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Abstract. We introduce a spatial stochastic model for the spread of tuberculosis
and HIV. We have three parameters: the size of the social cluster for each individual and
the infection rates within and outside the social cluster. We show that when the infection
rate from outside the cluster is low (this is presumably the case for tuberculosis and HIV)
then an epidemic is possible only if the typical social cluster and the within infection rate
are large enough. These results may be important in formulating new hypotheses for the
transmission of TB and HIV.

1. Introduction. It is suspected that some infectious diseases can only spread in
populations where people are grouped in clusters in which individuals have repeated and
sustained contacts. This is the case for HIV and also for tuberculosis. In this paper
we will concentrate on tuberculosis. This disease has been known for thousands of years
and is associated with the emergence of urban civilizations and hence high concentration of
population (see Ayvazian (1993)). Tuberculosis is a major world wide concern. This is due
to the appearance of multi drug resistant strains and the fact that the HIV pandemic favors
the appearance of TB; see the report of the Open Society Institute (1999). Transmission
of tuberculosis is thought to occur mostly through sustained and repeated contact with an
infected person. Many such cases have been documented, see for instance Lincoln (1965)
and Raffalli et al. (1996). Several cases were documented in schools where a teacher or a
student have infected other students. In most cases infection occurred after sustained and
repeated contacts. In the case of tuberculosis we may think of individuals with whom we
spend several hours a week in the same room (car or bus) as part of our social cluster. Most
documented tuberculosis cases come from within the infected individuals’ own clusters.
However, it is clear that the infection needs to have originated somewhere else. That
is, ’casual’ transmission must be possible as well. There are a few documented cases of
those as well. For instance, Raffalli et al. (1996) mentions a Dutch rock band that had
two infected musicians and which is thought to have infected hundreds of people with
tuberculosis during their concerts.

In this paper we analyze mathematical models that incorporate social clusters. The
idea of dividing a population in groups and consider different infection rates within and
between groups goes back to at least Rushton and Mautner (1955). Sattenspiel (1989) re-
views a number of such deterministic models and provides extensive references. We focus
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on different questions than the papers above. In particular we are interested in under-
standing the role and interplay of several parameters in the appearance of an epidemic.
We consider very simple minded models with only three parameters: the cluster size, the
casual transmission rate and the within cluster transmission rate. We introduce a spatial
stochastic model for which we have the following results. If the casual infection rate is
high enough then there is a chance for an epidemic independently of the cluster size and
the within cluster infection rate. In the case of tuberculosis the casual infection rate is
probably not very high. For low or intermediate casual infection rate we show that an
epidemic is possible only if the cluster size is large enough. However, in the case of low or
intermediate casual infection rate, even if the cluster size is large enough the epidemic may
occur only if the within cluster infection rate is large enough. We believe that these results
shed some light about the interplay between the different parameters. In particular, the
model suggests that given a low casual infection rate the cluster size and the within cluster
infection rate are determinant.

2. The spatial stochastic model. Our model evolves on the square lattice Zd,
typically d = 2 but our results hold in any dimension d ≥ 1. At each site x in the square
lattice Zd there is a cluster of N individuals. We denote our stochastic process by ηt. For
a site x in Zd ηt(x) = i means that there are i individuals (among the N individuals in the
cluster at x) that are infected, i is an integer between 0 and N . Thus, each site has N + 1
possible states. We assume that an individual may get infected from within his cluster or
from outside his cluster. The latter type of infection will also be called casual infection.
The parameters λ and φ are the infection rates for infection from outside and from within
the cluster, respectively. We use the notation y ∼ x to indicate that site y is one of the 2d
nearest neighbors of site x. Assume that the model is in configuration η then the state at
a given site x changes according to the following transition rates:

0 → 1 at rate λ
∑

y∼x

η(y)

i → i + 1 at rate iφ for 1 ≤ i ≤ N − 1
i → 0 at rate 1 for 1 ≤ i ≤ N

In words, the model depends on three parameters λ, φ and N . We start the process with a
single infected individual in the cluster at the origin of Zd. Infected individuals may infect
individuals in their cluster at rate φ. Infected individuals may also infect individuals in one
of the 2d neighboring sites at rate λ provided the target site has no infected individuals yet.
The idea is that once a site is infected infections within the site are a lot more likely than
additional infections from the outside so we neglect the latter. This hypothesis simplifies
the mathematics and the model. Moreover, we have checked that allowing casual infections
in an already infected site does not change the qualitative behavior of the model. Finally,
all the infected individuals in a cluster are simultaneously replaced by healthy individuals
at rate 1. This applies in particular to places where there is a good tracking system of
infectious diseases and once an infected individual is discovered its social cluster is rapidly
tracked down.
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We will start by stating a technical result that is crucial in our analysis.

