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A Stochastic Model of Evolution
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Abstract. We propose a stochastic model for evolution. Births and deaths of
species occur with constant probabilities. Each new species is associated with
a fitness sampled from the uniform distribution on [0, 1]. Every time there is
a death event, the type that is killed is the one with the smallest fitness. We
show that there is a sharp phase transition when the birth probability is larger
than the death probability. The set of species with fitness higher than a certain
critical value approach a uniform distribution. On the other hand all the species
with fitness less than the critical disappear after a finite (random) time.
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1. Introduction

Consider a discrete time model that starts from the empty set. At each time
n ≥ 1 with probability p there is a birth of a new species and with probability
q = 1 − p there is a death of a species (if the system is not empty). Hence,
the total number of species at time n is a random walk on the positive integers
which jumps to the right with probability p and to the left with probability q.
When the random walk is at 0 it jumps to 1 with probability p or stays at 0
with probability 1− p. Each new species is associated with a random number.
This random number is sampled from the uniform distribution on [0, 1]. We
think of the random number associated with a given species as being the fitness
of the species. These random numbers are independent of each other and of
everything else. Every time there is a death event, the type that is killed is the
one with the smallest fitness. This is similar to a model introduced by Liggett
and Schinazi [5] for a different question.
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Figure 1. This is the histogram of the fitnesses after 100,000 births and deaths
for p = 2/3. We have fc = 1/2 and as predicted by the theorem the distribution
on (fc, 1) approaches a uniform.

Take p in (1/2, 1) and let

fc =
1− p

p
.

Note that fc is in (0, 1). Let Ln and Rn be the set of species alive at time
n whose fitness is lower and higher than fc, respectively. Since each fitness
appears at most once almost surely we can identify each species to its fitness
and think of Ln and Rn as sets of points in (0, fc) and (fc, 1), respectively. Let
|A| denote the cardinal of set A. We are now ready to state our main result.

Theorem 1.1. Assume that p > 1/2. Let fc = (1− p)/p.

(a) The number |Ln| of species whose fitness is below fc is a null recurrent
birth and death chain. In particular, the set Ln is empty infinitely often
with probability one.

(b) Let fc < a < b < 1. Then

lim
n→∞

1
n
|Rn ∩ (a, b)| = p(b− a) a.s.

In words, there is a sharp transition at fitness fc. No species with fitness
below fc can survive forever. On the other hand species are asymptotically
uniformly distributed on (fc, 1).

Observe that the larger p is the more welcoming the environment is to new
species. If p is only slightly larger than 1/2, then fc is close to 1 and only species
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with high fitness will survive. On the other hand if p is close to 1 then fc is
close to 0 and even species with relatively low fitness will survive.

The ’kill the least fit’ rule was introduced in the Bak – Sneppen model, see [1].
In that model there is a fixed number N of species arranged in a circular graph.
At each discrete time the site on the circle with the lowest fitness and its two
nearest neighbors have their fitness replaced by a random number indepen-
dently sampled from the uniform distribution on [0, 1]. Compared to our model
there are two important differences: the number of species is fixed in the Bak –
Sneppen model (in our model it is random) and there is some local interaction
(kill the neighbors of the least fit). However, the same type of uniform be-
havior on some (fc, 1) is expected for the Bak – Sneppen model but this is still
unproved, see [6, 7].

In fact our result is more general than stated. The reader can easily check
in our proof that there is nothing special about the uniform distribution. If
fitnesses are sampled independently from the same fixed distribution then the
limit in Theorem 1.1,(b) is a.s. pP (a < X < b) where X is a random variable
with the fixed fitness distribution. Based on computer simulations we conjecture
that the same is true for the Bak – Sneppen model. There too the uniform
distribution appears only because fitnesses are sampled from it.

2. Proof of the theorem

Part (a) is a well-known result for birth and death chains. Recall that Ln

is the set of species whose fitness is lower than fc at time n. Observe that |Ln|
(the cardinal of Ln) increases by 1 with probability pfc, decreases by 1 with
probability q (if it is not already at 0) and stays put with probability p(1− fc).
Since pfc = q, it is easy to check that |Ln| is null recurrent. See for instance
Proposition II.2.4 in [8].

We now turn to the proof of (b). Let tn be the number times k ≤ n for
which Lk is empty. That is,

tn = |{1 ≤ k ≤ n : Lk = ∅}|.

We will show that, for any ε > 0, tn is almost surely less than n1/2+ε for n large
enough. The main step in the proof is the following lemma.

Lemma 2.1. There are positive constants γ and D such that for every ε > 0
we have

P
(
tn >

2
pfc

n1/2+ε
)
≤ D exp(−γnε).

Proof. Recall that we start from the empty set. After a geometric random time
with mean 1/(pfc), denoted by G0, the first species appears in (0, fc). That is,

G0 = min{k ≥ 1 : Lk &= ∅}.
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Let
E1 = min{k ≥ G0 : Lk = ∅}.

