
Figure 8.1  The International Space Station photographed from the Space 
Shuttle Discovery.
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The International Space Station (ISS), shown in Figure 8.1, is a remarkable engineering 
achievement. It is scheduled to be completed in 2011, though it has been continuously inhab-
ited since 2000. It orbits Earth at a speed of over 7.5 km/s, in an orbit ranging from 320 to 350 
km above Earth’s surface. When engineers track the ISS, they treat it as a point particle, even 
though it measures roughly 109 m by 73 m by 25 m. Presumably this point represents the 
center of the ISS, but how exactly do engineers determine where the center is?

Every object has a point where all the mass of the object can be considered to be con-
centrated. Sometimes this point, called the center of mass, is not even within the object. This 
chapter explains how to calculate the location of the center of mass and shows how to use it 
to simplify calculations involving collisions and conservation of momentum. We have been 
assuming in earlier chapters that objects could be treated as particles. This chapter shows 
why that assumption works.

This chapter also discusses changes in momentum for the situation where an object’s 
mass varies as well as its velocity. This occurs with rocket propulsion, where the mass of fuel 
is often much greater than the mass of the rocket itself.

	 8.1	 Center of Mass and Center of Gravity
So far, we have represented the location of an object by coordinates of a single point. How-
ever, a statement such as “a car is located at x = 3.2 m” surely does not mean that the entire 
car is located at that point. So, what does it mean to give the coordinate of one particular 
point to represent an extended object? Answers to this question depend on the particular 
application. In auto racing, for example, a car’s location is represented by the coordinate of 
the frontmost part of the car. When this point crosses the finish line, the race is decided. On 
the other hand, in soccer, a goal is only counted if the entire ball has crossed the goal line; 
in this case, it makes sense to represent the soccer ball’s location by the coordinates of the 
rearmost part of the ball. However, these examples are exceptions. In almost all situations, 
there is a natural choice of a point to represent the location of an extended object. This point 
is called the center of mass.

W h at  w e  w i l l  l e a r n
The center of mass is the point at which we can ■■
imagine all the mass of an object to be concentrated.

The position of the combined center of mass of two ■■
or more objects is found by taking the sum of their 
position vectors, weighted by their individual masses.

The translational motion of the center of mass of ■■
an extended object can be described by Newtonian 
mechanics.

The center-of-mass momentum is the sum of the ■■
linear momentum vectors of the parts of a system. Its 
time derivative is equal to the total net external force 
acting on the system, an extended formulation of 
Newton’s Second Law.

For systems of two particles, working in terms of ■■
center-of-mass momentum and relative momentum 

instead of the individual momentum vectors gives 
deeper insight into the physics of collisions and 
recoil phenomena.

Analyses of rocket motion have to consider systems ■■
of varying mass. This variation leads to a logarithmic 
dependence of the velocity of the rocket on the ratio 
of initial to final mass.

It is possible to calculate the location of the center ■■
of mass of an extended object by integrating its 
mass density over its entire volume, weighted by the 
coordinate vector, and then dividing by the total mass.

If an object has a plane of symmetry, the center of ■■
mass lies in that plane. If the object has more than 
one symmetry plane, the center of mass lies on the 
line or point of intersection of the planes.

Definition
The center of mass is the point at which we can imagine all the mass of an object to 
be concentrated.
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Thus, the center of mass is also the point at which we can imagine the force of gravity acting 
on the entire object to be concentrated. If we can imagine all of the mass to be concentrated 
at this point when calculating the force due to gravity, it is legitimate to call this point the 
center of gravity, a term that can often be used interchangeably with center of mass. (To be 
precise, we should note that these two terms are only equivalent in situations where the 
gravitational force is constant everywhere throughout the object. In Chapter 12, we will see 
that this is not the case for very large objects.)

It is appropriate to mention here that if an object’s mass density is constant, the center 
of mass (center of gravity) is located in the geometrical center of the object. Thus, for most 
objects in everyday experience, it is a reasonable first guess that the center of gravity is the 
middle of the object. The derivations in this chapter will bear out this conjecture.

Combined Center of Mass for Two Objects
If we have two identical objects of equal mass and want to find the center of mass for the 
combination of the two, it is reasonable to assume from considerations of symmetry that 
the combined center of mass of this system lies exactly midway between the individual cen-
ters of mass of the two objects. If one of the two objects is more massive, then it is equally 
reasonable to assume that the center of mass for the combination is closer to that of the 
more massive one. Thus, we have a general formula for calculating the location of the center 
of mass, 


R, for two masses m1 and m2 located at positions r1 and r2 to an arbitrary coordinate 

system (Figure 8.2):

	
  
R r m r m

m m
= 1 1 2 2

1 2

+
+

. � (8.1)

This equation says that the center-of-mass position vector is an average of the position 
vectors of the individual objects, weighted by their mass. Such a definition is consistent with 
the empirical evidence we have just cited. For now, we will use this equation as an operating 
definition and gradually work out its consequences. Later in this chapter and in the follow-
ing chapters, we will see additional reasons why this definition makes sense.

Note that we can immediately write vector equation 8.1 in Cartesian coordinates as 
follows:

	 X x m x m
m m

Y y m y m
m m

Z z m= = =1 1 2 2

1 2

1 1 2 2

1 2

1+
+

+
+

, , 11 2 2

1 2

+
+

z m
m m

. � (8.2)

In Figure 8.2, the location of the center of mass lies exactly on the straight (dashed 
black) line that connects the two masses. Is this a general result—does the center of mass 
always lie on this line? If yes, why? If no, what is the special condition that is needed for this 
to be the case? The answer is that this is a general result for all two-body systems: The center 
of mass of such a system always lies on the connecting line between the two objects. To see 
this, we can place the origin of the coordinate system at one of the two masses in Figure 8.2, 
say m1. (As we know, we can always shift the origin of a coordinate system without changing 
the physics results.) Using equation 8.1, we then see that 

 R r m m m= 2 2 1 2/ ( ),+  because with 
this choice of coordinate system, we define r1 as zero. Thus, the two vectors 


R  and r2 point in 

the same direction, but 

R  is shorter by a factor of m2 /(m1 +m2)<1. This shows that 


R  always 

lies on the straight line that connects the two masses.

Solved Problem 8.1    Center of Mass of Earth and Moon

The Earth has a mass of 5.97 · 1024 kg, and the Moon has a mass of 7.36 · 1022 kg. The 
Moon orbits the Earth at a distance of 384,000 km; that is, the center of the Moon is a 
distance of 384,000 km from the center of Earth, as shown in Figure 8.3a.

Problem
How far from the center of the Earth is the center of mass of the Earth-Moon system?

x

y

Rr2

r1

m2

m1
M

Figure 8.2  ​Location of the center 
of mass for a system of two masses m1 
and m2, where M = m1 + m2.

8.1  ​In-Class Exercise
In the case shown in Figure 8.2, 
what are the relative magnitudes of 
the two masses m1 and m2?

a)	m1 < m2

b)	m1 > m2

c)	m1 = m2 

d)	Based solely on the information 
given in the figure, it is not 
possible to decide which of the 
two masses is larger.
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Solution

THIN    K
The center of mass of the Earth-Moon system can be calculated by taking the center of the 
Earth to be located at x = 0 and the center of the Moon to be located at x = 384,000 km. 
The center of mass of the Earth-Moon system will lie along a line connecting the center 
of the Earth and the center of the Moon (as in Figure 8.3a).

