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Abstract

We propose both spatial and non-spatial stochastic models for pathogen dynamics in the
presence of an immune response. One of our spatial models shows that, at least in theory, a
pathogen may escape the immune system thanks to its high mutation probability alone. While
one of our non-spatial models also exhibits this behavior, another behaves quite differently
from the corresponding spatial model.

1 Introduction and results

We study some simple mathematical models designed to test the following hypothesis: can a
pathogen escape the immune system only because of its high probability of mutation? We
propose both spatial and non-spatial models. In all of our models, we assume that pathogens can
mutate, leading to the appearance of new types of pathogens. We also assume that the immune
system is able to get rid of all the pathogens of a given type at once but that it recognizes only
one type at a time.

1.1 Non-spatial models

For our non-spatial models, we start with a single pathogen at time zero. Each pathogen gives
birth to a new pathogen at rate λ. When a new pathogen is born, it has the same type as its
parent with probability 1−r. With probability r, a mutation occurs, and the new pathogen has a
different type from all previously observed pathogens. For convenience, we say that the pathogen
present at time zero has type 1, and the kth type to appear will be called type k. Note that we
assume the birth rate λ to be the same for all types and we therefore ignore selection pressures.

If there are no deaths, then this is a model of a Yule process with infinitely many types,
which goes back to Yule (1925). The model with no deaths was studied recently by Durrett and
Schweinsberg (2005), who focused on the joint distribution of the number of pathogens of each
type. Here we assume that the response of the immune system can eliminate pathogens of a
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given type. We propose three different models for the behavior of the immune system. In all
three models the pathogens give birth and mutate as described above. Each model corresponds
to a different immune response.

Model 1: At times of a rate 1 Poisson process, a death event occurs. When there is a death
event, if there are k types of pathogens alive, then one of the types is chosen at random, each
with probability 1/k, and all pathogens of that type are simultaneously killed.

Model 2: When a new type appears in the population, it survives for an exponential amount
of time with mean 1, independently of all the other types. All pathogens of the type are killed
simultaneously.

Model 3: Each pathogen that is born is killed after an exponentially distributed time with mean
1. When a pathogen is killed, all pathogens of the same type are killed simultaneously. In other
words, each pathogen is born with an exponential clock which, when it goes off, kills all pathogens
of its type.

To understand the models better, note that if there are k types and N total pathogens, then
the total rate of death events is 1 in Model 1, k in Model 2, and N in Model 3. Also, if there are
ni pathogens of type i, the rate at which type i is being killed is 1/k in Model 1, 1 in Model 2,
and ni in Model 3. Thus, in models 1 and 2, the rate at which a type is killed does not depend
on the number of pathogens with that type, but in Model 3, types that have large numbers of
pathogens are more likely to be targeted by the immune system and eliminated. Model 2 is
similar to random graph models studied by Chung and Lu (2004) and Cooper, Frieze, and Vera
(2004) with preferential attachment (corresponding to births) and vertex deletion (corresponding
to deaths).

With all three models, there is a positive probability that the immune system will succeed in
eliminating the pathogens, as the first pathogen could die before it has any offspring. Our main
result for the non-spatial models is the following theorem, which specifies the values of r and λ
for which there is a positive probability that the pathogens survive, meaning that for all t > 0,
there is at least one pathogen alive at time t.

Theorem 1. Assume λ > 0 and r > 0.

1. For Model 1, the pathogens survive with positive probability.

2. For Model 2, the pathogens survive with positive probability if and only if λ > 1.

3. For Model 3, the pathogens survive with positive probability if and only if r > 1/λ.

Thus, the three models produce very different behavior. In Model 1, which is the model in
which the death rates are lowest, any positive probability of mutation is enough to allow the
pathogen to escape the immune system. For Model 2, whether or not the pathogen can survive
depends only on the reproduction rate and not on the mutation rate. For Model 3, there is a
phase transition, in that for fixed λ, the pathogens can escape the immune system if r > 1/λ but
not if r ≤ 1/λ. The proof of Theorem 1 is given in Section 2.
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1.2 Spatial models

We now introduce three spatial models that correspond to the three non-spatial models above.
Each spatial stochastic model is on the lattice Zd, where the dimension d can be any positive
integer. Every site of Zd is either occupied by a pathogen or empty. Each model is started with
a single pathogen at the origin of Zd and with all other sites empty.

Rules for births and mutations are the same for the three spatial models. Let x be a site
occupied by a pathogen and y be one of its 2d nearest neighbors. After a random exponential
time with rate λ, the pathogen on x gives birth on y, provided y is empty (if y is occupied
nothing happens). With probability 1 − r the new pathogen on y is of the same type as the
parent pathogen on x. With probability r the new pathogen is of a different type. We assume
that every new type that appears is different from all types that have ever appeared.

In addition to the birth and mutation rates decribed above, the three spatial models, which
we call S1, S2 and S3, have the same rules for the immune responses as non-spatial models 1,
2 and 3, respectively. We start with a result for Model S1. The result shows that this model
produces the same behavior as the corresponding non-spatial model.

Theorem 2. Consider Model S1 on Zd for d ≥ 1. For every λ > 0 and r > 0, the pathogens
have a positive probability of surviving.

We now turn to models S2 and S3. If r = 1, then every birth gives rise to a new type in
models S2 and S3. Since all pathogens are of different types there is only one death at a time
in both models. If we ignore the types, the process of occupied sites is the well-known contact
process. The contact process has a critical value λc which depends on the dimension d of the
lattice. If λ ≤ λc the pathogens die out, while if λ > λc there is a positive probability that
pathogens will survive forever. For more on the contact process, see Liggett (1999).

Theorem 3. 1. Consider Model S2 with λ ≤ 1/2d. For all r in [0, 1] the pathogens die out
with probability 1.

2. Consider Model S3 with λ ≤ λc. For all r in [0,1], the pathogens die out with probability 1.

Theorem 4. Consider Models S2 and S3 on Zd for d ≥ 1 with parameters λ and r.

