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ABSTRACT

We propose a simple stochastic model based on the two successive

mutations hypothesis to compute cancer risks. Assume that only stem

cells are susceptible to the first mutation and that there is a total of D

stem cell divisions over the life time of the tissue with a first mutation

probability µ1 per division. Our model predicts that cancer risk will be

low if m = µ1D is low even in the case of very advantageous mutations.

Moreover, if µ1D is low the mutation probability of the second mutation

is practically irrelevant to the cancer risk. These results are in contrast

with existing models but in agreement with a conjecture of Cairns.

In the case where m is large our model predicts that the cancer risk

depends crucially on whether the first mutation is advantageous or not.

A disadvantageous or neutral mutation makes the risk of cancer drop

dramatically.

Cancer has long been thought as being provoked by successive so-

matic mutations, see Knudson (2001) for a history of this hypothesis
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and Barrett (1986) for supporting experimental evidence. For instance,

the age incidence of retinoblastoma is consistent with a two mutations

scenario (Hethcote and Knudson (1978)) while the age incidence of

colorectal cancer is consistent with five successive mutations (Knud-

son (2001)). However, while there seems to be general agreement that

cancer has an early and a late stage there are biological doubts on

the exact number of stages. Armitage (1985) argues that two-stages

models explain several cancers.

In this paper we propose a simple stochastic model based on the two

successive mutations hypothesis to compute cancer risks.

THE MODEL

We assume that cells susceptible to the first mutation undergo a fixed

number D of divisions over the lifetime of the tissue and that there is

a probability µ1 per division of producing a cell with a type 1 muta-

tion. Assuming that all divisions are stochastically independent, the

(random) number of type 1 mutation cells produced over the lifetime

of the tissue is Poisson distributed with mean m = Dµ1. Once a type

1 cell appears it starts a branching process. More precisely, the process

starts with a single type 1 cell and after a unit time it may die with

probability 1−p1 or divide in two type 1 cells with probability p1. Suc-

cessive generations of type 1 cells follow the same rules independently

from each other. Hence, the mean number of daughter cells per cell is

2p1. It is well known, see for instance Section I.9 in Schinazi (1999),

that the branching process survives forever with positive probability if

and only if p1 > 1/2.

We also assume that at each division of a type 1 cell there is a

probability µ2 for each daughter cell that it be a type 2 cell. The

probability, denoted by S(p1, µ2), that a branching process started by

a single type 1 cell eventually gives birth to at least one type 2 cell may

be computed exactly (see Schinazi (2006)):

S(p1, µ2) = 1 − 1

2p1(1 − µ2)2

(
1 −

√
1 − 4p1(1 − p1)(1 − µ2)2

)
.
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Assuming that branching processes started by different type 1 cells are

independent of each other we get that the number of type 1 branch-

ing processes that eventually give birth to at least one 2 cell is also

Poisson distributed with mean Dµ1S(p1, µ2) = mS(p1, µ2). Hence, the

probability of cancer over the lifetime of a particular tissue is

R(m, p1, µ2) = 1 − exp(−mS(p1, µ2)).

As Figure 1 illustrates the parameter m (the mean number of first

mutations over the lifetime of the tissue) has a dramatic effect on R.

For m = 0.01 the risk of cancer is below 1% even for values of p1 near

1, that is, even if the first mutation is extremely advantageous. On the

other hand the parameter µ2 is almost irrelevant for low values of m,

see Figure 2.

If m is large then the crucial parameter is p1. A neutral or slightly

disadvantageous first mutation (that is, p1 ≤ 0.5) lowers the risk of

cancer dramatically, see Figure 3. For p1 ≤ 0.5 the parameter µ2

becomes important (as can be checked by direct computation).

DISCUSSION

Our model shows that even if mutated cells multiply exponentially

(as they do in a branching process with p > 1/2) a two mutations

cancer has a low risk provided m = µ1D is small. Moreover, for small

m the risk of cancer, in this model, does not depend on the second

mutation probability µ2.

If we assume that only stem cells are susceptible to the first mutation

then m = µ1D represents the mean of first mutations for D divisions of

stem cells. Our model predicts that a good strategy to prevent cancer

is a low m. For low m the risk of cancer is low even if the first mutation

is advantageous (i.e. p1 > 1/2) and if the second mutation rates µ2 is

high. This is consistent with the picture of Cairns (2002) regarding

carcinogenesis. In particular, he conjectures that stem cell mutation

rates are low and that this affords protection against cancer.
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In the case where m is large the cancer risk depends crucially on

whether the first mutation is advantageous or not. If the first mutation

is disadvantageous or neutral the risk of cancer drop dramatically.

Branching processes, such as the ones used here, have long been used

in biology. For a recent example, see for instance Johnson and Barton

(2002). Mathematical modeling of the successive mutations hypothesis

goes back to at least Armitage and Doll (1954) who proposed a pure

birth process model. They successfully modeled the increase in the

number of cancers as a power law of age. This power law is observed

in a number of countries and for a number of cancers. In contrast,

the model proposed here is suitable to test hypotheses at the cell level

rather than at the population level.

There are at least two recent papers that propose mathematical mod-

els for the role of stem cells in the appearance of cancer. Frank et al.

(2003) assume that each cell (mutated or not) must undergo a certain

deterministic number of divisions before being killed. They find the

number of divisions for stem cells and transit cells that minimize the

risk of cancer. For their model, unlike ours, the mutation rate for stem

cells seems to have little influence on the risk of cancer (see Figure 3

in their paper). Michor et al. (2003) are interested in the same type of

question with the particular goal of finding the proportion of stem cells

in a tissue that minimizes the risk of cancer. There too the mutation

rate of stem cells seems to have a role comparable to the subsequent

mutation rates, see (2.6) and (2.7) in Michor et al. (2003). Hence, ours

seems to be the first model that predicts a possible preponderant role

for the mutation rate of stem cells.
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Figure 1. This is the plot of the risk R of a two muta-

tions cancer as a of function of p1 for m = µ1D = 0.01

and µ2 = 10−5.
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Figure 2. This plot illustrates our claim that for low

m the mutation rate µ2 is practically irrelevant in a two

mutations cancer. We plot the difference between the

cancer risks for the models with µ2 = 10−3 and µ2 = 10−8

as a function of p1. For both models we set m = µ1D =

0.01.
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Figure 3. This is the plot of the risk R of a two mu-

tations cancer as a of function of p1 for m = 100 and

µ2 = 10−6.