S K ET C H
A sketch showing Earth and Moon to scale is presented in Figure 8.3b.

Earth Moon

mE � 5.97 � 1024 kg mM � 7.36 � 1022 kg
384,000 km

Earth Moon

xE � 0 xM � 384,000 km

x

(a)

(b)

Figure 8.3  ​(a) The Moon orbits the Earth at a distance of 384,000 km (drawing to scale). (b) A sketch 
showing the Earth at xE = 0 and the Moon at xM = 384,000 km.

RE  S EAR   C H
We define an x-axis and place the Earth at xE = 0 and the Moon at xM = 384,000 km. We 
can use equation 8.2 to obtain an expression for the x-coordinate of the center of mass of 
the Earth-Moon system:

X x m x m
m m

= E E M M

E M

+
+

.

S I M P LI  F Y
Since we have put the origin of our coordinate system at the center of Earth, we set xE = 0. 
This results in

X x m
m m

= M M

E M+
.

C AL  C ULATE  
Inserting the numerical values, we get the x-coordinate of the center of mass of the Earth-
Moon system:

X x m
m m

= =
km kg

M M

E M+

( ) ⋅( )
⋅

384 000 7 36 10

5 97

22, .

. 110 7 36 1024 22kg kg
= 4676.418 km.

+ ⋅.

R O UND 
All of the numerical values were given to three significant figures, so we report our result as

X = km.4680

D O UBLE    - C HE  C K
Our result is in kilometers, which is the correct unit for a position. The center of mass 
of the Earth-Moon system is close to the center of the Earth. This distance is small com-
pared to the distance between the Earth and the Moon, which makes sense because the 
mass of the Earth is much larger than the mass of the Moon. In fact, this distance is less 
than the radius of the Earth, RE = 6370 km. The Earth and the Moon actually each orbit 
the common center of mass. Thus, the Earth seems to wobble as the Moon orbits it.
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Figure 8.4  ​Freight containers arranged on 
the deck of a container ship.

Combined Center of Mass for Several Objects
The definition of the center of mass in equation 8.1 can be generalized to a total of n objects 
with different masses, mi , located at different positions, ri . In this general case,
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where M represents the combined mass of all n objects:

	 M mi
i

n

=
=1
∑ . � (8.4)

Writing equation 8.3 in Cartesian components, we obtain
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The location of the center of mass is a fixed point relative to the object or system of 
objects and does not depend on the location of the coordinate system used to describe it. 
We can show this by taking the system of equation 8.3 and moving it by r0, resulting in a new 
center-of-mass position, 

 
R R+ 0. Using equation 8.3, we find
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Thus, 
 R r0 0= , and the location of the center of mass does not change relative to the system.

Now we can determine the center of mass of a collection of objects in the following 
example.

Example 8.1    Shipping Containers

Large freight containers, which can be transported by truck, railroad, or ship, come in 
standard sizes. One of the most common sizes is the ISO 20' container, which has a length 
of 6.1 m, a width of 2.4 m, and a height of 2.6 m. This container is allowed to have a mass 
(including its contents, of course) of up to 30,400 kg.

Problem
The four freight containers shown in Figure 8.4 sit on the deck of a container 
ship. Each one has a mass of 9,000 kg, except for the red one, which has a mass 
of 18,000 kg. Assume that each of the containers has an individual center of mass 
at its geometric center. What are the x-coordinate and the y-coordinate of the 
containers’ combined center of mass? Use the coordinate system shown in the 
figure to describe the location of this center of mass.

Solution
We need to calculate the individual Cartesian components of the center of mass, so we’ll 
use equation 8.5. There does not seem to be a shortcut we can utilize.

Let’s call the length of each container  (6.1 m), the width of each container w (2.4 m), 
and the mass of the green container m0 (9,000 kg). The mass of the red container is then 
2m0 , and all the others also have a mass of m0 .
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First, we need to calculate the combined mass, M. According to equation 8.4, it is
M m m m m m

m m
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=
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+ +2 0 0 mm m m
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0 0 0

06
+ +

= .

For the x-coordinate of the combined center of mass, we find
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In the last step, we substituted the value of 6.1 m for .
In the same way, we can calculate the y-coordinate:
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Here again we substituted the numerical value of 2.4 m in the last step. (Note that we 
rounded both center-of-mass coordinates to two significant figures to be consistent with 
the given values.)

	 8.2	 Center-of-Mass Momentum
Now we can take the time derivative of the position vector of the center of mass to get 


V, the 

velocity vector of the center of mass. We take the time derivative of equation 8.3:
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For now, we have assumed that the total mass, M, and the masses, mi, of the individual 
objects remain constant. (Later in this chapter, we will give up this assumption and study 
the consequences for rocket motion.) Equation 8.6 is an expression for the velocity vector of 
the center of mass, 


V . Multiplication of both sides of equation 8.6 by M yields

	
  
P MV pi

i

n

= =
=1
∑ . � (8.7)

We thus find that the center-of-mass momentum, 

P, is the product of the total mass, M, and 

the center-of-mass velocity, 


V , and is the sum of all the individual momentum vectors.
Taking the time derivative of both sides of equation 8.7 yields Newton’s Second Law for 

the center of mass:
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In the last step, we used the result from Chapter 7 that the time derivative of the momentum 
of particle i is equal to the net force, 


Fi, acting on it. Note that if the particles (objects) in a 

8.2  Center-of-Mass Momentum

8.1  ​Self-Test Opportunity
Determine the z-coordinate of the 
center of mass of the container ar-
rangement in Figure 8.4.
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system exert forces on one another, those forces do not make a net contribution to the sum 
of these forces in equation 8.8. Why? According to Newton’s Third Law, the forces that two 
objects exert on each other are equal in magnitude and opposite in direction. Therefore, 
adding them yields zero. Thus, we obtain Newton’s Second Law for the center of mass:

	 d
dt

P F
 

= net , � (8.9)

where 

Fnet  is the sum of all external forces acting on the system of particles.

The center of mass has the same relationships among position, velocity, momentum, 
force, and mass that have been established for point particles. It is thus possible to consider 
the center of mass of an extended object or a group of objects as a point particle. This 
conclusion justifies the approximation we used in earlier chapters that objects can be rep-
resented as points.

Two-Body Collisions
One of the most interesting applications of center of mass arises with a frame of reference 
whose origin is placed at the center of mass of a system of interacting objects. Let’s investigate 
the simplest example of this situation. Consider a system consisting of only two objects. In this 
case, the total momentum—the sum of individual momenta according to equation 8.7—is

	
  
P p p= 1 2+ . � (8.10)

In Chapter 7, we saw that the relative velocity between two colliding objects plays a big role 
in two-body collisions. Thus, it is natural to define the relative momentum as half of the 
momentum difference:
	

  
p p p= 1

2 1 2( – ). � (8.11)

Why is the factor 1
2  appropriate in this definition? The answer is that in a center-of-momentum 

reference frame—a frame in which the center of mass has zero momentum—the momen-
tum of object 1 is 


p and that of object 2 is – .


p  Let’s see how this comes about.