Proposition 1. Let ηt be our spatial stochastic process with parameters λ, φ and
N and whose initial configuration is such that all the individuals are healthy except for
one infected individual in the cluster at the origin of Zd. Let |ηt| be the total number of
infected individuals at time t. The probability

P (|ηt| ≥ 1, for all t ≥ 0)

is increasing in λ, φ and N .

That is, the probability that there will be infected individuals at all times increases
the parameters λ, φ and N .

Given N and φ we define the critical value

λc(N, φ) = inf{λ > 0 : P (|ηt| ≥ 1, for all t ≥ 0) > 0}.

By Proposition 1, one sees that if λ < λc(N, φ) then the infection eventually dies out in
the population while if λ > λc(N, φ) there is a positive probability of an epidemic. That
is, there is a positive probability that there will be infected individuals at all times.

The model with N = 1 is well known and is called the basic contact process. It is a
model with just two states: 0 and 1 and it evolves as follows

0 → 1 at rate λ
∑

y∼x

η(y)

1 → 0 at rate 1

In the case N = 1 the value of φ is irrelevant, hence the critical value λc(1, φ) does not
depend on φ and we will denote it by λc(1). It is known that in any d ≥ 1 the critical value
λc(1) is in ( 1

2d−1
, 2

d
) but precise rigorous bounds are difficult to obtain. See, for instance,

Liggett (1999) for more on the contact process. We now have enough notation to state our
main result.

Theorem 1.
(a) if λ > λc(1) then there is positive probability for an epidemic for models with

parameters (λ, N, φ) for all N ≥ 1 and all φ ≥ 0.
(b) if Nλ < λc(1) there can be no epidemic for models with parameters (λ, N, φ) for

all φ ≥ 0.
(c) if Nλ > λc(1) but λ < λc(1) then there is a critical value φc, in (0,∞), depending

on λ and N such that if φ < φc there is no epidemic for the model with parameters
(λ, N, φ) while if φ > φc there is a positive probability for an epidemic for the model with
parameters (λ, N, φ).

Thus, (a) tells us that if the casual rate λ is large enough there is a positive probability
for an epidemic independently of the cluster size N and the cluster infection rate φ. From
(b) and (c) we see that if λ < λc(1) there is critical cluster size: if N > λc(1)/λ an epidemic
is possible while if N < λc(1)/λ no epidemic can take place. Finally, when λ < λc(1) and
N is above the critical cluster size λc(1)/λ then an epidemic can happen only if the within
cluster infection rate φ is large enough.
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3. The mean field model

We now introduce the mean field model corresponding to our spatial stochastic model.
Let ui be the density of individuals whose cluster has i infected individuals for 0 ≤ i ≤ N .
In particular, u0+u1+. . .+uN = 1. Assuming that the contacts are through homogeneous
mixing we get the following mean field model.

u′
0 =

N∑

i=1

ui −
N∑

i=1

iλuiu0

u′
1 =λu1u0 + 2λu2u0 + 3λu3u0 + . . . + NλuNu0 − u1 − φu1

u′
i =(i − 1)φui−1 − ui − iφui for 2 ≤ i ≤ N − 1

u′
N =(N − 1)φuN−1 − uN

We have the disease free equilibrium u0 = 1 and ui = 0 for all i ≥ 1. The first part of our
analysis involves only the first differential equation. First note that

u′
0 =

N∑

i=1

ui −
N∑

i=1

iλuiu0 ≤
N∑

i=1

ui −
N∑

i=1

λuiu0 = 1− u0 − λu0(1− u0) = (1− u0)(1− λu0).

Note that if λ > 1 and u0 is in (1/λ, 1) then u′
0 < 0. That is, the disease free equilibrium

is not stable and an epidemic is possible for all values of N and φ.
Next, observe that

u′
0 =

N∑

i=1

ui −
N∑

i=1

iλuiu0 ≥
N∑

i=1

ui −
N∑

i=1

Nλuiu0 = (1 − u0)(1 − Nλu0).

If λN < 1 and u0 < 1 then u′
0 > 0. That is, the disease free equilibrium is stable and no

epidemic can take place.
The analysis above shows that the behavior of the mean-field model is qualitatively

the same as the behavior the spatial stochastic model as described in Theorem 1 (a) and
(b).

