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Abstract. We propose a discrete time branching process to model

the appearance of drug resistance under treatment. Under our as-

sumptions at every discrete time a pathogen may die with prob-

ability 1 − p or divide in two with probability p. Each newborn

pathogen is drug resistant with probability µ. We start with N

drug sensitive pathogens and with no drug resistant pathogens.

We declare the treatment successful if all pathogens are eradicated

before drug resistance appears. The model predicts that success

is possible only if p < 1/2. Even in this case the probability of

success decreases exponentially with the parameter m = µN . In

particular, even with a very potent drug (i.e. p very small) drug

resistance is likely if m is large.

1. Introduction

Drug resistance is a constant threat to the health of individuals who

are being treated for a variety of ailments: HIV, tuberculosis, cancer.

It is also a threat to the population as a whole since there is a risk that

a treatable disease may be replaced by a non treatable one. See for

instance the case of tuberculosis in Castillo-Chavez and Feng (1997)

and the spatial stochastic model in Schinazi (1999).

In this paper we are interested in evaluating the risk of a treatment

induced drug resistance. We assume that in the absence of treatment a

drug resistant pathogen is outcompeted by the drug sensitive pathogen

and it rapidly dies out if it appears. However, in the presence of a

drug the drug sensitive strain is weakened (how much it is weakened
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depends on the efficacy of the drug) and this gives an edge to the

drug resistant strain if it appears before the drug is able to eradicate

all pathogens. Therefore, under the assumptions of this model, what

determines the treatment outcome is whether total eradication takes

place before the appearance of a drug resistance mutation. We propose

a model to compute the probability of pathogen eradication before drug

resistance appears.

2. The model

We use a very simple branching process to model the dynamics of

drug sensitive pathogens under treatment. We assume that at every

unit time a given pathogen may die with probability 1− p or divide in

two with probability p. Thus, the mean offspring per pathogen is 2p.

We assume that p is strictly between 0 and 1. If 2p > 1 then there

is a positive probability for the family tree of a single drug sensitive

pathogen to survive forever. If 2p ≤ 1 then eradication is certain for

drug sensitive pathogens. For this and other results regarding branch-

ing processes, see Harris (1989). The parameter p is a measure of

efficacy of the drug. The smaller the p the more efficient the drug is

and the more likely eradication of the drug sensitive pathogen is.

As always for branching processes, we assume that the number of

pathogens each pathogen gives birth to is independent of the number

of pathogens any other pathogen gives birth to at the same time. We

also assume that for each birth of pathogen there is a probability µ

that the new pathogen is drug resistant. We denote by N the number

of pathogens at the beginning of treatment.

We first deal with the case N = 1 for mathematical convenience.

That is, treatment starts when we have a single pathogen. Let Z be the

total (random) number of pathogens in the family tree of a single initial

pathogen: Z counts the initial pathogen in addition to all successive

offspring. Note that if p > 1/2 then there is a positive probability that

Z is infinite. However, in order to have no drug resistance mutation
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Z must be finite and none of the total Z − 1 offspring may have the

drug resistance mutation. Let M be the number of births (among the

total Z − 1) with the drug resistant mutation. Assuming that a drug

resistant mutation occurs with probability µ at each birth and that

mutations occur independently of each other we get

P1(M = 0|Z = k) = (1 − µ)k−1

where the subscript 1 indicates that N = 1. Thus,

P1(M = 0) = E((1 − µ)Z−1).

It turns out that the distribution of Z can be computed exactly (see

the Computations Section below) and used to compute the probability

above. We get

P1(M = 0) =
1

2p(1 − µ)2

(
1 −

√
1 − 4p(1 − p)(1 − µ)2

)

for all p in (0, 1). If at the start of the treatment there are in fact N

pathogens, by stochastic independence we get

q(N, µ, p) ≡ PN(M = 0) = (q(1, µ, p))N

and so

q(N, µ, p) =
( 1

2p(1 − µ)2
(1 −

√
1 − 4p(1 − p)(1 − µ)2)

)N

.

Assuming that µ > 0 is small compared to the other parameters we

may approximate the formula above by

q(N, µ, p) ∼ exp(− 2p

1 − 2p
Nµ) for p < 1/2

and

q(N, µ, p) ∼ (
1 − p

p
)N exp(−2

1 − p

2p − 1
Nµ) for p > 1/2.

Thus, the behavior of q depends crucially on whether p < 1/2. For fixed

p < 1/2 the probability that the treatment succeeds depends only on

the parameter m ≡ Nµ and decreases exponentially as m increases.