Figure 8.5a illustrates the relationship between the center-of-mass momentum 

P  (red 

arrow), the relative momentum 

p (blue arrow), and the momenta of objects 1 and 2 (black 

arrows). We can express the individual momenta in terms of the center-of-mass momen-
tum and the relative momentum:
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The biggest advantage of thinking in terms of center-of-mass momentum and relative 
momentum becomes clearer when we consider a collision between the two objects. Dur-
ing a collision, the dominant forces that act on the objects are the forces they exert on each 
other. These internal forces do not enter into the sum of forces in equation 8.8, so we obtain, 
for the collision of two objects:

	 d
dt

P


= 0.

In other words, the center-of-mass momentum does not change; it remains the same during a 
two-body collision. This is true for elastic or totally inelastic or partially inelastic collisions.

For an inelastic collision, where the two objects stick together after colliding, we found 
in Chapter 7 that the velocity with which the combined mass moves is

	 
 

v m v m v
m mf

i i= 1 1 2 2

1 2

+
+

.

If we compare this equation with equation 8.6, we see that this velocity is just the center-of-
mass velocity. In other words, in the case of a totally inelastic collision, the relative momen-
tum after the collision is zero.

For elastic collisions, the total kinetic energy has to be conserved. If we compute the 
total kinetic energy in terms of the total momentum, 


P , and the relative momentum, 


p, the 

contribution from the total momentum has to remain constant, because 

P  is constant. This 

(a) (b)

p1 p2

p P1
2

pf1

pf 2

pf
P1

2

Figure 8.5  ​Relationship between 
momentum vectors 1 and 2 (black), 
center-of-mass momentum (red), and 
relative momentum (blue) in some 
reference frame: (a) before an elastic 
collision; (b) after the elastic collision.
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finding implies that the kinetic energy contained in the relative motion also has to remain 
constant. Because this kinetic energy, in turn, is proportional to the square of the relative 
momentum vector, the length of the relative momentum vector has to remain unchanged 
during an elastic collision. Only the direction of this vector can change. As shown in Figure 
8.5b, the new relative momentum vector after the elastic collision lies on the circumference 
of a circle, whose radius is equal to the length of the initial relative momentum vector and 
whose center is at the end point of the 1

2

p . The situation depicted in Figure 8.5 implies that 

the motion is restricted to two spatial dimensions. For two-body collisions in three dimen-
sions, the final relative momentum vector is located on the surface of a sphere instead of the 
perimeter of a circle.

In Figure 8.5, the momentum vectors for particle 1 and particle 2 are plotted in some 
arbitrary reference frame before and after the collision between the two particles. We can 
plot the same vectors in a frame that moves with the center of mass. (We have just shown 
that the center-of-mass momentum does not change in the collision!) The center-of-mass 
velocity in such a moving frame is zero, and, consequently, 


P = 0 in that frame. From equa-

tion 8.12, we can then see that in this case the initial momentum vectors of the two particles 
are 
 
p p1 =+  and 

 
p p2 = – . In the moving center-of-mass frame, the two-particle collision 

simply results in a rotation of the relative momentum vector about the origin, as shown 
in Figure 8.6, which automatically ensures that the conservation laws of momentum and 
kinetic energy (because this is an elastic collision!) are obeyed.

Recoil
When a bullet is fired from a gun, the gun recoils; that is, it moves in the direction opposite 
to that in which the bullet is fired. Another demonstration of the same physical principle 
occurs if you are sitting in a boat that is at rest and you throw an object off the boat: The 
boat moves in the direction opposite from that of the object. You also experience the same 
effect if you stand on a skateboard and toss a (reasonably heavy) ball. This well-known 
recoil effect can be understood using the framework we have just developed for two-body 
collisions. It is also a consequence of Newton’s Third Law.

Solved Problem 8.2    Cannon Recoil

Suppose a cannonball of mass 13.7 kg is fired at a target that is 2.30 km away from the 
cannon, which has a mass of 249.0 kg. The distance 2.30 km is also the maximum range 
of the cannon. The target and cannon are at the same elevation, and the cannon is resting 
on a horizontal surface.

Problem
What is the velocity with which the cannon will recoil?

Solution
THIN    K
First, we realize that the cannon can recoil only in the horizontal direction, because the 
normal force exerted by the ground will prevent it from acquiring a downward veloc-
ity component. We use the fact that the x-component of the center-of-mass momentum 
of the system (cannon and cannonball) remains unchanged in the process of firing the 
cannon, because the explosion of the gunpowder inside the cannon, which sets the can-
nonball in motion, creates only forces internal to the system. No net external force com-
ponent occurs in the horizontal direction because the two external forces (normal force 
and gravity) are both vertical. The y-component of the center-of-mass velocity changes 
because a net external force component does occur in the y-direction when the normal 
force increases to prevent the cannon from penetrating the ground. Because the cannon-
ball and cannon are both initially at rest, the center-of-mass momentum of this system is 
initially zero, and its x-component remains zero after the firing of the cannon.

Figure 8.6  ​Same collision as in 
Figure 8.5 but displayed in the center-
of-mass frame.

(a) (b)

p1 p2

pf1

pf 2

Continued—
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S K ET C H
Figure 8.7a is a sketch of the cannon just as the cannonball is fired. 
Figure 8.7b shows the velocity vector of the cannonball, v2, including the 
x- and y-components.

RE  S EAR   C H
Using equation 8.10 with index 1 for the cannon and index 2 for the can-
nonball, we obtain

      P p p m v m v v m
m

v= = = =1 2 1 1 2 2 1
2

1
20+ + ⇒ – .

For the horizontal component of the velocity, we then have

	 v m
m

vx x1
2

1
2, ,– .= 	 (i)

We can obtain the horizontal component of the cannonball’s initial velocity (at firing) 
from the fact that the range of the cannon is 2.30 km. In Chapter 3, we saw that the range 
of the cannon is related to the initial velocity via R = (v0

2/g)(sin 20). The maximum range 
is reached for 0 = 45° and is R = v0

2/g ⇒ v0 = gR . For 0 = 45°, the initial speed and 
horizontal velocity component are related via v2,x = v0 cos 45° = v0/ 2 . Combining these 
two results, we can relate the maximum range to the horizontal component of the initial 
velocity of the cannonball:

	 v v gR
x2

0

2 2, .= = 	 (ii)

S I M P LI  F Y
Substituting from equation (ii) into equation (i) gives us the result we are looking for:

v m
m

v m
m

gR
x x1

2

1
2

2

1 2, ,– – .= =

C AL  C ULATE  
Inserting the numbers given in the problem statement, we obtain

v m
m

gR
x1

2

1 2
13 7 9 81 2 3

, – – . ( . )( .= = kg
249 kg

m/s2 00 10
2

3⋅ m) = 5.84392 m/s.–

R O UND 
Expressing our answer to three significant figures gives

v x1, –= 5.84 m/s.

