there is 2 at x we replace it

by a 0, if there is a 1 at x we replace it by a 0 with probability 1
δ (with probability 1− 1/δ

we leave the 1 alone). In this way we construct a version of our spatial stochastic process.

The process restricted to a space-time region A is constructed by using only the arrival

times inside A. For more on graphical constructions, see for instance Liggett (1999).

Proof of (a)

Consider the contact process ξt that evolves according to the following rules:

0 → 2 at rate λ0n2(x, ξ)

2 → 0 at rate 1

We construct the tuberculosis model ηt and the contact process ξt simultaneously by using

the Poisson processes defined above. The rules for ηt have been defined above. For ξt we
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use the following two rules. At each arrival time of Nx,y
0 if there is a 2 in x and a 0 in y

we replace the 0 in y by a 2. At each arrival time of Dx if there is 2 at x we replace it by

a 0 with probability 1
δ
. We start ξt and ηt with the same initial configuration: a 2 at the

origin of Zd and 0’s everywhere else. We claim that at every time t if there is 2 or a 1 at

a certain site for ηt then there is a 2 at the same site for ξt. In order to check our claim

it is enough to check that no transition in the graphical construction can make appear a

1 or a 2 for ηt without making appear a 2 for ξt. This is due to the fact that a 2 for the

process ξt gives birth to a 2 while a 2 for the process ηt gives birth first to a 1 (which is

not infectious). Note also that that death rates are higher for 2’s in ηt than they are for

2’s in ξt since δ ≥ 1.

Under the assumption λ0 ≤ λc the 2’s in ξt die out. Thanks to our coupling above

the 2’s in ηt must die out as well. This completes the proof of (a).

Proof of (b)

We write this proof in d = 2, the same ideas work in any d ≥ 1. We compare our

spatial stochastic model to a simple oriented percolation model. Let e1 be the vector (1, 0)

and

L = {(m, n) ∈ Z2 : m + n is even}

B = (−4L, 4L)2 × [0, T ] Bm,n = (2mLe1, nT ) + B

I = [−L, L]2 Im = 2mLe1 + I

C = [−k, k]2

where L and T are parameters to be chosen later and k is the largest integer smaller than
√

L. We declare (m, n) ∈ L wet if, for all possible time nT configurations such that there

is a translate of C in Im that is full of 2’s, the spatial stochastic process restricted to Bm,n

is such that there is a translate of C in Im−1 and a translate of C in Im+1 that are both full

of 2’s at time (n + 1)T . In other words, we declare (m, n) wet if any square of side 2k + 1

full of 2’s in Im at time nT is reproduced at time (n + 1)T in both Im−1 and Im+1. We

will now show that by choosing L and T sufficiently large the probability of a site (m, n)

being wet can be made arbitrarily close to 1. By translation invariance, it is enough to
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show this for the site (0,0). We start by setting λ1 = ∞ in the box B. Note that if the

initial configuration η0 has no 1’s then 1’s do not appear at a further time in the box B.

In fact, with such an initial configuration, the process ηt with λ1 = ∞ is a contact process

that evolves according to the following rules:

0 → 2 at rate λ0n2(x, ξ)

2 → 0 at rate δ

Since we are assuming that λ0 > δλc, this is a supercritical contact process. By taking

k and therefore L large enough one can show that the probability for a supercritical contact

process with k initial infected sites to survive forever can be made arbitrarily close to 1.

See for instance (1.9) in p 36 in Liggett (1999). The Shape Theorem (see p 128 in Liggett

(1999)) states that a supercritical contact process that does not die out spreads out at a

constant speed. Thus, if the sites in state 2 do not die out, they should get to the boundary

of B by time aL, where a > 0 depends on the linear speed of the infection. Moreover,

the Shape Theorem also guarantees that the infected sites are distributed according to the

upper stationary distribution of the contact process. Since this distribution is ergodic (see

Proposition 2.16 p 143 in Liggett (1985)) there will be translates of C in I1 and I−1 at

time aL with high probability. This shows that for any ε > 0 we may pick T = aL and L

large enough so that

P ((0, 0) is wet) > 1 − ε for λ1 = ∞.

Since B is a finite space time box, we may pick C large enough so that

P ((0, 0) is wet) > 1 − 2ε for λ1 > C.

We may take ε > 0 small enough so that there is an infinite cluster of wet sites in L with

positive probability. If we start the process ηt with at least one 2 then there is a positive

probability of having a square C of sites in state 2 somewhere at time 1. We then start

the construction above and there is a positive probability of an infinite cluster of wet sites.

This in turn guarantees that there will be sites in state 2 at all times and completes the

proof of (b).

Proof of (c)
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We prove (c) under the assumption d = 2, in order to avoid more cumbersome nota-

tion. The same ideas work in any d ≥ 1.