See Figure 1.
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If p > 1/2 then the probability of success decreases exponentially in

m and also in N . In particular, if p > 1/2 then

q(N, µ, p) < (
1 − p

p
)N .

Since N is usually very large, it is extremely unlikely to avoid drug

resistance in this case.

3. Discussion.

We propose a simple branching process to model the appearance

of drug resistance under treatment. Under our assumptions at every

discrete time a pathogen may die with probability 1 − p or divide in

two with probability p. Each newborn pathogen is drug resistant with

probability µ. We start with N drug sensitive pathogens and with no

drug resistant pathogens. We declare the treatment successful if all

pathogens are eradicated before drug resistance appears.

There are two possible cases. If p > 1/2 then, under treatment, it is

more likely for a pathogen to divide than to die. That is, the effect of

the treatment is to lower p but not enough for eradication to be certain.

Then the probability that no drug resistance will appear is less than

(1−p
p

)N . Since N is huge, drug resistance is almost certain to appear.

The other case is p < 1/2. In this case a pathogen is more likely to

die than to divide. In Figure 1 we plot the graph of q (the probability

of no drug resistance) as a function of m = µN in the case p = 0.2. We

see that q decreases exponentially and is essentially 0 when m ≥ 10. If

p = 0.01 then the drug is much more efficient. The shape of the graph

is the same as in Figure 1 but q is essentially 0 only for m above 250.

In summary, our model predicts that treatment should be tried only

if the drug is potent enough to ensure eradication of drug sensitive

pathogens. It also predicts that the essential parameter is m = µN .

Even with a very potent drug (i.e. p very small) resistance is likely to

appear during treatment if m = µN is large.
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Many different classes of mathematical models for the emergence of

drug resistance exist in the literature. Examples of differential equa-

tions models are McLean and Nowak (1992), Bonhoeffer and Nowak

(1997), Bonhoeffer at al. (1997) and Nowak and May (2000). Ribeiro

and Bonhoeffer (2000) use a deterministic model to compare two pos-

sible scenarios for the outgrowth of drug resistant pathogens: either

a drug resistant strain exists before the treatment or it appears after

the treatment starts. They also use stochastic simulations to compare

the two possibilities. Our point of view is different: we assume that

new strains are rapidly outcompeted by the wild type in the absence of

treatment and that there is no drug resistant strain when the treatment

starts.

As pointed out by several anonymous referees there are also many

examples in the literature of stochastic models. There are in particular

several stochastic models dealing with drug resistance in cancer treat-

ment, see in particular Harnevo and Agur (1992) and (1993), Axelrod

at al. (1993) and Kimmel and Axerold (1990). Our present model is

close to these models, however our objective is different. In these papers

the authors concentrate in drug resistance caused by gene amplification

in a cancerous cell. Their models allow them to suggest several possi-

ble molecular processes involved in gene amplification. Our objective

is different. We ignore the different possible routes to drug resistance

and we compute the probability of a successful treatment as a function

of the probability of drug resistance mutation.

Kimmel et al. (1998) and Polanski et al. (1997) examine differen-

tial equations models for coexistence of (infinitely) many drug resistant

strains of a given pathogen and find stability criteria for their model.

Closer to us is the work of Goldie and Coldman (1998) on drug re-

sistance in cancer. They compute the probability of no resistance at

time t in function of the number of cells at time t (see their Section

5.4 and also 10.9 in Wheldon (1988)). The main difference with our

model is that they do not include the dynamics of tumor growth under
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treatment and its influence on the probability of successful treatment.

In this sense our result completes theirs.

Iwasa et al. (2003) and (2004) use a multi-type branching process

to model the sequence of mutants that leads to a drug resistant mu-

tant. They use their model to understand the importance of different

mutation networks in the appearance of a drug resistant mutant. Un-

derstanding the evolutionary dynamics of drug resistance is a complex

problem that requires a complex model with many parameters. How-

ever, they also use their model to compute the probability of drug

resistance. It is our opinion that to compute the probability of drug

resistance a simple model such as ours (with only two parameters) is

at least as useful. In particular, one can think of the probability µ of

a drug resistant mutation in our model as being the probability of a

sequence of mutations leading to drug resistance. For that it is not

necessary to model the exact path that leads to a drug resistant muta-

tion. Finally, note that even in the simplest case, when the wild type

mutates to a drug resistant type in one step the model in Iwasa et al.

(2004) is not the same as ours (see their section 2.2). They still have a

two-type branching process and we have a one-type branching process.