1. For any λ > λc, there is an r1 in (0,1) such that if r < r1, then the pathogens die out.

2. For any λ > λc, there is an r2 in (0,1) such that if r > r2, then the pathogens survive with
positive probability.

We conjecture that for both Model S2 and S3 there is a critical value rc such that the pathogens
die out if r < rc and survive if r > rc. This would follow from our results if we could prove, for
instance, that the probability of pathogen survival is increasing in r. However, it is not clear that
this is a true statement.

While Models 3 and S3 behave in a similar way, models 2 and S2 are strikingly different. In
particular, Model S2 exhibits a phase transition in r (survival of pathogens for large r, death for
small r) and Model 2 does not.

Theorems 3 and 4 will be proved in Section 3, and Theorem 2 will be proved in Section 4.
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1.3 Discussion

In this paper we propose a new class of models for immune response. Our main assumption is
that the immune system is able to get rid of all the pathogens of a given type at once. As far as
we know these are the first models that attempt to mimic the “central command” nature of the
immune system with global killing rules. There is increasing evidence that the immune system
has a coordinated global behavior. See in particular Silvestri and Feinberg (2003) who argue that
the pathogenesis of AIDS is caused by chronic immune activation rather than direct attack of
the HIV virus. In contrast, most of the existing models are predator-prey differential equations
models with local killing rules, see De Boer and Perelson (1998), Iwasa et al. (2004) and Nowak
and May (2000). There exist also a number of spatial models, in particular cellular automata,
to model HIV infections, see Perelson and Weisbuch (1997), Bernaschi and Castiglione (2002) or
Zorzenon (1999). However, these models, unlike ours, are quite complex, use local killing rules
and are not analyzed rigorously.

Our original motivation for the introduction of our models is to to test the following hy-
pothesis: can the immune system be overwhelmed by a particular virus only because of its high
probability of mutation? Ordinary differential equation models have been used to test this hy-
pothesis. In particular, Nowak and May (2000) (see Sections 12.1 and 12.2) introduce models of
increasing complexity to get a behavior similar to the behavior exhibited by our simple models
3, S2 and S3 (pathogens die out for small mutation rate and survive for large mutation rate).
Sasaki (1994) uses a partial differential equation model in which all types of pathogens have the
same reproduction rate. However, his analysis yields results strikingly different from ours. In
particular, he finds that the pathogens may survive only if the mutation rate is intermediate. If
the mutation rate is too low or too high, the pathogens die out in his model; see in particular his
results for the infinite allele model.

The rest of the paper is devoted to proofs. We are able to give short proofs for all our results
except for Theorem 2 when d = 1. While this is probably not the most biologically significant
model we feel that our mathematical analysis is worthwhile. The proof that an interacting particle
system survives is almost always done by coupling the system to a much simpler one. This is the
case in this paper for all spatial models except for Model S2 in d = 1 for which we could not find
such a coupling. Instead, to prove that the pathogens survive we do a “pathwise” analysis of our
model. This is a rather delicate analysis, but it yields a lot more information about the behavior
of the system than the coupling technique does.

2 Analysis of the non-spatial models

Theorem 1 can be proved using standard branching process techniques. We begin with the
analysis of Model 1, which can be carried out using a comparision with a birth-death process.

Proof of part 1 of Theorem 1. Let X(t) be the number of different types of pathogens alive at
time t. Thus, X(0) = 1, and we need to show that for all r > 0, we have P (X(t) > 0 for all t) > 0.
Since r > 0, we can choose N such that Nλr > 1. Let T0 = inf{t : X(t) = N}. With positive
probability, the pathogen present at time zero gives birth to pathogens of N new types before
the first death event. Therefore, P (T0 < ∞) > 0. For positive integers n, inductively define, on
the event that Tn−1 < ∞, the stopping time Tn = inf{t > Tn−1 : X(t) 6= X(Tn−1)}. That is, Tn
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is the first time after Tn−1 that either a pathogen of a new mutant type is born, in which case
X(Tn) = X(Tn−1) + 1, or one of the types is eliminated, in which case X(Tn) = X(Tn−1) − 1.

Since there must be at least one pathogen of each type, and each pathogen gives birth to
pathogens of new types at rate λr, at time t the rate at which new types are being born is at
least X(t)λr. Therefore, whenever X(t) ≥ N , the rate at which new types are being born is
at least Nλr. The rate of death events, which cause a type to be eliminated, is always 1. Let
p = Nλr/(1 + Nλr) > 1/2. Then for all k ≥ N , we have P (X(Tn) = k + 1|X(Tn−1) = k) ≥ p.
Now, consider a birth-death process (Yn)∞n=0 such that Y0 = N and, for all integers k, we have
P (Yn = k+1|Yn−1 = k) = p and P (Yn = k−1|Yn−1 = k) = 1−p. It is well-known, see for instance
Hoel, Port and Stone (1972), p. 32, that P (Yn ≥ N for all n) = (2p − 1)/p > 0. Therefore, by
comparing the processes (X(Tn))∞n=0 and (Yn)∞n=0, we see that P (X(Tn) ≥ N for all n|T0 <
∞) ≥ (2p − 1)/p. On the event that T0 < ∞ and XTn ≥ N for all n, we have X(t) > 0 for all t.
Therefore, the probability that the pathogens survive is at least P (T0 < ∞)(2p − 1)/p > 0.

To study Models 2 and 3, we will construct a tree which keeps track of the genealogy of the
different types of pathogens. Each vertex in the tree will be labeled by a positive integer. There
will be a vertex labeled k if and only if a pathogen of type k is born at some time. We draw a
directed edge from j to k if the first pathogen of type k to be born had a pathogen of type j as its
parent. This construction gives a tree whose root is labeled 1 because all types of pathogens are
descended from the pathogen of type 1 that is present at time zero. Since every type is eliminated
eventually, we have X(t) > 0 for all t if and only if infinitely many different types of pathogens
eventually appear or, in other words, if and only if the tree described above has infinitely many
vertices.

For Model 1, the rate at which a given type is killed depends on the number of other types
present. However, for Models 2 and 3, the rate at which a type is killed is either constant in the
case of Model 2, or depends only on the number of pathogens of the type in the case of Model 3.
Consequently, once the first pathogen of type k is born, the number of mutant offspring born to
type k pathogens is independent of how the other types evolve. Therefore, the tree constructed
above is a Galton-Watson tree, and the process survives with positive probability if and only if
the mean of the offspring distribution is greater than one, see for instance I.9 in Schinazi (1999).
This observation can be used to prove parts 2 and 3 of Theorem 1. We begin with part 3, which
is simpler.