D O UBLE    - C HE  C K
The minus sign means that the cannon moves in the opposite direction to that of the can-
nonball, which is reasonable. The cannonball should have a much larger initial velocity 
than the cannon because the cannon is much more massive. The initial velocity of the 
cannonball was

v gR0
39 81 2 3 10 150= = m/s m = m/s.2. .( ) ⋅( )

The fact that our answer for the velocity of the cannon is much less than the initial veloc-
ity of the cannonball also seems reasonable.

Mass can be ejected continuously from a system, producing a continuous recoil. As an 
example, let’s consider the spraying of water from a fire hose.

y

x

y

x

v2

v2v2, y

v2, x

v1

(b)(a)

�0 � 45° �0 � 45°

Figure 8.7  ​(a) Cannonball being fired from a cannon. 
(b) The initial velocity vector of the cannonball.
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Solution
Let’s first find the total mass of the water that is being ejected per minute. The mass den-
sity of water is  =1000 kg/m3  = 1.0 kg/L. Because V = 360 L, we get for the total mass 
of water ejected in a minute:

 m V= = L)(1.0 kg/L)= 360 kg. (360

The momentum of the water is then p = vm, and, from the definition of the average 
force, F = p/t, we have:

F v m
t

= = m/s)(360 kg)
s

= N.



( .39 0
60

234

This force is sizable, which is why it is so dangerous for firefighters to let go of operating 
fire hoses: They would whip around, potentially causing injury.

General Motion of the Center of Mass
Extended solid objects can have motions that appear, at first sight, rather complicated. One 
example of such motion is high jumping. During the 1968 Olympic Games in Mexico City, 
the American track-and-field star Dick Fosbury won a gold medal using a new high-jump 
technique, which became known as the Fosbury flop (see Figure 8.9). Properly executed, 
the technique allows the athlete to cross over the bar while his or her center of mass remains 
below it, thus adding effective height to the jump.

Figure 8.10a shows a wrench twirling through the air, in a multiple-exposure series 
of images with equal time intervals between sequential frames. While this motion looks 
complicated, we can use what we know about the center of mass to perform a straightfor-
ward analysis of this motion. If we assume that all the mass of the wrench is concentrated 
at a point, then this point will move on a parabola through the air under the influence of 
gravity, as discussed in Chapter 3. Superimposed on this motion is a rotation of the wrench 

8.2  ​In-Class Exercise
A garden hose is used to fill a 
20-L bucket in 1 min. The velocity 
of the water leaving the hose is 
1.05 m/s. What force is required to 
hold the hose in place?

a)	0.35 N

b)	2.1 N

c)	9.8 N

d)	12 N

e)	21 N

Example 8.2    Fire Hose

Problem
What is the magnitude of the force, F, that acts on a firefighter holding a fire hose that ejects 
360 L of water per minute with a muzzle speed of v = 39.0 m/s, as shown in Figure 8.8?

F

v
WaterNozzleHose

�m
�t

Figure 8.8  ​A fire hose with water leaving at speed v.

Figure 8.9  ​Dick Fosbury clears 
the high-jump bar during the finals of 
the Olympic Games in Mexico City on 
October 20, 1968.

(a) (b)

Figure 8.10  ​(a) Digitally processed multiple-exposure series of images of a wrench tossed through the air. (b) Same series as in part (a), but 
with a parabola for the center-of-mass motion superimposed.
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about its center of mass. You can see this parabolic trajectory clearly in Figure 8.10b, where 
a superimposed parabola (green) passes through the location of the center of mass of the 
wrench in each exposure. In addition, a superimposed black line rotates with a constant rate 
about the center of mass of the wrench. You can clearly see that the handle of the wrench 
is always aligned with the black line, indicating that the wrench rotates with constant rate 
about its center of mass (we will analyze such rotational motion in Chapter 10).

The techniques introduced here allow us to analyze many kinds of complicated prob-
lems involving moving solid objects in terms of superposition of the motion of the center of 
mass and a rotation of the object about the center of mass.

	 8.3	 Rocket Motion
Example 8.2 about the fire hose is the first situation we have examined that involves a change 
in momentum due to a change in mass rather than in velocity. Another important situation 
in which changing momentum is due to changing mass is rocket motion, where part of the 
mass of the rocket is ejected through a nozzle or nozzles at the rear (Figure 8.11). Rocket 
motion is an important case of the recoil effect discussed in Section 8.2. A rocket does not 
“push against” anything. Instead, its forward thrust is gained from ejecting its propellant 
from its rear, according to the law of conservation of total momentum.

In order to obtain an expression for the acceleration of a rocket, we’ll first consider 
ejecting discrete amounts of mass out of the rocket. Then we can approach the continuum 
limit. Let’s use a toy model of a rocket that moves in interstellar space, propelling itself for-
ward by shooting cannonballs out its back end (Figure 8.12). (We specify that the rocket is 
in interstellar space so we can treat it and its components as an isolated system, for which 
we can neglect outside forces.) Initially, the rocket is at rest. All motion is in the x-direction, 
so we can use notation for one-dimensional motion, with the signs of the x-components of 
the velocities (which, for simplicity, we will refer to as velocities) indicating their direction. 
Each cannonball has a mass of m, and the initial mass of the rocket, including all cannon-
balls, is m0. Each cannonball is fired with a velocity of vc relative to the rocket, resulting in 
a cannonball momentum of vc m.

After the first cannonball is fired, the mass of the rocket is reduced to m0  – m. Fir-
ing the cannonball does not change the center-of-mass momentum of the system (rocket 
plus cannonball). (Remember, this is an isolated system, on which no net external forces 
act.) Thus, the rocket receives a recoil momentum opposite to that of the cannonball. The 
momentum of the cannonball is

	 p v mc c=  ,

and the momentum of the rocket is

	 p m m vr = 0 1– ,( )
where v1 is the velocity of the rocket after the cannonball is fired. Because momentum is 
conserved, we can write pr + pc = 0, and then substitute pr and pc from the preceding two 
expressions:

	 m m v v m0 1 0– . ( ) + c =

We define the change in the velocity, v1, of the rocket after firing one cannonball as

	 v v v v v1 0 10= = =+ +   ,

Figure 8.11  ​A Delta II rocket lift-
ing a GPS satellite into orbit.

x

p �p

Figure 8.12  ​Toy model for rocket propulsion: firing cannonballs.
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where the assumption that the rocket was initially at rest means v0 = 0. This gives us the 
recoil velocity of the rocket due to the firing of one cannonball:

	 



v v m

m m1
0

= c–
–

.

In the moving system of the rocket, we can then fire the second cannonball. Firing the sec-
ond cannonball reduces the mass of the rocket from m0  – m to m0 – 2m, which results 
in an additional recoil velocity of

	 



v v m

m m2
0 2

= c–
–

.