4. Computations

Set Z0 = 1 and let Z1 be the number of offspring of the initial

pathogen. Under our assumptions we may have Z1 = 0 or 2. Let Zn

be the offspring of the pathogens present at time n − 1 where n ≥
1. We assume that the number of offspring for a given pathogen is

stochastically independent of the offspring of any other pathogen. Let

f be the moment generating function of the offspring distribution. We

have for all s

f(s) =
2∑

k=0

P (Z1 = k|Z0 = 1)sk = 1 − p + ps2.
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Let Z be the total number of pathogens in the family tree of the single

initial pathogen. That is,

Z =

∞∑

n=0

Zn.

The distribution of Z has been known since at least Otter (1949), see

Example 1 in that paper. In order to compute the probability of no

drug resistance q we need part of the computation used to derive Z so

we first compute the distribution of Z and then q.

Since the offspring is always even and we start with a single pathogen

Z is always odd. Let F be the moment generating function of Z:

F (s) =
∞∑

n=1

P (Z = 2n − 1|Z0 = 1)s2n−1

for |s| < 1. F is the solution of the following equation:

F (s) = sf(F (s)) = s(1 − p + pF (s)2)

for all |s| < 1, see Otter (1949). Solving this quadratic equation in

F (s) yields

F (s) =
1

2ps
−

√
1

4p2s2
− 1 − p

p

where we pick this solution of the quadratic equation because F must

be finite for s near 0. We have

F (s) =
1

2ps

(
1 −

√
1 − 4p(1 − p)s2

)
.

Using the binomial expansion we get

1−
√

1 − x =

∞∑

n=1

cnxn for |x| < 1 where cn =
(2n − 2)!

22n−1n!(n − 1)!
for n ≥ 1.

Thus,

F (s) =
1

2ps

∞∑

n=1

cn(4p(1 − p)s2)n =
∞∑

n=1

(2n − 2)!

n!(n − 1)!
(1 − p)npn−1s2n−1.

In particular we get for n ≥ 1

P (Z = 2n − 1|Z0 = 1) =
(2n − 2)!

n!(n − 1)!
(1 − p)npn−1.
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We now compute the probability of no drug resistance starting with

one pathogen.

q(1, µ, p) = E((1 − µ)Z−1) =

∞∑

n=1

(1 − µ)2n−2 (2n − 2)!

n!(n − 1)!
(1 − p)npn−1.

A little algebra yields

q(1, µ, p) =
1

2p(1 − µ)2

∞∑

n=1

(2n − 2)!

22n−1n!(n − 1)!

(
4(1 − µ)2(1 − p)p

)n

.

We get

q(1, µ, p) =
1

2p(1 − µ)2

∞∑

n=1

cn

(
4(1 − µ)2(1 − p)p

)n

.

Thus,

q(1, µ, p) =
1

2p(1 − µ)2

(
1 −

√
1 − 4p(1 − p)(1 − µ)2

)
.

Since each pathogen multiplies independently of the others we get,

starting with N pathogens

q(N, µ, p) =
(
q(1, µ, p)

)N

=
( 1

2p(1 − µ)2

(
1−

√
1 − 4p(1 − p)(1 − µ)2

))N

.

In order to obtain a friendlier expression we compute a linear approxi-

mation in µ. Note that the linear approximation for (1−µ)−2 is 1+2µ

and that

√
1 − 4p(1 − p)(1 − µ)2 ∼ |1 − 2p|(1 +

4p(1 − p)

(1 − 2p)2
µ)

where f ∼ g means that

lim
µ→0

f(µ) − g(µ)

µ
= 0.

For p < 1/2 we get

q(1, µ, p) ∼ 1 − 2p

1 − 2p
µ.

Therefore,

q(N, µ, p) ∼ (1 − 2p

1 − 2p
µ)N ∼ exp(− 2p

1 − 2p
Nµ) for all p < 1/2.
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For p > 1/2 we may do a similar approximation but more importantly

we have

q(N, µ, p) < (
1 − p

p
)N

which may be obtained directly as follows. Starting with one pathogen

the probability of eradication is 1−p
p

: it is the solution of f(s) = s

which is not 1 (see Harris (1989)). If among the N initial pathogens

at least one generates a family tree which survives forever then drug

resistance is certain (there are infinitely many births and each one has

the constant probability µ > 0 of being resistant). Thus, in order to

avoid drug resistance it is necessary (but not sufficient) that all N initial

pathogens generate family trees that are eradicated. This implies the

inequality above.
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Figure 1. This is the probability of no drug resistant

mutation as a of function of m = µN when p = 0.2.
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