Proof of part 3 of Theorem 1. Whenever there are n pathogens of a given type, the event in
which the type is destroyed is happening at rate n, while events in which pathogens of the type
give birth to offspring of new mutant types are happening at rate nrλ. Therefore, regardless of
the number of pathogens of the given type, the probability that the type is destroyed before the
next birth to a mutant type is n/(n + nrλ) = 1/(1 + rλ), and the probability that an individual
gives birth to a mutant offspring before the type is destroyed is rλ/(1 + rλ). Suppose X is the
number of types that are offspring of a given type. Then for k ≥ 0,

P (X = k) =
(

rλ

1 + rλ

)k( 1
1 + rλ

)
=

(rλ)k

(1 + rλ)k+1
.

That is, X + 1 has the geometric distribution with parameter 1/(1 + rλ). It follows that the
mean of the offspring distribution is greater than one if and only if r > 1/λ. As discussed above,
this is the condition for the process to survive with positive probability.
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Proof of part 2 of Theorem 1. If r = 1, then there is only one individual of each type, so we have
births at rate λ and deaths of a single individual at rate 1. In this case, the result is a standard
fact about branching processes. Now suppose r < 1. Let m′ be the number of type 1 pathogens
which are offspring of the initial pathogen. Note that the type 1 pathogens evolve like a Yule
process with births at rate λ(1 − r) until the type 1 pathogens all die at time T , which has an
exponential distribution with mean one. If Y (t) denotes the number of type 1 pathogens at time
t, then conditioning on the value of T gives

m′ + 1 = E[Y (T )] =
∫ ∞

0
e−tE[Y (t)] dt =

∫ ∞

0
e−teλ(1−r)t dt =

∫ ∞

0
e−(1−λ(1−r))t dt.

It follows that m′ = ∞ if λ(1 − r) ≥ 1 and m′ = λ(1 − r)/(1 − λ(1 − r)) if λ(1 − r) < 1.
Now, let m be the mean number of different types that are offspring of type 1 pathogens.

Because each type 1 pathogen gives birth to new types at rate rλ and to other type 1 pathogens
at rate (1 − r)λ, we must have m = rm′/(1 − r). Therefore, m = ∞ if λ(1 − r) ≥ 1 and
m = rλ/(1 − λ(1 − r)) if λ(1 − r) < 1. It follows that m > 1 if and only if λ > 1. Thus, the
process survives with positive probability if and only if λ > 1.

3 Analysis of the second and third spatial models

In this section, we prove Theorems 3 and 4, which pertain to the spatial models S2 and S3.

Proof of part 1 of Theorem 3. Suppose λ ≤ 1/2d. We may couple Model S2, in which an indi-
vidual gives birth on each of the 2d neighboring sites at rate λ, with Model 2, in which each
individual gives birth at rate λ′ = 2dλ. In both models, each type dies at rate 1, and each
pathogen gives birth at rate 2dλ. However, a birth that occurs in Model 2 will be suppressed in
Model S2 if the site on which a pathogen is to give birth is already occupied. Hence, at any given
time, Model 2 has at least as many types as Model S2, and each type in Model 2 has at least as
many individuals as the corresponding type in Model S2.

According to Theorem 1.2, if λ′ ≤ 1 then the pathogens in Model 2 die out with probability
1. Using the coupling above, one sees that the same is true for Model S2 if λ ≤ 1/2d.

Proof of part 2 of Theorem 3. As noted before, when r = 1 the process of occupied sites is a
contact process for models S2 and S3. Since λ ≤ λc the pathogens die out. We may couple, site
by site, Model S3 with r < 1 to Model S3 with r = 1. Deaths occur simultaneously in both
models at the same rate 1, but every time there is a death in the process with r = 1, a single
pathogen dies while for the model with r < 1 all pathogens of the same type die. Birth rates of
pathogens are the same. It is easy to see that, with this coupling, the model with r < 1 has fewer
occupied sites than the model with r = 1, at all times. Since the pathogens die out for Model S3
with r = 1 they also must die out for S3 with r < 1.

Proof of part 1 of Theorem 4. We write the proof in dimension d = 2. The same ideas work in
any d ≥ 1. We start by defining two space-time regions.

A = [−2L, 2L]2 × [0, 2T ] B = [−L,L]2 × [T, 2T ].

Note that B is nested in A. Let C be the boundary of A:

C = {(m,n, t) ∈ A : |m| = 2L or |n| = 2L or t = 0}.
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We define the model restricted to A + (kL,mL, nT ) as the model with the same birth and
death rates as the process on Z2 with the restriction that a pathogen in the complement of
[−2L, 2L]2 + (kL,mL) cannot give birth inside [−2L, 2L]2 + (kL,mL) between times nT and
(n + 2)T .

We will compare our models S2 and S3 to a percolation process on Z2 × Z+. We declare
(k,m, n) in Z2 × Z+ to be wet if for the process restricted to A + (kL,mL, nT ) there is no
pathogen in B + (kL,mL, nT ). Moreover, we want no pathogen in B + (kL,mL, nT ) for any
possible configuration of the boundary C + (kL,mL, nT ).

Let ε > 0. We are going to show that given λ > 0, there exists r1 in (0,1) such that

P ((k,m, n) is wet) ≥ 1 − ε if r < r1.

Consider first models S2 and S3 restricted to A and with r = 0. That is, a pathogen born inside
A is always of the same type as its parent. Note that if there is a pathogen inside B there must
be a line of infection from the boundary C of A to B. This line of infection has either started at
the bottom of C (i.e. at time 0) or on one its sides (i.e. at a time different from 0). We will now
show that these possibilities have all exponentially small probability for both models S2 and S3.

Since the line of infection cannot change type inside A, if there is a line of infection from the
bottom of C to B then the type of the pathogens making up the line of infection must last at
least T . The death rate of a type is 1 for Model S2 and is at least 1 for Model S3. Hence, the
probability that there is a line of infection from the bottom of C to B is less than e−T . Note that
there are (4L + 1)2 sites at the bottom of C.