We now turn to the case where Nλ > 1. From the system of differential equations
above we see that if (u0, u1, . . . , uN ) is an equilibrium then

ui =
(i − 1)φ
iφ + 1

ui−1 for 2 ≤ i ≤ N − 1.

Hence,

(1) ui =
(i − 1)!φi−1

(iφ + 1)((i − 1)φ + 1) . . . (2φ + 1)
u1 for 2 ≤ i ≤ N − 1.

From the last equation in the system of differential equations above we have

uN = (N − 1)φuN−1.
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Letting i = N − 1 in (1) we get

uN =
(N − 1)!φN−1

((N − 1)φ + 1) . . . (2φ + 1)
u1.

We now use the last expression and (1) in the second equation of the system of differential
equations above to get

u0 =
1 + φ

λ

1

1 +
∑N−1

i=2
i!φi−1

(iφ+1)...(2φ+1) + N !φN−1

((N−1)φ+1)...(2φ+1)

.

As we let φ go to infinity it is not difficult to see that u0 converges to 1
λN

. Thus, if
λN > 1 we can pick φ so that an equilibrium giving positive density to the infected states
is possible. In other words, we have for the mean-field model a result similar to what we
have for the spatial stochastic model in Theorem 1 (c).

4. Discussion. There has been interest in the recent literature on the relative
importance of the cluster size, the within cluster infection rate and the casual infection
rate in the transmission of infectious diseases, in particular for tuberculosis, see Aparicio
et al. (2000) and Raffalli et al. (1996). In this paper we obtain the following results for a
spatial stochastic model. If the casual infection rate is above a certain threshold denoted
by λc(1) then there is a chance for an epidemic even for a cluster size of 1 and a within
cluster infection rate of 0. If the casual infection rate is below λc(1) then an epidemic is
possible only if the cluster size is large enough. Even if the cluster size is large enough
then an epidemic is possible only if the within cluster infection rate is large enough when
the casual infection rate is below λc(1). Note that some of the results just described (in
particular, the existence of a critical cluster size) were already implicit for the deterministic
model of Aparicio et al. (2000).

The main example we have in mind is the transmission of tuberculosis. However, we
believe that this model is also interesting in the context of sexually transmitted diseases.
It has been conjectured, for instance, that the transmission of HIV in the gay communities
of the U.S.A is caused by a core of very sexually active individuals that are customers of
bathhouses, see Thompson (1984) and Rotello (1997) for instance. One may think that
such an individual is part of a huge cluster and even if the casual infection rate (that is,
the infection rate from a very active cluster into another cluster) is low our results show
that an epidemic may occur provided the within cluster infection rate is high enough. Of
course, in reality all clusters have not the same size and it would be interesting to analyze
a model with variable (maybe random) cluster size to see whether our results still hold.

Our model is too simple to yield useful quantitative results. Transmission of infec-
tious diseases depend on many more than 3 parameters. Transmission of tuberculosis is
particularly challenging. It is believed that the vast majority of infected individuals never
develop the disease and are never infectious. However, some do and some do more than
once and the discussion is still on to decide whether the reinfection is usually exogenous or
endogenous, see Feng et al. (2000) and Styblo (1991). These questions are now even more
important with many people simultaneously infected by HIV and TB since HIV infected
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individuals are a lot more likely to develop TB. Models like ours are useful in getting
a qualitative understanding of the basic transmission mechanisms. We believe that a lot
must be understood about these basic transmission mechanisms before one can confidently
look at models with more parameters.

In our spatial model there is very little mixing (individuals interact with their nearest
neighbors only) while in the mean-field model every individual mixes with everybody else.
The fact that the qualitative behavior is the same for both models shows that our results
are probably robust and do not depend on the specific mixing conditions of the models.
In particular, we expect finite range spatial models to behave like our nearest neighbor
spatial model.

5. Proofs

Proof of Proposition 1.
It is useful to have some idea on how to construct our process ηt. The construction

we have in mind here is based on appropriate families of Poisson processes. Each site
has Poisson processes corresponding to the different transition rates. For instance, each
site x, for each integer i between 1 and N − 1, has a Poisson process with rate iφ. At
each occurrence of the Poisson process with rate iφ, if site x is in state i then it goes to
state i + 1. By defining appropriate families of Poisson processes we get a process with
the prescribed transition rates. This type of construction is usually referred to as the
graphical construction. For more details see p 32 in Liggett (1999), for instance. One of
the nicest features of this construction is that it allows us to construct several processes on
the same probability space. For instance, if we are interested in comparing two epidemic
models η1

t with φ = φ1 and η2
t with φ2 > φ1, then we may define at each site Poisson

processes with rates iφ2 to construct η2
t . We may use the same Poisson processes to get