The total velocity of the rocket then increases to v2 = v1 + v2 . After firing the nth cannon-
ball, the velocity change is:

	 



v v m

m n mn = c–
–

.
0

� (8.13)

Thus, the velocity of the rocket after firing the nth cannonball is:

	 v v vn n n= – .1+

This kind of equation, which defined the nth term of a sequence where each term is 
expressed as a function of the preceding terms, is called a recursion relation. It can be solved in 
a straightforward manner by using a computer. However, we can use a very helpful approxi-
mation for the case where the mass emitted per unit time is constant and small compared to m, 
the overall (time-dependent) mass of the rocket. In this limit, we obtain from equation 8.13

	 
 


v v m

m
v
m

v
m

= =c c– – .⇒ � (8.14)

Here vc is the velocity with which the cannonball is ejected. In the limit m → 0, we then 
obtain the derivative
	 dv

dm
v
m

= c– . � (8.15)

The solution of this differential equation is

	 v m v
m

dm v m v m
m

m

m

m

m
( ) –

'
' – ln ln= = =c c c

1

0

0

0∫








.� (8.16)

(You can verify that equation 8.16 is indeed the solution of equation 8.15 by taking the 
derivative of equation 8.16 with respect to m.)

If mi is the initial value for the total mass at some time ti and mf is the final mass at a later 
time, we can use equation 8.16 to obtain vi = vc ln (m0/mi) and vf = vc ln (m0/mf) for the initial 
and final velocities of the rocket. Then, using the property of logarithms, ln(a/b)= lna – lnb, 
we find the difference in those two velocities:

	 v v v m
m

v m
mf i c

f
c

i
=– ln – ln0 0































= c
i

f
v m

m
ln . � (8.17)

Example 8.3   R ocket Launch to Mars

One proposed scheme for sending astronauts to Mars involves assembling a spaceship 
in orbit around Earth, thus avoiding the need for the spaceship to overcome most of 
Earth’s gravity at the start. Suppose such a spaceship has a payload of 50,000 kg, carries 
2,000,000 kg of fuel, and is able to eject the propellant with a velocity of 23.5 km/s. (Cur-
rent chemical rocket propellants yield a maximum velocity of approximately 5 km/s, but 
electromagnetic rocket propulsion is predicted to yield a velocity of perhaps 40 km/s.)

Continued—
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Problem
What is the final velocity that this spaceship can reach, relative to the velocity it initially 
had in its orbit around Earth?

Solution
Using equation 8.17 and substituting the numbers given in this problem, we find

v v v m
mf i c

i

f
= = km/s)– ln ( . ln ,









23 5 2 0550 000 23 5, ( .kg
50,000 kg

= km/s)










(( = km/s.ln ) .41 87 3

For comparison, the Saturn V multistage rocket that carried astronauts to the Moon in 
the late 1960s and early 1970s was able to reach a speed of only about 12 km/s.

However, even with advanced technology such as electromagnetic propulsion, it 
would still take several months for astronauts to reach Mars, even under the most favor-
able conditions. The Mars Rover, for example, took 207 days to travel from Earth to Mars. 
NASA estimates that astronauts on such a mission would receive approximately 10 to 
20 times more radiation than the maximally allowable annual dose for radiation work-
ers, leading to high probabilities of developing cancer and brain damage. No shielding 
mechanism has yet been proposed that could protect the astronauts from this danger.

Another and perhaps easier way to think of rocket motion is to go back to the defini-
tion of momentum as the product of mass and velocity and take the time derivative to 
obtain the force. However, now the mass of the object can change as well:

	
  


F d

dt
p d

dt
mv m dv

dt
v dm

dtnet = = =( ) .+

(The last step in this equation represents the application of the product rule of differentia-
tion from calculus.) If no external force is acting on an object ( ),


Fnet = 0  then we obtain

	 m dv
dt

v dm
dt


= – .

In the case of rocket motion (as illustrated in Figure 8.13), the outflow of propellant, 
dm/dt, is constant and creates the change in mass of the rocket. The propellant moves with 
a constant velocity, vc, relative to the rocket, so we obtain

	 m dv
dt

ma v dm
dt


 = = c– .

The combination vc(dm/dt) is called the thrust of the rocket. It is a force and thus is mea-
sured in newtons:
	

 F v dm
dtthrust c= – . � (8.18)

The thrust generated by space shuttle rocket engines and boosters is approximately 31.3 
MN (31.3 meganewtons, or approximately 7.8 million pounds). The initial total mass of the 
Space Shuttle, including payload, fuel tanks, and rocket fuel, is slightly greater than 2.0 million 
kg; thus, the shuttle’s rocket engines and boosters can produce an initial acceleration of

	 a F
m

= = N
2.0 10 kg

= m/snet
6

2


3 13 10 16
7. .⋅

⋅

vvc

adm
dt

Figure 8.13  ​Rocket motion.
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This acceleration is sufficient to lift the shuttle off the launch pad against the acceleration of 
gravity (–9.81 m/s2 ). Once the shuttle rises and its mass decreases, it can generate a larger 
acceleration. As the fuel is expended, the main engines are throttled back to make sure that 
the acceleration does not exceed 3g (three times gravitational acceleration) in order to avoid 
damaging the cargo or injuring the astronauts.

	 8.4	 Calculating the Center of Mass
So far, we have not addressed a key question: How do we calculate the loca-
tion of the center of mass for an arbitrarily shaped object? To answer this 
question, let’s find the location of the center of mass of the hammer shown 
in Figure 8.14. To do this, we can represent the hammer by small identical-
sized cubes, as shown in the lower part of the figure. The centers of the cubes 
are their individual centers of mass, marked with red dots. The red arrows 
are the position vectors of the cubes. If we accept the collection of cubes as 
a good approximation for the hammer, we can use equation 8.3 to find the 
center of mass of the collection of cubes and thus that of the hammer.

Note that not all the cubes have the same mass, because the densities 
of the wooden handle and the iron head are very different. The relationship 
between mass density (), mass, and volume is given by

	  = dm
dV

. � (8.19)

If the mass density is uniform throughout an object, we simply have

	  = (for constantM
V

). � (8.20)

We can then use the mass density and rewrite equation 8.3:

	
   R

M
rm

M
r r Vi i

i

n

i i
i

n

= =
= =

1 1

1 1
∑ ∑ ( ) .

Here we have assumed that the mass density of each small cube is uniform (but still possibly 
different from one cube to another) and that each cube has the same (small) volume, V.

We can obtain a better and better approximation by shrinking the volume of each cube 
and using a larger and larger number of cubes. This procedure should look very familiar to 
you, because it is exactly what is done in calculus to arrive at the limit for an integral. In this 
limit, we obtain for the location of the center of mass for an arbitrarily shaped object:

	
  R

M
r r dV

V

= 1
( ) .∫ � (8.21)

Here the three-dimensional volume integral extends over the entire volume of the object 
under consideration.

The next question that arises is what coordinate system to choose in order to evaluate 
this integral. You may have never seen a three-dimensional integral before and may have 
worked only with one-dimensional integrals of the form f(x)dx. However, all three-dimen-
sional integrals that we will use in this chapter can be reduced to (at most) three successive 
one-dimensional integrals, most of which are very straightforward to evaluate, provided 
one selects an appropriate system of coordinates.