We now deal with a line of infection from a side of C. The minimum distance between a side
of C and B is L. Starting from a site x on a side of C there are positive constants c, C and γ
depending on λ and such that the probability that a line of infection starting at x reaches B by
time cL is less than Ce−γL (see for instance Lemma 9, p. 16 of Durrett (1988)). This estimate
takes into account only births and so is valid for models S2 and S3. If the line of infection takes
at least cL units of time to get to B then the type of the infection line from the side of C must
last at least cL. For both models this has a probability less than e−cL. Putting together these
estimates we get

P ((0, 0, 0) is wet) ≥ 1 − (4L + 1)2e−T − 8T (2L + 1)Ce−γL − 8T (2L + 1)e−cL for r = 0.

By taking L = T large enough we get

P ((0, 0, 0) is wet) ≥ 1 − ε/2 for r = 0.

Given that A is a finite box it is possible to find r1 > 0 (depending on λ and ε) so close to 0 that
if r < r1 there is no creation of a new type in A with probability at least 1 − ε/2. Thus, with
probability at least 1 − ε/2 models S2 and S3 restricted to A and with r < r1 are coupled with
models S2 and S3 with r = 0, respectively. Hence,

P ((0, 0, 0) is wet) ≥ 1 − ε for r < r1.

By translation invariance, the same is true for any site (k,m, n) of Z2 × Z+. We now define a
percolation process on Z2 × Z+ with finite range dependence. Let

A(k,m, n) = (kL,mL, nT ) + A.
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For each element (k,m, n) in Z2 × Z+ we draw an oriented edge from (k,m, n) to (x, y, z) if
n ≤ z and A(k,m, n) ∩ A(x, y, z) 6= ∅. The wet sites in the ensuing directed graph constitute
a percolation model. The dependence of this percolation model has finite range because the
event that (k,m, n) is wet depends only on the Poisson processes inside A(k,m, n) and this box
intersects only finitely many other boxes A(x, y, z).

Note that if there is a pathogen somewhere at some time then there must be a path of dry
sites in the percolation process. Since a dry (i.e. not wet) site has probability ε in this percolation
process, by taking ε > 0 small enough one can make the probability of a path of dry sites of length
n decrease exponentially fast with n. This in turn implies that for any given site there will be no
pathogen after a finite random time, see (8.2) in van den Berg et al. (1998).

Remark. This proof breaks down for Model S1 for at least two reasons. In the proof above it is
crucial to have a lower bound on the death rate of a type. For Model S1 there is no such lower
bound; the death rate of a type is 1/k if there are k types and there is no upper bound on k.
Moreover, what happens inside a finite space-time box for Model S1 depends on how many types
there are in the whole space. Hence, there is little hope to compare Model S1 to a finite range
percolation model as we did for models S2 and S3.

Proof of part 3 of Theorem 4. Let e1 be the vector (1, 0, . . . , 0) in Zd

B = [−2L, 2L]d × [0, T ] Bm,n = (4mLe1, 50nT ) + B

I = [−J, J ]d

L = {(m,n) ∈ Z2 : m + n is even}.

We declare (m,n) ∈ L to be wet if there is (x, t) in Bm,n such that each site of the interval x+I
is occupied by a pathogen at time t for the process restricted to (4Lme1, 50nT ) + (−6L, 6L)d ×
[0, 51T ].

Set r = 1 in the box (−6L, 6L)d × [0, 51T ]. As noted before the set of occupied sites is a
contact process for models S2 and S3. Since λ > λc it is a supercritical contact process.

Bezuidenhout and Grimmett (1990) have shown that for a supercritical contact process, and
for any ε > 0, J , L and T can be chosen so that if (0, 0) is wet then with probability 1− ε, (1, 1)
and (−1, 1) will also be wet. Here we are following the approach and notation of Durrett (1991).
More precisely, for any ε > 0 we can pick J , L and T such that

P ((1, 1) and (−1, 1) are wet|(0, 0) is wet) > 1 − ε for r = 1.

Since (−6L, 6L)d × [0, 51T ] is a finite space-time box, we can pick r2 so close to 1 (but strictly
smaller) that for models S2 and S3 with parameters λ and r > r2 all births inside (−6L, 6L)d ×
[0, 51T ] are of a new type with probability at least 1− ε. Therefore, the process of occupied sites
for models S2 and S3 and r > r2 may be coupled to a contact process with probability at least
1 − ε. Hence, for models S2 and S3 we have

P ((1, 1) and (−1, 1) are wet|(0, 0) is wet) > 1 − 2ε for r > r2.

By picking ε > 0 small enough we can show that there is a positive probability of an infinite
wet cluster in L. This, in turn, implies that pathogens have a positive probability of surviving
forever, see Durrett (1991) for more details.
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4 Analysis of the first spatial model

In this section, we consider Model S1 and prove Theorem 2, which says that the pathogens have
positive probability of surviving whenever λ > 0 and r > 0. This result is easiest to prove in
d ≥ 2, when there are always many neighboring sites on which the pathogens can give birth. We
begin by proving the result in this case.

Proof of Theorem 2 for d ≥ 2. Assume that at some time there are n different types of pathogens
in Model S1. Thus, there are k ≥ n occupied sites. It is easy to see that, if d ≥ 2, at least

√
k

occupied sites have at least one empty neighbor. Therefore, the rate at which the number of
types goes from n to n + 1 is at least λr

√
k ≥ λr

√
n. On the other hand the rate at which the

number of types goes from n to n− 1 is 1. Hence, the number of types in Model S1 is at least as
large as a birth and death chain with transition rates:

n → n + 1 at rate λr
√

n

n → n − 1 at rate 1

An argument very similar to the one in the proof of Theorem 1.1 shows that for all λ > 0
and r > 0, there is a positive probability that this chain never reaches zero. Since there are at
least as many types in Model S1 as there are individuals in the birth and death chain, there is
a positive probability that the number of types in S1 does not reach zero. This completes the
proof of Theorem 2 for d ≥ 2.