We define two space–time regions:

A = [−2L, 2L]2 × [0, 2L], B = [−L, L]2 × [L, 2L]

where L is an integer to be chosen later. Define C to be part of the ‘boundary’ of the box

A:

C =
{

(m, n, t) ∈ A : |m| = 2L or |n| = 2L or t = 0
}

We will compare our spatial stochastic model to a certain dependent percolation process

on the set L = Z2 × Z+, where Z+ = {0, 1, 2, . . .}. We say that the site (k, m, n) in L is

wet if for all possible states of the sites in (kL, mL, nL) + C there are no 1’s and no 2’s in

(kL, mL, nL) + B for the process restricted to (kL, mL, nL) + A. Sites which are not wet

are called dry .

For any ε > 0, we will show that there is an integer L and a constant c > 0 such that:

P
(
(k, m, n) is wet

)
≥ 1 − ε if γ + λ1 < c

for any λ0 ≥ 0 and any δ ≥ 1. We start by showing the property when γ = λ1 = 0. Then,

using a continuity argument, we will deduce that the inequality remains true for small

γ + λ1. By translation-invariance, it suffices to consider the site (0, 0, 0) ∈ L. Note that if

γ + λ1 = 0 then 1’s cannot be reinfected and so 2’s do not appear in the space-time region

A. Thus, the 2’s that are in [−2L, 2L]2 at time 0 will rapidly disappear. Let E be the

event that there are no 2’s left at time L/2 in [−2L, 2L]2. Because there are (4L + 1)2

sites in A and since the death rate is δ ≥ 1 we have that

P (E) ≥ (1 − e−δL/2)(4L+1)2 ≥ (1 − e−L/2)(4L+1)2 .

By taking L large enough, the r.h.s. may be made larger than 1 − ε/4 for an arbitrarily

small ε > 0.

On E there are only 0’s and 1’s left in [−2L, 2L]2 by time L/2. Thereafter the only

1’s that may appear in A are going to appear on sites (m, n) where m or n belong to
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{−2L, 2L}. These 1’s appear only if there are 2’s in the boundary of A that infect 0’s.

However, the 1’s that appear in A cannot infect other sites inside A since we are assuming

that γ + λ1 = 0. Therefore, the only 1’s we may see in B are 1’s that were on sites in

[−L, L]2 by time L/2 and did not die by time L. Let F be the event that there are no 1’s

in B. Since the death rate of 1’s is 1, we have

P (F |E) ≥ (1 − e−L/2)(2L+1)2 .

By taking L large enough the probability above may be made larger than 1−ε/4. We have

P
(
(0, 0, 0) is wet

)
≥ P (EF ) = P (E)P (F |E) ≥ 1 − ε/2 if γ + λ1 = 0.

Since A is a finite box there is c > 0 such that with probability at least 1 − ε/2 there are

no arrivals inside A of Poisson processes with rates γ and λ1. Therefore, we get

P
(
(0, 0, 0) is wet

)
≥ 1 − ε if γ + λ1 < c.

Note that the L we picked above depends only on ε and c depends only on L and therefore

only on ε. In particular, the same c works for all λ0 and even for λ0 = ∞.

We now define a percolation process on L for which the probability that a given site is

wet is 1− ε. We position oriented edges between sites in L in order to obtain a percolation

model. For (k, m, n) and (x, y, z) in L, we draw an oriented edge from (k, m, n) to (x, y, z)

if n ≤ z and if the intersection between (kL, mL, nL) + A and (xL, yL, zL) + A is not

empty. Note that the event {(k, m, n) is wet} depends only on the graphical construction

within (kL, mL, nL)+A. Given (k, m, n) in L there is only a fixed number of sites (j, r, s)

in L such that (kL, mL, nL) + A and (jL, rL, sL) + A intersect. Given that events that

depend on disjoint regions of the graphical construction are independent, the percolation

process we have defined in L although dependent, has an interaction with only finite range.

A path of dry sites for this model is a connected oriented path which moves along

oriented edges (in the direction of the edge) and through dry sites only.

Since ε > 0 can be taken arbitrarily small, it is not difficult to see that the prob-

ability of a path of dry sites between sites x and y in the percolation process decreases
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exponentially fast with ||x − y||, see (8.2) in Berg et al. [12]. Notice that a 1 or 2 at x at

time t implies an infection path from time 0 to time t. This infection path for the spatial

stochastic process corresponds to a path of dry sites for the percolation process. But long

dry paths for the percolation process are very unlikely. By using this comparison it is

possible to show that for any fixed site, after a finite random time, there will never be a 1

or a 2 at that site if γ +λ1 < c for the spatial stochastic process. See the proof of Theorem

4.4 in Berg et al. (1998) for more details. This completes the proof of Theorem (c).
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