Three-Dimensional Non-Cartesian Coordinate Systems
Chapter 1 introduced a three-dimensional orthogonal coordinate system, the Cartesian coor-
dinate system, with coordinates x, y, and z. However, for some applications, it is mathematically 
simpler to represent the position vector in another coordinate system. This section briefly intro-
duces two commonly used three-dimensional coordinate systems that can be used to specify a 
vector in three-dimensional space: spherical coordinates and cylindrical coordinates.

R

Figure 8.14  ​Calculating the center of mass for a 
hammer.
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Spherical Coordinates
In spherical coordinates, the position vector r  is represented by giving its length, r ; its 
polar angle relative to the positive z-axis, ; and the azimuthal angle of the vector’s projec-
tion onto the xy-plane relative to the positive x-axis,  (Figure 8.15).

We can obtain the Cartesian coordinates of the vector r  from its spherical coordinates 
via the transformation

	
x r
y r
z r

=
=
=

cos sin
sin sin
cos .

 

 



� (8.22)

The inverse transformation from Cartesian to spherical coordinates is
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Cylindrical Coordinates
Cylindrical coordinates can be thought of as an intermediate between Cartesian and 
spherical coordinate systems, in the sense that the Cartesian z-coordinate is retained, but 
the Cartesian coordinates x and y are replaced by the coordinates r⊥ and  (Figure 8.16). 
Here r⊥ specifies the length of the projection of the position vector r  onto the xy-plane, so 
it measures the perpendicular distance to the z-axis. Just as in spherical coordinates,  is the 
angle of the vector’s projection into the xy-plane relative to the positive x-axis.

We obtain the Cartesian coordinates from the cylindrical coordinates via

	
x r
y r
z z

=
=
=

⊥

⊥
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.



 � (8.24)

The inverse transformation from Cartesian to cylindrical coordinates is
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As a rule of thumb, you should use a Cartesian coordinate system in your first attempt 
to describe any physical situation. However, cylindrical and spherical coordinate systems 
are often preferable when working with objects that have symmetry about a point or a 
line. Later in this chapter, we will make use of a cylindrical coordinate system to perform 
a three-dimensional volume integral. Chapter 9 will discuss polar coordinates, which can 
be thought of as the two-dimensional equivalent of either cylindrical or spherical coordi-
nates. Finally, in Chapter 10, we will again use spherical and cylindrical coordinates to solve 
slightly more complicated problems requiring integration.

Mathematical Insert: Volume Integrals
Even though calculus is a prerequisite for physics, many universities allow students to take 
introductory physics and calculus courses concurrently. In general, this approach works 
well, but when students encounter multidimensional integrals in physics, it is often the first 
time they have seen this notation. Therefore, let’s review the basic procedure for performing 
these integrations.

If we want to integrate any function over a three-dimensional volume, we need to find 
an expression for the volume element dV in an appropriate set of coordinates. Unless there 
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z
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�
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r

r

Figure 8.15  ​Three-dimensional 
spherical coordinate system.
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Figure 8.16  ​Cylindrical coordinate 
system in three dimensions.



2618.4  Calculating the Center of Mass

is an extremely important reason not to, you should always use orthogonal coordinate sys-
tems. The three commonly used three-dimensional orthogonal coordinate systems are the 
Cartesian, cylindrical, and spherical systems.

It is easiest by far to express the volume element dV in Cartesian coordinates; it is 
simply the product of the three individual coordinate elements (Figure 8.17). The three-
dimensional volume integral written in Cartesian coordinates is
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In this equation, f r( )  can be an arbitrary function of the position. The lower and upper 
boundaries for the individual coordinates are denoted by xmin , xmax , . . . . The convention is 
to solve the innermost integral first and then work outward. For equation 8.26, this means 
that we first execute the integration over x, then the integration over y, and finally the inte-
gration over z. However, any other order is possible. An equally valid way of writing the 
integral in equation 8.26 is
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which implies that the order of integration is now z, y, x. Why might the order of integration 
make a difference? The only time the order of the integration matters is when the integra-
tion boundaries in a particular coordinate depend on one or both of the other coordinates. 
Example 8.4 will consider such a situation.

Because the angle  is one of the coordinates in the cylindrical coordinate system, the 
volume element is not cube-shaped. For a given differential angle, d, the size of the volume 
element depends on how far away from the z-axis the volume element is located. This size 
increases linearly with the distance r⊥ from the z-axis (Figure 8.18) and is given by
	 dV r dr d dz= ⊥ ⊥  . � (8.28)
The volume integral is then
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Again the order of integration can be chosen to make the task as simple as possible.
Finally, in spherical coordinates, we use two angular variables,  and  (Figure 8.19). 

Here the size of the volume element for a given value of the differential coordinates depends 
on the distance r to the origin as well as the angle relative to the  = 0 axis (equivalent to the 
z-axis in Cartesian or cylindrical coordinates). The differential volume element in spherical 
coordinates is
	 dV r dr d d= 2 sin .   � (8.30)

The volume integral in spherical coordinates is given by
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Example 8.4   V olume of a Cylinder

To illustrate why it may be simpler to use non-Cartesian coordinates in certain circum-
stances, let’s use volume integrals to find the volume of a cylinder with radius R and height 
H. We have to integrate the function f r( ) =1 over the entire cylinder to obtain the volume.

dx dy

dz

Figure 8.17  ​Volume element in 
Cartesian coordinates.

dr� r�d�

dz

Figure 8.18  ​Volume element in 
cylindrical coordinates.

dr

r sin �d�

rd�

Figure 8.19  ​Volume element in 
spherical coordinates.

Continued—
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Problem
Use a volume integral to find the volume of a right cylinder of height H and radius R.

Solution
In Cartesian coordinates, we place the origin of our coordinate system at the center of 
the cylinder’s circular base (bottom surface), so the shape in the xy-plane that we have 
to integrate over is a circle with radius R (Figure 8.20). The volume integral in Cartesian 
coordinates is then

	 dV dx
x y

x y

y

=

min

max

min ( )

( )

∫












yyH

V

dy dz
max

.∫∫∫










0

	 (i)

The innermost integral has to be done first and is straightforward:

	 dx x y x y
x y

x y

min

max

( )

( )

max min( ) – ( ).∫ = 	 (ii)

The integration boundaries depend on y: xmax = R y2 2–  and xmin = – R y2 2– . Thus, the 

solution of equation (ii) is xmax (y) – xmin (y) = 2 R y2 2– . We insert this into equation 
(i) and obtain

	 dV R y dy dz
R

RH

V

= 2 2 2

0

−











∫∫∫
–

. 	 (iii)

The inner of these two remaining integrals evaluates to

2 2 2 2 2 2 1

2 2
R y dy y R y R y

R yR

R

– – tan
––

–∫ +









=














–

.

R

R

R= 2

You can check this result by looking up the definite integral in an integral table. Inserting 
this result into equation (iii) finally yields our answer:

dV R dz R dz R H
H

V

H

= = =  2

0

2

0

2∫∫ ∫ .

As you can see, obtaining the volume of the cylinder was rather cumbersome in Cartesian 
coordinates. What about using cylindrical coordinates? According to equation 8.29, the 
volume integral is then

f r dV r dr d
R

( ) = ⊥ ⊥∫∫





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
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00
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∫ ∫ ∫dz R dz R dz R H
H H H

0

1
2

2

0

2

0

22= = =   .