We devote the rest of this section to the case d = 1. This case is more complicated because if
there are n occupied sites, there could be as few as two sites with an empty neighbor. Nevertheless,
we will be able to show that the number of occupied sites grows linearly in time because the sites
on the far left and the far right of the configuration will give birth at rate λ, while deaths create
“holes” in the configuration that usually fill up quickly.

We begin by introducing some notation. Let N(t) be the number of pathogens alive at time
t, and let Nk(t) be the number of type k pathogens alive at time t. Let Sk be the set of sites
that are occupied by a type k pathogen at some time. It is easy to see that Sk is an interval. Let
ζk be the time at which the type k pathogens die, with the convention that ζk = ∞ if no type k
pathogen ever dies. Define

L(t) = inf{x : there is a pathogen at site x at time t},
R(t) = sup{x : there is a pathogen at site x at time t},

so all the pathogens at time t are contained in the interval [L(t), R(t)]. Fix a positive integer T .
Let D(t) be the number of types that die before time t, and let X(t) be the number of times
s with T < s ≤ t such that, at time s, either the type occupying the site L(s−) or the type
occupying the site R(s−) dies at time s. Let Y (t) be the number of times s ≤ t such that,
at time s, either the pathogen at site L(s−) gives birth on site L(s−) − 1 or the pathogen on
site R(s−) gives birth on site R(s−) + 1. Let ζ = inf{t : N(t) = 0} be the time at which the
pathogens die out, with the convention that ζ = ∞ if N(t) > 0 for all t. Let γ = min{1, λ/6},
and let κ = inf{t : N(t) < γt}.
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Assume that the initial configuration consists of 6T pathogens, all of different types labeled
1, . . . , 6T , with a pathogen at each of the sites {−3T + 1, . . . , 3T}. Fix positive constants C1,
C2, and C3, and define the following six events:

• Let A1 be the event that D(t) ≤ 2t for all t > T .

• Let A2 be the event that Y (t) ≤ 3λt for all t > T and Y (t) ≥ Y (T ) + λ(t − T ) for all
2T < t < ζ.

• Let A3 be the event that for all t > T , we have max
0≤s≤t

max
k

Nk(s) ≤ C1 log t.

• Let A4 be the event that for all t > 2T , at most C2 log t different types die between times
t − C3 log t and t.

• Let A5 be the event that for all 2T < t < κ, we have X(t) ≤ t1/2.

• Let A6 be the event that for all 2T < t < κ, all k ∈ N such that ζk ≤ t − C3 log t, and all
x ∈ Sk, there exists a time s with ζk < s ≤ t such that either x < L(s), x > R(s), or the
site x is occupied at time s.

Proposition 5. Let ε > 0. Then there exist positive constants C1, C2, and C3 such that

P

( 6⋂

i=1

Ai

)
> 1 − 15ε

for sufficiently large T .

Before proving this proposition, we show that it implies Theorem 2 for d = 1. The idea is that,
on A2, the length of the interval between the left-most pathogen and the right-most pathogen
increases linearly. On A3, at most C1 log t pathogens can die at time t, and on A1 ∩ A4, deaths
are sufficiently infrequent. On A6, when a type dies creating a “hole” in the configuration, it fills
up quickly, so that the interval between the left-most and right-most pathogens is mostly filled
by pathogens. This interval can get shorter when the left-most or right-most pathogen is killed,
but on A5 such deaths occur infrequently.

Proof of Theorem 2 for d = 1. If the process starts from a single pathogen at time zero, then with
positive probability we eventually reach the configuration described above, with 6T pathogens
of different types on sites {−3T + 1, . . . , 3T}. Therefore, it suffices to show that if the process
starts from a configuration with 6T pathogens of different types on {−3T + 1, . . . , 3T}, then
with positive probability the process survives forever. We will show that for sufficiently large T ,
we have N(t) ≥ γt for all t on the event ∩6

i=1Ai. Theorem 2 for d = 1 will then follow from
Proposition 5.

On A1, we have D(2T ) ≤ 4T , so at least 2T of the 6T pathogens alive at time zero must
survive until time 2T . Therefore, for all t ≤ 2T , we have N(t) ≥ 2T ≥ t ≥ γt.

Now assume 2T < t < κ. Suppose L(t) < x < R(t) and there is no pathogen at x at time
t. Because L(t) < x < R(t), the site x must have been occupied at some time before t. Let
u = sup{s < t : site x is occupied at time s}. Suppose u < t − C3 log t. Then on A6, there is
a time s ∈ (u, t) such that either x was occupied at time s, x < L(s), or x > R(s). However,
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since L(t) < x < R(t), it follows that in the latter two cases, x must be occupied at some time
in (s, t), which contradicts the definition of u. Thus, on A6, we have u ≥ t − C3 log t. It follows
that the number of vacant sites x such that L(t) < x < R(t) is at most the number of pathogens
that die between times t − C3 log t and t which, on the event A3 ∩ A4, is at most C1C2(log t)2.
This means that

N(t) ≥ R(t) − L(t) − C1C2(log t)2. (1)

We now compare Y (t) to R(t) − L(t). There are Y (t) − Y (T ) times at which the process
(R(s) − L(s), T ≤ s ≤ t) increases by one. There are at most X(t) times when the process
decreases because of deaths. Suppose, at time s ∈ (T, t], the pathogen at L(s−) or R(s−) dies.
Note that (R(s−)−L(s−))− (R(s)−L(s)) is at most the number of pathogens that die at time
s plus the number of vacant sites between L(s−) and R(s−). The number of pathogens that die
is at most C1 log t on A3, and we just showed that the number of vacant sites between L(s−) and
R(s−) is at most C1C2(log t)2 on A3 ∩ A4 ∩ A6. It follows that for 2T < t < κ, we have

R(t) − L(t) ≥ (R(T ) − L(T )) + (Y (t) − Y (T )) − X(t)
(
C1 log t + C1C2(log t)2

)
. (2)

Now X(t) ≤ t1/2 on A5. On A2, we have Y (t) − Y (T ) ≥ λ(t − T ) ≥ λt/2 ≥ 3γt. Also,
R(T ) − L(T ) ≥ 0. Therefore, by combining (1) with (2), we see that on ∩6

i=1Ai,

N(t) ≥ 3γt − t1/2(C1 log t + C1C2(log t)2) − C1C2(log t)2.

