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Abstract. We use spatial and non spatial models to argue that competition alone
may explain why two influenza strains do not usually coexist during a given flu season.
The more virulent strain is likely to crowd out the less virulent one. This can be seen
as a consequence of the Exclusion Principle of Ecology. We exhibit, however, a spatial
model for which coexistence is possible.

1. Introduction. The seasonal flu strain was a lot less prevalent during the
2009/2010 influenza season than during the previous years, see Fluview (the weekly
CDC inluenza report) . On the other hand, some time during Spring 2009 the new so
called swine strain appeared. There seems to be a relation between these two events. In
this paper we propose to explain this phenomenon using competition models. We will
use spatial and non spatial models to show that in a given flu season coexistence of two
strains is unlikely due to competition alone. We will also show that geometry and space
may be critical for coexistence. Our models deal with competition over only one flu
season. In the real world, because of mutations the fight between two strains may go on
for several flu seasons before one strain outcompetes the other. This picture is consistent
with the very skinny shape of the phylogenetic tree for influenza, see for instance Koelle
et al. (2006) and van Nimwegen (2006). In this paper the two competing strains are
assumed not to undergo mutations and therefore the time scale we focus on is one flu
season.

A competing explanation of the non coexistence of the two influenza strains is cross
immunity. For instance, immunity may explain why older generations have not been as
much affected as the younger ones in the swine flu epidemic. It may be due to some
previous exposure to a similar strain, see the Discussion in Greenbaum et al. (2009).
However, using a cross immunity argument to explain why the swine strain crowds out
the seasonal one may be more difficult. The hypothesis would be that the swine strain
must confer some immunity against the seasonal flu. But, clearly the seasonal strain does
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not confer any immunity against the swine strain: after all even young people (the group
most severely affected by the swine strain) have usually been exposed to the seasonal
strain and do not seem to be protected against the swine strain. Hence, for this argument
to work the swine strain must confer some immunity against the seasonal strain but the
seasonal strain cannot confer any immunity against the swine strain. In contrast to this
cross immunity hypothesis we argue in this paper that even in models for which there
is no immunity at all (every individual that recovers is immediately susceptible again!)
coexistence of two competing strains is rather unlikely.

2. The ODE Model. Our first model is a system of ordinary differential equations.
Let u1(t) and u2(t) be the density of individuals infected at time t with strains 1 and 2,
respectively . We set

u′1 = λ1u1u0 − δ1u1

u′2 = λ2u2u0 − δ2u2

where u0(t) is the density of susceptible individuals at time t. In words, individuals
infected with strain i infect susceptible individuals at rate λi and get healthy at rate δi,
for i = 1, 2. We assume that the only possible states are 0, 1 and 2. Hence, at any time
t > 0 we have u0(t) + u1(t) + u2(t) = 1. In particular, as soon as an infected individual
gets healthy it is back in the susceptible pool.

Let 1 be the seasonal and 2 be the swine strains. Some reports indicate that the
swine strain may be more virulent than the seasonal strain, see Fraser et al. (2009).
Under that assumption,

λ1

δ1
<
λ2

δ2
.

Assume also that at some point in time the ODE model is at the equilibrium (0, 1−
δ2
λ2

). That is, there is no seasonal strain and the swine strain is in equilibrium. Now
introduce a little bit of seasonal strain (small u1). Will the seasonal strain be able to
grow? Using that u1 is almost 0 and that u2 is almost 1− δ2

λ2
we make the approximation

u0 = 1− u1 − u2 ∼ 1− (1− δ2
λ2

) =
δ2
λ2
.

Hence,

u′1 ∼ λ1u1
δ2
λ2
− δ1u1 = u1(λ1

δ2
λ2
− δ1).

Since we are assuming that λ1
δ1
< λ2

δ2
we get u′1 < 0. That is, under these assumptions

and according to this model the seasonal flu will not take hold.
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In fact this system of ODE is a particular case of a well-known competition model.
For the general version of this model it is known that one of the strains will vanish,
see Exercise 3.3.5 in Hofbauer and Sigmund (1998). The point is that we have two
populations (the population of individuals infected with strain 1 and the population of
individuals infected with strain 2) that compete for a single resource (the susceptible
individuals). It turns out that in such a model one population will drive the other one
out. This is a particular case of the so called ”Exclusion Principle” of Ecology: if the
number of populations is larger than the number of resources all the populations cannot
subsist in the long run, see 5.4 in Hofbauer and Sigmund (1998).

2. The spatial stochastic model. In the preceding model there is no space
structure and all the individuals in the population can be seen as neighbors of each
other. In this section we go to the other extreme where there is a rigid space structure
and each individual has a fixed number of neighbors.