Poisson processes with rates iφ1 by doing the following. Every time there is an occurrence
for η2

t it is an occurrence for η1
t with probability φ1/φ2. This gives us a process η1

t with
the appropriate rates. Moreover, one sees that by constructing the two processes in the
same probability space the process with φ1 must have less infected individuals at every
site than the process with φ2. The same type of idea may be used to compare processes
with different N and different λ. One only needs to check that no transition can make
the process with the lower parameter have more infected individuals than the process with
the higher parameter at any given site, provided one starts with the same configuration
for both processes. A crucial feature of the model that ensures this monotonicity property
is the constant transition rate for i → 0 for all states i ≥ 1 (actually, any transition rate
which is decreasing in i would work). This completes the proof of Proposition 1.

Proof of Theorem 1. (a)
Due to Proposition 1 the critical parameter λc(N, φ) is decreasing in N and φ. Thus,

λc(N, φ) ≤ λc(1, φ) = λc(1).

Since we assume that λ > λc(1) we have λ > λc(N, φ) for any N and φ. By definition of
λc(N, φ) we have that P (|ηt| ≥ 1, for all t ≥ 0) > 0. Hence, there is a positive probability
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of an epidemic for all models with parameters (λ, N, φ) such that λ > λc(1). This completes
the proof of Theorem 1 (a).

Proof of Theorem 1 (b)
Consider the model with φ = ∞. In this case as soon there is one infected in the

cluster all the cluster is infected. So each site has only two possible states: 0 and N . The
transition rates are given by:

0 → N at rate λ
∑

y∼x

η(y)

N → 0 at rate 1

Observe that η(y) can only be 0 or N . So the transition from 0 to N occurs at λN times
the number of nearest sites that are infected. Therefore, the model above is a contact
process with birth rate λN . If λN < λc(1) this contact process dies out. By Proposition
1 the model with parameters (λ, N,∞) has more infected individuals than the model with
parameters (λ, N, φ) for any φ ≥ 0. Since there can be no epidemic for the first model the
same is true for the second model. This completes the proof of Theorem 1 (b).

Sketch of the proof of Theorem 1 (c)
We are given λ and N such that Nλ > λc(1) and λ < λc(1). We will proceed in two

steps. Our first step will be to show that there is φ1 > 0 such that if φ < φ1 then no
epidemic can take place for the system with (λ, N, φ). In our second step we will show
that there is φ2 < ∞ such if φ > φ2 then an epidemic may take place for the system with
(λ, N, φ). Due to the monotonicity of this process this will imply the existence of a critical
value φc(λ, N) in [φ1, φ2] such that if φ < φc no epidemic can happen while if φ > φc an
epidemic may happen.

This proof is done under the assumption d = 2, in order to avoid more cumbersome
notation.

We start the first step of the proof by defining two space–time regions:

A = [−2L, 2L]2 × [0, 2L], B = [−L, L]2 × [L, 2L]

where L is an integer to be chosen later. Define C to be part of the ‘boundary’ of the box
A:

C =
{

(m, n, t) ∈ A : |m| = 2L or |n| = 2L or t = 0
}

We will compare the spatial stochastic model ηt to a certain dependent percolation process
on the set L = Z2 × Z+, where Z+ = {0, 1, 2, . . .}. We say that the site (k, m, n) in L
is wet if there exist no infected sites in the (smaller) box (kL, mL, nL) + B regardless of
the states of sites in the boundary (kL, mL, nL)+ C. In other words, we want no infection
path going from the boundary of the larger box into the smaller box. Note that the event
{(k, m, n) is wet} depends only on the existence (or not) of paths of infection within A. We
require this uniformity on the states of the boundary in order to ensure that the percolation
process in L, although dependent, has an interaction with only finite range. Sites which
are not wet are called dry .
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Given λ < λc(1) we will show that there is an integer L and a real number φ1 such
that

P
(
(k, m, n) is wet

)
≥ 1 − ε if φ < φ1.

We start by showing the above property when φ = 0. Then, using a continuity argument,
we will deduce that the inequality remains true for small φ. By translation-invariance, it
suffices to consider the site (0, 0, 0) ∈ L.