It follows that for sufficiently large T , we have N(t) ≥ 2γt whenever 2T < t < κ.
To show that N(t) ≥ γt for all t on ∩6

i=1Ai for sufficiently large T , it remains to show that
κ = ∞ on ∩6

i=1Ai for sufficiently large T . Because N(t) ≥ γt for t ≤ 2T on A1, we have κ > 2T .
Suppose κ < ∞. On A3, we have N(κ−) − N(κ) ≤ C1 log κ because at most C1 log κ pathogens
can die at time κ. However, on ∩6

i=1Ai, we have N(κ−) ≥ 2γκ and N(κ) < γκ, so for T large
enough that C1 log(2T ) < 2γT , we must have κ = ∞.

Proposition 5 will follow from Lemmas 6, 8, 10, 11, and 12 below. Once T is chosen sufficiently
large, Lemma 6 will imply P (A1) > 1−ε and P (A2) > 1−ε. Lemma 8 then gives P (A3) > 1−3ε,
and Lemma 10 gives P (A4) > 1 − ε. Finally, Lemma 11 implies P (A5) > 1 − 4ε and it follows
from Lemma 12 that P (A6) > 1− 5ε. Our first step will be to bound the probabilities of A1 and
A2.

Lemma 6. Let ε > 0. For sufficiently large T , we have P (A1) > 1 − ε and P (A2) > 1 − ε.

Proof. Until time ζ, deaths occur at times of a rate 1 Poisson point process. Let D′(t) denote
the number of points of a rate one Poisson process before time t, which can be coupled with the
death process in such a way that D(t) = D(t−) for all t < ζ. We have t−1D′(t) → 1 a.s. It
follows that P (A1) > 1 − ε for sufficiently large T .

Likewise, until time ζ, the pathogens at sites L(t) and R(t) each give birth on sites L(t) − 1
and R(t) + 1 respectively at rate λ, so these births occur at times of a Poisson point process of
rate 2λ. Let Y ′(t) denote the number of points of a rate 2λ Poisson point process up to time t,
coupled with the particle system so that Y (t) = Y ′(t) for t < ζ. Then t−1Y ′(t) → 2λ a.s. and
(t − T )−1(Y ′(t) − Y ′(T )) → 2λ a.s. It follows that P (A2) > 1 − ε for sufficiently large T .

We next work towards bounding the probability of A3. The first step is to bound the proba-
bility that the number of pathogens of a given type is high.
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Lemma 7. Let Nk(t) be the number of pathogens of type k at time t. Then there exist positive
constants C4 and C5 such that for all 0 < r < 1 and all a, we have

P
(
max
t≥0

Nk(t) > a
)
≤ C4e

−C5a.

Proof. It is clear from the description of the model that at any time t at which there are pathogens
of type k, the set of sites occupied by type k pathogens is an interval of the form {at, at+1, . . . , bt}.
The maximum number of type k pathogens at any time can therefore be written as 1 + Y + Z,
where Y is the number of times that the type k pathogen on the far left of the interval gives birth
on the site to its left, and Z is the number of times that the type k pathogen on the far right of
the interval gives birth on the site to its right.

Let Z1 be the number of times that the type k pathogen at site bt gives birth to another type
k pathogen on site bt + 1, until the first time that the site bt + 1 is occupied by a pathogen of
another type. Because each pathogen born is a new type with probability r, the distribution
of Z1 + 1 is dominated by the geometric distribution with parameter r. Once a different type
occupies site bt + 1, the type k pathogen at bt can not give birth again at site bt + 1 unless the
type at bt + 1 dies before type k dies, which happens with probability 1/2. It follows that the
distribution of Z is dominated by the distribution of Z1 + · · · + ZN , where N has the geometric
distribution with parameter 1/2, Zi + 1 has the geometric distribution with parameter r for all
i, and N is independent of Z1, Z2, . . . . Therefore,

P

(
Z ≥ a − 1

2

)
≤

∞∑

n=1

P (N = n)P
(

Zi ≥
a − 1
2n

for some i ∈ {1, . . . , n}
)

≤
∞∑

n=1

n

2n
(1 − r)((a−1)/2n)−1 ≤ (1 − r)−3/2

∞∑

n=1

n

2n
(1 − r)a/2n. (3)

In the sum on the right-hand side of (3), the ratio of the (n+1)st term to the nth term converges
to 1/2 as n → ∞, and therefore is less than 3/4 for all n ≥ M for some integer M . For this M ,
we have

P

(
Z ≥ a − 1

2

)
≤ (1 − r)−3/2

(
M

2
(1 − r)a/2M +

M

2M
· (1 − r)a/2M

1 − 3/4

)
≤ C4

2
e−C5a,

where C4 = (1 − r)−3/2M(1 + 23−M ) and C5 = − log(1 − r)/2M . By the same argument, we get
P (Y ≥ (a− 1)/2) ≤ (C4/2)e−C5a. Since the maximum number of type k pathogens is 1+Y +Z,
the result follows.

Lemma 8. Let ε > 0. There is a constant C1 such that for sufficiently large T , we have
P (Ac

3 ∩ A1 ∩ A2) < ε.

Proof. Suppose t > T . On A2, there is a set of at most 3λt + 6T ≤ 3(λ + 2)t sites at which there
has been a pathogen at some time s ≤ t. Since there are at most 2t deaths before time t on A1,
no site can be occupied by more than 2t + 1 different pathogens before time t. Therefore, on
A1 ∩ A2, at most 3(λ + 2)(2t + 1)t different types of pathogens can be born by time t.

For positive integers n, let tn = T 2n
. Given a constant C1, let Bn be the event that for some

k ≤ 3(λ+2)(2tn +1)tn, we have Nk(s) > 1
2C1 log tn for some s. On the event Ac

3∩A1∩A2, there is
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a t > T and a k ≤ 3(λ+2)(2t+1)t such that Nk(s) > C1 log t for some s. If n = inf{m : tm ≥ t},
then k ≤ 3(λ + 2)(2tn + 1)tn and Nk(s) > C1 log t > C1 log tn−1 = 1

2C1 log tn. Therefore, on
Ac

3 ∩ A1 ∩ A2, the event Bn occurs for some n. By Lemma 7, we have

P (Bn) ≤ 3(λ + 2)(2tn + 1)tn · C4e
−C1C5(log tn)/2 = 3C4(λ + 2)(2tn + 1)t1−C1C5/2

n .