We now describe a spatial stochastic model called the multitype contact process,
see Neuhauser (1992). Let S be the integer lattice Zd ( d is the dimension) or the
homogeneous tree Td for which each site has d + 1 neighbors. The system is described
by a configuration ξ ∈ {0, 1, 2}S , where ξ(x) = 0 means that site x is occupied by a
susceptible individual, ξ(x) = 1 means that x is occupied by an individual infected by
strain 1 and ξ(x) = 2 means that x is occupied by an individual infected by strain 2. If
S is Zd then each site has 2d neighbors, if S is Td then each site has d + 1 neighbors.
For x ∈ S and ξ ∈ {0, 1, 2}S , let n1(x, ξ) and n2(x, ξ) denote the number of neighbors of
x that are infected by strain 1 and strain 2, respectively.

The multitype contact process ξt with birth rates λ1, λ2 makes transitions at x when
the configuration of the process is ξ

1→ 0 at rate 1

2→ 0 at rate 1

0→ 1 at rate λ1n1(x, ξ),

0→ 2 at rate λ2n2(x, ξ),

In words, a susceptible individual gets infected by an infected neighbor at rates λ1 or
λ2, depending on which strain the neighbor is infected with. An infected individual gets
healthy (and is immediately susceptible again) at rate 1. Note that compared to the
ODE model we are assuming in this model that δ1 = δ2 = 1. This is so because most of
the mathematical results have been proved under the assumption δ1 = δ2. We take this
common value to be 1 to minimize the number of parameters.
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The multitype contact process is a generalization of the basic contact process which
has only one type. The transitions of the basic contact process are given by

1→ 0 at rate 1

0→ 1 at rate λ1n1(x, ξ),

For the basic contact process there exists a critical value λc whose exact value is not
known and which depends on the graph the model is on. If λ1 > λc then starting
with even a single infected individual there is a positive probability of having infected
individuals at all times somewhere in the graph. On the other hand if λ1 ≤ λc then
starting from any finite number of infected individuals all the infected individuals will
disappear after a finite time. See Liggett (1999) for more on the basic contact process
on the square lattice and on trees.

2.1 The space is the square lattice Zd. We now go back to the multitype
contact process. Assume that λ2 > λc and λ2 > λ1 then there is no coexistence of
strains 1 and 2 in the sense that

lim
t→∞

P (ξt(x) = 1, ξt(y) = 2) = 0

for any sites x and y in Zd. In fact, strain 2 always drives out strain 1 in the following
sense. Conditioned on strain 2 not disappearing then

lim
t→∞

P (ξt(x) = 1) = 0,

for any site x in Zd and any initial configuration. See Theorem 2 in Cox and Schinazi
(2009) and also Neuhauser (1992). Hence, assuming that λ2 > λ1 (that is, strain 2
is more virulent than strain 1) this model too predicts that the seasonal flu will be
crowded out by the swine strain. The spatial structure seems to have no influence on
the outcome. The next section will show that this is not always so and and that a
different (more crowded) space structure allows coexistence.

2.2 The space is the tree Td. There is a fundamental difference between the
basic contact process on the square lattice and the same model on the tree. There
are two (instead of one) critical values for the basic contact process on the tree. The
definition of λc is as before. We also define another critical value λcc in the following
way. Consider the basic (one type) contact process with birth rate λ1. Let O be a fixed
site on the tree or square lattice. Start the process with a single infected individual at O.
The probability that the infection will return to site O infinitely many times is positive
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if and only if λ1 > λcc. It turns out that λc < λcc on the tree but λc = λcc on the square
lattice.

The fact that the basic contact process has two distinct critical values on the tree
has interesting consequences for the multitype contact process on the tree. Let λ1 and
λ2 be in (λc, λcc) then strains 1 and 2 may coexist on the tree in the following sense.
Under suitable initial configurations we have for any site x

lim inf
t→∞

P (ξt(x) = 1) > 0 and lim inf
t→∞

P (ξt(x) = 2) > 0.

See Theorem 1 in Cox and Schinazi (2009). Note that coexistence occurs even for λ1 < λ2

but both parameters need to be in the rather narrow interval (λc, λcc). This result shows
that space structure and geometry may be crucial in allowing coexistence.

3. Discussion. Our models show that at least in theory coexistence of two compet-
ing strains is unlikely. Coexistence is however possible for the multitype contact process
on a tree. The tree can be thought of as a model for high density populations (in a ball of
radius r there are (d+1)dr−1 individuals on the tree Td but only about rd on the lattice
Zd). In order to have coexistence both infection rates cannot be too low or too high but
may be unequal. In all other cases there will be no coexistence on the tree and there is
never coexistence on Zd unless λ1 is exactly equal to λ2, a rather unlikely possibility,
see Neuhauser (1992). Interestingly the behavior of the mean-field ODE model is the
same as the behavior of the model on Zd but different from the model on the tree. In
general, it is expected that the model on the tree to be closer to the mean-field model
than to the model on Zd. This is not so in this example.
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