Note that if φ = 0 then each site may be in only 2 states: 0 and 1. The process ηt

becomes a contact process with birth rate λ. If there is a 1 in B it must have originated in
[−2L, 2L]2×0 or at a later time from one of the sides of the box A. In the former case the
infection must have survived at least L before it reaches B while in the latter case it must
have a radius of at least L. Note that since λ < λc(1) ηt is a subcritical contact process if
φ = 0. Bezuidenhout and Grimmett (1991) have shown, for the subcritical contact process,
that the probability that an infection lasts L or more is less than Ce−γL where C and γ
are strictly positive constants and that the probability that an infection has a radius of L
is less than Ce−γL. Therefore, we have

P
(
(0, 0, 0) is wet

)
≥ 1 − 8L(4L + 1)e−γL − (4L + 1)2e−γL.

By taking L large enough the probability above may be made larger than 1−ε/2. We have

P
(
(0, 0, 0) is wet

)
≥ 1 − ε/2 if φ = 0.

Since A is a finite box there is φ1 > 0 such that with probability at least 1− ε/2 there are
no occurrences of Poisson processes with rate φ1 inside A. Therefore, we get

P
(
(0, 0, 0) is wet

)
≥ 1 − ε if φ < φ1.

This shows that even if all sites on the boundary of A are in state N by taking φ sufficiently
small ηt will be a subcritical contact process inside A and with high probability there will
be no infected site in the smaller box B.

We may define a percolation process on L for which the probability that a given
site be wet is 1 − ε. Since ε > 0 can be taken arbitrarily small, it is not difficult to see
that the probability of a path of length n of dry sites in the percolation process decreases
exponentially fast with n, see (8.2) in Berg et al. (1998). The crucial point is that an
infected site for ηt corresponds with a path of dry sites in the percolation process. By
using this comparison it is possible to show that for any fixed site, after a finite random
time, there will never be an infection at that site if φ < φ1 for ηt. See the proof of Theorem
4.4 in Berg et al. (1998) for more details. This completes the first step of our proof of
Theorem 1 (c).

We now deal with the second step of the proof. In this step too, we will compare our
spatial stochastic model to a simple oriented percolation model. Let e1 be the vector (1, 0)
and

L = {(m, n) ∈ Z2 : m + n is even}

B = (−4L, 4L)2 × [0, T ] Bm,n = (2mLe1, nT ) + B
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I = [−L, L]2 Im = 2mLe1 + I

C = [−k, k]2

where L and T are parameters to be chosen later and k is the largest integer smaller than√
L. We declare (m, n) ∈ L wet if the process restricted to Bm,n and starting with a

translate of C in Im full of infected sites at time nT , is such that there is a translate of C
in Im−1 and a translate of C in Im+1 both full of infected sites at time (n + 1)T . In other
words, we declare (m, m) wet if a square of side 2k + 1 full of infected sites in Im at time
nT is reproduced at time (n + 1)T in both Im−1 and Im+1. We will now show that by
choosing L and T sufficiently large the probability of a site (m, n) being wet can be made
arbitrarily close to 1. By translation invariance, it is enough to show this for the site (0,0).
We start by setting φ = ∞ in the box B. As noted above in the proof of Theorem 1 (b) the
process ηt with φ = ∞ is a contact process with birth rate λN . Each site may be in one of
2 states: 0 and N . Since we are assuming that λN > λc(1), this is a supercritical contact
process. By taking k and therefore L large enough one can show that the probability for
a supercritical contact process with k initial infected sites to survive forever can be made
arbitrarily close to 1. See for instance (1.9) in p 36 in Liggett (1999). The Shape Theorem
(see p 128 in Liggett (1999)) states that a supercritical contact process that does not die
out spreads out at a constant speed. Thus, if the sites in state N do not die out, they
should get to the boundary of B by time aL, where a > 0 depends on the linear speed
of the infection. Moreover, the Shape Theorem also guarantees that the infected sites are
distributed according to the upper stationary distribution of the contact process. Since
this distribution is ergodic (see Proposition 2.16 p 143 in Liggett (1985)) there will be
translates of C in I1 and I−1 at time L + aL with high probability. This shows that for
any ε > 0 we may pick T = L + aL and L large enough so that

P ((0, 0) is wet) > 1 − ε for φ = ∞.

Since B is a finite space time box, we may pick φ2 large enough so that

P ((0, 0) is wet) > 1 − 2ε for φ > φ2.

We may take ε > 0 small enough so that there is an infinite cluster of wet sites in L with
positive probability. If we start the process ηt with at least one infected individual then
there is a positive probability of having a square C of sites in state N somewhere at time
1. We then start the construction above and there is a positive probability of an infinite
cluster of wet sites. This in turn guarantees that there will be infected sites at all times
and completes the proof of our second step and of Theorem 1 (c).
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