Therefore,

P (Ac
3 ∩ A1 ∩ A2) ≤ 3C4(λ + 2)

∞∑

n=1

(2tn + 1)t1−C1C5/2
n .

If we choose C1 large enough that 2−C1C5/2 < 0, then this expression is less than ε for sufficiently
large T .

The next two results bound the probabilities of A4 and A5. Both of these events pertain to
the number of deaths. The proofs make use of the fact that, up to time ζ, deaths occur at times
of a rate one Poisson process. We first state a lemma related to the gamma distribution, which
we can use to choose the constant C3, now that C1 has already been chosen. The reason for this
choice will become clear later. We will then choose C2 in Lemma 10.

Lemma 9. There exists a constant C3 such that if X has a gamma distribution with shape
parameter 2C1 log(t+C3 log t) and scale parameter 2λ, then P (X > C3 log t) ≤ t−2 for sufficiently
large t.

Proof. If 0 < θ < 2λ, then E[eθX ] = [2λ/(2λ − θ)]2C1 log(t+C3 log t). It follows from Markov’s
Inequality, taking θ = λ, that

P (X > C3 log t) ≤ e−λC3 log tE[eλX ] = e−λC3 log t22C1 log(t+C3 log t).

Let g(t) = log(t + C3 log t)/(log t). Then

P (X > C3 log t) ≤ t−λC3+2C1g(t).

We can choose C3 such that λC3 − 4C1 ≥ 2 and then t large enough that g(t) ≤ 2. The lemma
follows.

Lemma 10. Let ε > 0. There is a constant C2 such that P (A4) > 1− ε for sufficiently large T .

Proof. For integers n ≥ 1 and k ≥ 0 such that 2nT + C3(k − 1) log(2n+1T ) < 2n+1T , define the
interval

In,k =
[
2nT + C3(k − 1) log(2n+1T ), 2nT + C3k log(2n+1T )

]
.

Let Bn,k be the event that at least 1
2C2 log(2nT ) types die during the time interval In,k. For any

t such that 2nT ≤ t < 2n+1T , the interval from t − C3 log t to t is contained in In,k ∪ In,k+1 for
some k. Therefore, if for some t such that 2nT ≤ t < 2n+1T , more than C2 log t types die between
times t − C3 log t and t, the event Bn,k must occur for some k. It follows that

P (Ac
4) ≤

∞∑

n=1

∑

k

P (Bn,k),

so we need to bound the probabilities P (Bn,k).

13



Until time ζ, types die at times of a rate one Poisson process, so the distribution of the
number of types that die during the interval In,k is dominated by the Poisson distribution with
mean C3 log(2n+1T ). If X has the Poisson distribution with mean λ, then for all θ > 0, we have

P (X ≥ aλ) ≤ e−θaλE[eθX ] = e−θaλ+λ(eθ−1).

Choosing θ = log a, we get
P (X ≥ aλ) ≤ e−λ(a log a−a+1). (4)

To bound P (Bn,k), we need to apply (4) with λ = C3 log(2n+1T ) and aλ = 1
2C2 log(2nT ). This

means that a = (C2 log(2nT ))/(2C3 log(2n+1T )). We can choose C2 large enough that, for all n,
we have b = C3(a log a − a + 1) > 1. For this choice of C2, we get

P (Bn,k) ≤ e−b log(2n+1T ) = (2n+1T )−b.

For sufficiently large T , we have that for all n there are at most 2n+1T intervals In,k. For such
T ,

P (Ac
4) ≤

∞∑

n=1

(2n+1T )1−b,

which is less than ε for sufficiently large T .

Lemma 11. Let ε > 0. For sufficiently large T , we have P (Ac
5 ∩ A3) < ε.

Proof. Until time ζ, deaths occur at times of a rate one Poisson process. Denote the times of
such a Poisson process by 0 < τ1 < τ2 < . . . . Define a sequence of independent random variables
(Ui)∞i=1, each having a uniform distribution on [0, 1]. When a death event occurs, one type is
chosen at random to die. Therefore, denoting the number of types at time t by M(t), we may
assume that until time ζ, deaths occur at the times τ1 < τ2 < . . . and that, at time τi, if
M(τi−) ≥ 2 then either the type at L(τi−) or R(τi−) dies if and only if Ui ≤ 2/M(t).

Suppose T < t < κ. On the event A3, the number of pathogens of a given type before time
t is at most C1 log t, so the number of types is at least N(t)/(C1 log t) ≥ γt/(C1 log t). It follows
that X(t) is at most the number of times τi such that T < τi ≤ t and Ui ≤ (2C1 log τi)/(γτi).
Such times τi occur at times of an inhomogeneous Poisson process of rate λ(s) = (2C1 log s)/(γs).
It follows that P (Ac

5 ∩ A3) is at most the probability that, for some t, such a Poisson process
contains at least t1/2 points between times T and t.

For positive integers n, let tn = 4nT . Let Bn be the event that there are at least 1
2 t

1/2
n points of

the Poisson process between times T and tn. If there is a t such that there are at least t1/2 points
between times T and t, then if n = min{m : 4mT ≥ t}, there are at least t1/2 ≥ (tn/4)1/2 = 1

2 t
1/2
n

points between times T and tn, so Bn occurs. It follows that P (Ac
5 ∩ A3) ≤

∑∞
n=1 P (Bn).

To bound P (Bn), first note that for T ≥ 1, the distribution of the number of points of the
Poisson process between times T and tn is Poisson with mean

∫ tn

T

2C1 log s

γs
ds ≤ 2C1 log tn

γ

∫ tn

1

1
s

ds =
2C1(log tn)2

γ
.

Thus, P (Bn) is at most the right-hand side of (4) when λ = 2γ−1C1(log tn)2 and aλ = 1
2 t

1/2
n . It

follows easily that
∑∞

n=1 P (Bn) < ε for sufficiently large T , which completes the proof.
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It remains to bound P (A6). Informally, A6 is the event that whenever a type dies, creating
a “hole” in the configuration, the hole fills up quickly.