Hence, E1 is the time it takes starting at time G0 for |L.| to return to 0. More
generally, we define for i ≥ 1

Gi = min{k ≥ G0 + E1 + · · ·+ Gi−1 + Ei : Lk &= ∅},

and
Ei+1 = min{k ≥ G0 + E1 + · · ·+ Ei + Gi : Lk = ∅}.

Note that the (Gi)i≥0 and the (Ei)i≥1 are two i.i.d. sequences. Moreover,
the Gi follow a geometric distribution with mean 1/(pfc).

Let kn be the number of times that Lk hits the empty set by time n:

kn = |{2 ≤ k ≤ n : |Lk−1| = 1 and |Lk| = 0}|.

That is, kn counts the number of times Lk goes from 1 to 0 species for k ≤ n.
Note that if kn = 0 then tn ≤ G0. Let C = 2/(pfc). We now compute

P (tn > Cn1/2+ε) ≤ P (tn > Cn1/2+ε; kn < n1/2+ε) + P (kn ≥ n1/2+ε). (2.1)

For kn ≥ 1 we have

G0 + G1 + · · ·+ Gkn−1 < tn ≤ G0 + G1 + · · ·+ Gkn ,

and for kn = 0 we have tn ≤ G0. Hence,

P (tn > Cn1/2+ε; kn < n1/2+ε) ≤ P (G0 + G1 + · · ·+ Gmn > Cn1/2+ε),

where mn is the integer part of n1/2+ε. Now, the expected value of G0 + G1 +
· · ·+ Gmn is (mn + 1)/(pfc). By a large deviations inequality (see for instance
Lemma (9.4) in Chapter 1 of [3]), there exists γ > 0 such that

P (G0+G1+· · ·+Gmn > Cn1/2+ε) ≤ exp(−γmn) ≤ exp(−γ(n1/2+ε−1)). (2.2)

We now take care of the second term in the r.h.s. of (2.1). Using that the Ei

are i.i.d. and that for 1 ≤ i ≤ kn − 1 they all must be less than n,

P (kn ≥ n1/2+ε) ≤ P (E1 < n)mn−1.

In order to estimate P (E1 < n) we will compare |Ln| to a simple symmetric
random walk Wn (one that jumps +1 or −1 with probability 1/2 at each step).
We construct Wn from |Ln| by erasing the steps where |Ln| stays put. If for
instance we have |L1| = |L2| = 0, |L3| = |L4| = 1 and |L5| = 2, then we define
W1 = 0, W2 = 1 and W2 = 2. By doing so we get a simple symmetric random
walk that visits the same sites (in the same order) as |Ln| but in less time.
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Hence, |Ln| takes more time to go from 1 to 0 than Wn does. Let T0 be the
time for Wn to hit 0. We have

P (kn ≥ n1/2+ε) ≤ P (E1 < n)mn−1 ≤ P1(T0 < n)mn−1.

It is well known that P1(T0 ≥ n) is asymptotically 1/
√

πn/2, see for instance
Chapter III in [4]. Hence, there are constants γ′ > 0 and D such that

P (kn ≥ n1/2+ε) ≤ exp
(
−γ′

mn − 1
n1/2

)
≤ D exp(−γ′nε). (2.3)

Using (2.2) and (2.3) in (2.1) completes the proof of the lemma. !

We are now ready to complete the proof of part (b) of Theorem 1.1. Let
Nn be the total number of births in the model up to time n. Clearly, Nn has a
binomial distribution with parameters n and p. Let fc < a < b < 1. We have

|Rn ∩ (a, b)| ≤
Nn∑

i=1

1(a,b)(Ui),

where 1(a,b) is the indicator function of the set (a, b) and (Ui)i≥1 is the sequence
of fitnesses associated with births. Recall that the Ui are i.i.d. and uniformly
distributed on (0, 1). All this inequality is saying is that the number of points
in the set (a, b) at time n is less than the number of births that occurred up to
time n in the same set.

We now bound the number of deaths. We claim that the number of deaths
in (fc, 1) is at most tn. This is so because there can be a death in (fc, 1) only
when (0, fc) is empty and tn counts the number of times this happens up to
time n. Hence,

Nn∑

i=1

1(a,b)(Ui)− tn ≤ |Rn ∩ (a, b)| ≤
Nn∑

i=1

1(a,b)(Ui). (2.4)

By the Law of Large Numbers,

1
n

Nn∑

i=1

1(a,b)(Ui) =
Nn

n

1
Nn

Nn∑

i=1

1(a,b)(Ui)

converges a.s. to pE(1(a,b)(U)) = p(b− a).
On the other hand, by our Lemma 2.1 and the Borel – Cantelli Lemma there

is almost surely a natural N such that tn ≤ (2/(pfc))n1/2+ε for n ≥ N . In
particular, tn/n converges to 0 a.s. We use the two preceding limits in (2.4) to
conclude that a.s.

lim
n→∞

1
n
|Rn ∩ (a, b)| = p(b− a).

This completes the proof of Theorem 1.1. !
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Note We have just learned that Ben-Ari, Matzavinos and Roitershtein [2]
proved a central limit theorem and a law of the iterated logarithm for our
model, by developing further some ideas presented in this paper.
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