In this case, it was much easier to use cylindrical coordinates, a consequence of the geom-
etry of the object over which we had to integrate.

Now we can return to the problem of calculating the location of an object’s center of 
mass. For the Cartesian components of the position vector, we find, from equation 8.21:

	 X
M

x r dV Y
M

y r dV Z
M

z
V V

= = =1 1 1
 ( ) , ( ) , 
∫ ∫ ( ) .r dV

V
∫ � (8.32)

x

R

xmax(y)xmin(y)

y

Figure 8.20  ​Bottom surface of a 
right cylinder of radius R.

8.2  ​Self-Test Opportunity
Using spherical coordinates, show 
that the volume V of a sphere with 
radius R is V = 4

3
 πR3.
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y

x

z

(a) (b) (c)

Figure 8.21  ​Determination of the center of mass: (a) half-sphere; (b) symmetry planes and sym-
metry axis; (c) coordinate system, with location of center of mass marked by red dot.

If the mass density for the entire object is constant,  ( ) ,r ≡  we can remove this constant fac-
tor from the integral and obtain a special case of equation 8.21 for constant mass density:

	
  R

M
r dV

V
r dV

V V

= = (for constant
∫ ∫

1 ), � (8.33)

where we have used equation 8.20 in the last step. Expressed in Cartesian components, we 
obtain for this case:

	 X
V

xdV Y
V

ydV Z
V

zdV
V V V

= = =1 1 1, , .∫ ∫ ∫ � (8.34)

Equations 8.33 and 8.34 indicate that any object that has a symmetry plane has its cen-
ter of mass located in that plane. An object having three mutually perpendicular symmetry 
planes (such as a cylinder, a rectangular solid, or a sphere) has its center of mass where these 
three planes intersect, which is the geometric center. Example 8.5 develops this idea further.

Example 8.5    Center of Mass for a Half-Sphere

Problem
Consider a solid half-sphere of constant mass density with radius R0 (Figure 8.21a). 
Where is its center of mass?

Continued—

Solution
As shown in Figure 8.21b, symmetry planes can divide this object into equal, mirror-image 
halves. Shown are two perpendicular planes in red and yellow, but any plane through the 
vertical symmetry axis (indicated by the thin black line) is a symmetry plane.

We now position the coordinate system so that one axis (the z-axis, in this case) coin-
cides with this symmetry axis. We are then assured that the center of mass is located exactly 
on this axis. Because the mass distribution is symmetric and the integrands of equations 8.33 
or 8.34 are odd powers of r  the integral for X or Y has to have the value zero. Specifically,

xdx a
a

a

–

.∫ = for all values of the constant0

Positioning the coordinate system so that the z-axis is the symmetry axis ensures that 
X =Y = 0. This is shown in Figure 8.21c, where the origin of the coordinate system is 
positioned at the center of the half-sphere’s circular bottom surface.

Now we have to find the value of the third integral in equation 8.34:

Z
V

zdV
V

= 1
∫ .

The volume of a half-sphere is half the volume of a sphere, or

	 V R= 2
3 0

3 . 	 (i)
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To evaluate the integral for Z, we use cylindrical coordinates, in which the differential 
volume element is given (see equation 8.28) as dV = r⊥dr⊥d dz. The integral is then 
evaluated as follows:

zdV zr d dr
V

R z

∫ ∫∫ ⊥ ⊥
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Combining this result and the expression for the volume of a half-sphere from equation 
(i), we obtain the z-coordinate of the center of mass:

Z
V

zdV
R

R R
V

= = =1 3
2 4

3
80

3
0
4

0∫ 

 .

Note that the center of mass of an object does not always have to be located inside the 
object. Two obvious examples are shown in Figure 8.22. From symmetry considerations, it 
follows that the center of mass of the donut (Figure 8.22a) is exactly in the center of its hole, 
at a point outside the donut. The center of mass of the boomerang (Figure 8.22b) lies on the 
dashed symmetry axis but, again, outside the object.

Center of Mass for One- and Two-Dimensional Objects
Not all problems involving calculation of the center of mass focus on three-dimensional 
objects. For example, you may want to calculate the center of mass of a two-dimensional 
object, such as a flat metal plate. We can write the equations for the center-of-mass coordi-
nates of a two-dimensional object whose area mass density (or mass per unit area) is  r( ) 
by modifying the expressions for X and Y given in equation 8.32:

	 X
M

x r dA Y
M

y r dA
A A

= =1 1
 ( ) , ( ) , 
∫ ∫ � (8.35)

where the mass is

	 M r dA
A

= ( ) .
∫ � (8.36)

If the area mass density of the object is constant, then  = M/A, and we can rewrite equation 
8.35 to give the coordinates of the center of mass of a two-dimensional object in terms of 
the area, A, and the coordinates x and y:

	 X
A

xdA Y
A

ydA
A A

= =1 1, ,∫ ∫ � (8.37)

(a)

(b)

Figure 8.22  Objects with a center 
of mass (indicated by the red dot) 
outside their mass distribution:   
(a) donut; (b) boomerang. The sym-
metry axis of the boomerang is shown 
by a dashed line.
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where the total area is obtained from

	 A dA
A

=∫ . � (8.38)

If the object is effectively one-dimensional, such as a long, thin rod with length L and 
linear mass density (or mass per unit length) of (x), the coordinate of the center of mass 
is given by

	 X
M

x x dx
L

= 1
( ) ,∫ � (8.39)

where the mass is
	 M x dx

L

= ( ) .∫ � (8.40)

If the linear mass density of the rod is constant, then clearly the center of mass is located at 
the geometric center—the middle of the rod—and no further calculation is required.

Solved Problem 8.3    Center of Mass of a Long, Thin Rod

Problem
A long, thin rod lies along the x-axis. One end of the rod is located at x =1.00 m, and the 
other end of the rod is located at x = 3.00 m. The linear mass density of the rod is given by 
(x) = ax2 + b, where a = 0.300 kg/m3 and b = 0.600 kg/m. What are the mass of the rod 
and the x-coordinate of its center of mass?

Solution

THIN    K
The linear mass density of the rod is not uniform but depends on the x-coordinate. There-
fore, to get the mass, we must integrate the linear mass density over the length of the rod. 
To get the center of mass, we need to integrate the linear mass density, weighted by the 
distance in the x-direction, and then divide by the mass of the rod.

S K ET C H
The long, thin rod oriented along the x-axis is shown in Figure 8.23.

RE  S EAR   C H
We obtain the mass of the rod by integrating the linear mass density, , over the rod from 
x1 =1.00 m to x2 = 3.00 m (see equation 8.40):

M x dx ax b dx a x bx
x

x

x
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= = =( ) +( ) +

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3
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
x

x

1

2

.

To find the x-coordinate of the center of mass of the rod, X, we evaluate the integral of 
the differential mass times x and then divide by the mass, which we have just calculated 
(see equation 8.39):

X
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x xdx
M

ax b xdx
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ax bx
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4 2

4 2
= .