Suppose a type dies at time t. The pathogens that died occupied some interval [`t, rt]. If the
sites `t −1 and rt +1 are occupied at time t, then we say that a hole is created at time t. If s > t,
we say that the hole exists until time s if there is a Z-valued process (H(u), t ≤ u ≤ s) such that:

• H(t) ∈ [`t, rt].

• The site H(u) is empty for all u ∈ [t, s].

• H(u−) − 1 ≤ H(u) ≤ H(u−) + 1 for all u ∈ [t, s].

• L(u) < H(u) < R(u) for all u ∈ [t, s].

For each u ∈ [t, s], we think of H(u) as being a site in the hole that was created at time t. Over
time, this site may move around within the hole so that no pathogen is born on it. Note that it
need not be the case that H(u) ∈ [`t, rt] for all u ∈ [t, s]. For example, if the pathogen occupying
site rt +1 dies, the hole can exist beyond the time at which pathogens are born on all of the sites
in [`t, rt] if the site rt + 1 remains vacant. If no such process (H(u), t ≤ u ≤ s) exists, then we
say the hole disappears by time s.

Lemma 12. Let ε > 0. For sufficiently large T , we have P (Ac
6 ∩ A1 ∩ A3) < ε.

Proof. We call a hole long-lasting if it is created at time t ≤ 2T −C3 log(2T ) and exists until time
t + C3 log(2T ), or if it is created at time t ≥ 2T − C3 log(2T ) and exists until time t + C3 log t.
Assume T is large enough that 2T − C3 log(2T ) ≥ T and that the function t 7→ t − C3 log t is
increasing on [T,∞). If 2T < t < κ and there are no long-lasting holes created before time
κ − C3 log κ, then every hole created before time t − C3 log t disappears by time

max{2T, t − C3 log t + C3 log(t − C3 log t)} ≤ t.

It follows that if there are no long-lasting holes created before time κ − C3 log κ, then A6 must
occur. This is because if A6 does not occur, then there exist t ∈ (2T, κ), ζk ≤ t − C3 log t, and
x ∈ Sk such that for all s ∈ [ζk, t], the site x is vacant at time s and L(s) < x < R(s). Therefore,
if a new hole is created at time ζk, then by taking H(s) = x for all s ∈ [ζk, t], we see that the
hole exists until time t, contradicting that there are no long-lasting holes. If a new hole was not
created at time ζk, then a hole created at an even earlier time lasts until time t, which gives the
same contradiction. It thus remains to bound the probability that there are no long-lasting holes.

Suppose a hole is created at time t. The pathogens that died at time t occupied some interval
[`t, rt]. Label “a” the type occupying `t − 1 at time t, and label “b” the type occupying rt + 1 at
time t. Label “c” the type at site max{x < `t : there is not a pathogen of type a at site x}, if
this site is occupied. Likewise, label “d” the type at the site min{x > rt : there is not a pathogen
of type b at site x}, if this site is occupied.

Suppose t ≤ 2T − C3 log(2T ), and that no holes created at earlier times are long-lasting. As
long as a hole exists, pathogens are giving birth at rate λ on the sites on the endpoints of the
hole. Therefore, the size of the hole decreases by one at times of a rate 2λ Poisson process, until
the hole no longer exists. By Lemma 9, the probability that fewer than 2C1 log(2T ) points of
this Poisson process occur by time C3 log(2T ) is at most (2T )−2 for sufficiently large T . On A3,
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before time 2T there can be no more than C1 log(2T ) pathogens of a given type. Therefore, if
more than 2C1 log(2T ) points of the Poisson process occur by time C3 log(2T ), the hole will not
exist at time t + C3 log(2T ) unless two of the types a, b, c, and d die before time t + C3 log(2T ).
This is clear if all four types exist. If, for example, type c does not exist, then if type a dies
at time t∗, either the hole will not exist beyond time t∗ because L(t∗) will be to the right of
where the hole was previously, or the hole will merge with a hole born before time t, which by
assumption is not long-lasting and therefore will not still exist at time t + C3 log(2T ). However,
before time 2T , there are always at least 2T types on A1, so the rate at which one of these four
types is dying is at most 4/(2T ). Using that when X has a Poisson distribution with parameter
λ, we have P (X ≥ 2) ≤ λ2, we see that the probability that two of the four types die by time
C3 log(2T ) is at most [4C3(log 2T )/2T ]2, and therefore the probability that the hole created at
time t is long-lasting is at most [(4C3(log 2T ) + 1)/2T ]2.

Suppose instead 2T −C3 log(2T ) ≤ t ≤ κ−C3 log κ, and that no holes created at earlier times
are long-lasting. On A3, before time t + C3 log t there can be no more than C1 log(t + C3 log t)
pathogens of a given type. Therefore, the hole can be long-lasting only if either two of the types
a, b, c, and d die before time t + C3 log t, or if there are fewer than 2C1 log(t + C3 log t) points of
a rate 2λ Poisson process (whose points correspond to births at the endpoints of the hole) before
time C3 log t. Lemma 9 implies that the probability of the latter is at most t−2 for sufficiently
large T . Since t + C3 log t < κ, the number of types during the interval from t to t + C3 log t is
always at least γt/(C1 log(t+C3 log t)). Therefore, the rate of deaths of the four types is at most
4C1 log(t + C3 log t)/γt, so the probability of at least two deaths during this time interval is at
most [4C1C3(log t) log(t + C3 log t)/γt]2. Therefore, the probability that the hole created at time
t is long-lasting is at most [(4C1C3(log t) log(t + C3 log t) + γ)/γt]2.

Since deaths occur at rate 1, the bounds in these two time intervals imply that

P (Ac
6 ∩ A1 ∩ A3) ≤

∫ 2T−C3 log(2T )

0

(
4C3(log 2T ) + 1

2T

)2

dt

+
∫ ∞

2T−C3 log(2T )

(
4C1C3(log t) log(t + C3 log t) + γ

γt

)2

dt,

which is less than ε for sufficiently large T .
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