S I M P LI  F Y
Inserting the upper and lower limits, x2 and x1 , we get the mass of the rod:
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Continued—

Figure 8.23  ​A long, thin rod ori-
ented along the x-axis.

x
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And, in the same way, we find the x-coordinate of the center of mass of the rod:
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a x b x
M

a x b x

x

x

= =1
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1
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,

which we can further simplify to

X
M

a x x b x x= 1
4 22

4
1
4

2
2

1
2– – .( )+ ( )










C AL  C ULATE  
Substituting the given numerical values, we compute the mass of the rod:

M = kg/m m m
30 300

3
3 00 1 00

3 3. . – .( ) ( )





++( )( )0 600 3 00 1 00 3 8. . – . .kg/m m m = kg.

With the numerical values, the x-coordinate of the rod is

 
X =

kg
kg/m m m

31
3 8

0 300
4

3 00 1 00
4 4

.
. . – .( ) ( )






+ ( ) ( )




0 600
2

3 00 1 00
2 2. . – .kg/m m m



















= 2.210526316 m.

R O UND 
All of the numerical values in the problem statement were specified to three significant 
figures, so we report our results as

M = kg3 80.
and

X = m.2 21.

D O UBLE    - C HE  C K
To double-check our answer for the mass of the rod, let’s assume that the rod has a con-
stant linear mass density equal to the linear mass density obtained by setting x = 2m (the 
middle of the rod) in the expression for  in the problem, that is,

 = kg/m = kg/m.0 3 4 0 6 1 8. . .⋅ +( )
The mass of the rod is then m ≈ 2m · 1.8 kg/m = 3.6 kg, which is reasonably close to our 
exact calculation of M = 3.80 kg.

To double-check the x-coordinate of the center of mass of the rod, we again assume that 
the linear mass density is constant. Then the center of mass will be located at the middle of 
the rod, or X ≈ 2m. Our calculated answer is X = 2.21 m, which is slightly to the right of the 
middle of the rod. Looking at the function for the linear mass density, we see that the linear 
mass of the rod increases toward the right, which means that the center of mass of the rod 
must be to the right of the rod’s geometric center. Our result is therefore reasonable.

W h at  w e  h av e  l e a r n e d  |  E x a m  S t u d y  G u i d e

The center of mass is the point at which we can ■■
imagine all the mass of an object to be concentrated.

The location of the center of mass for an arbitrarily ■■
shaped object is given by 

  R
M

r r dV
V

= 1
( ) ,∫  

where the mass density of the object is  = dm
dV

,  the 

integration extends over the entire volume V of the 
object, and M is its total mass.

When the mass density is uniform throughout ■■
the object, that is,  = M

V
,  the center of mass is 

 R
V

r dV
V

= 1
∫ .

If an object has a plane of symmetry, the location of ■■
the center of mass must be in that plane.

The location of the center of mass for a combination ■■
of several objects can be found by taking the 

8.3  ​Self-Test Opportunity
A plate with height h is cut from 
a thin metal sheet with uniform 
mass density, as shown in the 
figure. The lower boundary of the 
plate is defined by y = 2x2. Show 
that the center of mass of this 
plate is located at x = 0 and y = 3

5
 h.

x

h

y
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mass-weighted average of the locations of 
the centers of mass of the individual objects: 
  





R r m r m r m

m m m M
rmn n

n
i i

i

= =
=

1 1 2 2

1 2 1

1+ + +
+ + +

nn

∑ .

The motion of an extended rigid object can be ■■
described by the motion of its center of mass.

The velocity of the center of mass is given by the ■■
derivative of its position vector: 

 
V d

dt
R≡ .

The center-of-mass momentum for a combination ■■
of several objects is 

  
P MV pi

i

n

= =
=1
∑ .  This 

momentum obeys Newton’s Second Law: 
d
dt

P d
dt

MV F Fi
i

n   
= = =

=
net( ) .

1
∑  Internal forces between 

the objects do not contribute to the sum that yields the 
net force (because they always come in action-reaction 

pairs adding up to zero) and thus do not change the 
center-of-mass momentum.

For a system of two objects, the total momentum ■■
is 
  
P p p= 1 2+ ,  and the relative momentum is 
  
p p p= 1

2 1 2( – ).  In collisions between two objects, the 
total momentum remains unchanged.

Rocket motion is an example of motion during which ■■
the mass of the moving object is not constant. The 
equation of motion for a rocket in interstellar space is 
given by 

  F ma v dm
dtthrust c= = – ,  where vc  is the velocity 

of the propellant relative to the rocket and dm
dt

 is the 

rate of change in mass due to outflow of propellant.

The velocity of a rocket as a function of its mass is ■■
given by vf –vi = vc ln (mi /mf ), where the indices i and 
f indicate initial and final masses and velocities.

K e y  T e r ms

center of mass, p. 247
recoil, p. 253
thrust, p. 258

spherical coordinates, 
p. 260

cylindrical coordinates, 
p. 260

dV = r2dr sin d d, volume element in spherical 
coordinates

Fthrust , rocket thrust

N e w  S y m b o l s  a n d  E q uat i o n s
 R

M
rmi i

i

n

=
=

1

1
∑ ,  combined center-of-mass position vector

  R
M

r r dV
V

= 1
( ) ,∫  center of mass for an extended object

dV = r⊥dr⊥d dz, volume element in cylindrical 
coordinates

A n sw  e r s  t o  S e l f - T e s t  O ppo   r t u n i t i e s
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8.2  We use spherical coordinates and integrate the angle  
from 0 to , the angle  from 0 to 2, and the radial coordi-
nate r from 0 to R.

V d d= sin  
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First, evaluate the integral over the azimuthal angle:
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Continued—
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8.3  dA = x(y)dy; y = 2x2 ⇒ x y= / 2
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P r o b l e m - S o lv i n g  P r a c t i c e

Problem-Solving Guidelines: Center of Mass
1.  The first step in locating the center of mass of an object or 
a system of particles is to look for planes of symmetry. The 
center of mass must be located on the plane of symmetry, on 
the line of intersection of two planes of symmetry, or at the 
point of intersection of more than two planes.
2.  For complicated shapes, break the object down into simpler 
geometric forms and locate the center of mass for each 
individual form. Then combine the separate centers of mass 
into one overall center of mass using the weighted average of 
distances and masses. Treat holes as objects of negative mass.

3.  Any motion of an object can be treated as a superposition 
of motion of its center of mass (according to Newton’s 
Second Law) and rotation of the object about the center 
of mass. Collisions can often be conveniently analyzed by 
considering a reference frame with the origin located at the 
center of mass.
4.  Often, integration is unavoidable when you need to locate the 
center of mass. In such a case, it is always best to think carefully 
about the dimensionality of the situation and the choice of the 
coordinate system (Cartesian, cylindrical, or spherical).

Solved Problem 8.4 T hruster Firing

Problem
Suppose a spacecraft has an initial mass of 1,850,000 kg. Without its propellant, the 
spacecraft has a mass of 50,000 kg. The rocket that powers the spacecraft is designed to 
eject the propellant with a speed of 25 km/s with respect to the rocket at a constant rate of 
15,000 kg/s. The spacecraft is initially at rest in space and travels in a straight line. How far 
will the spacecraft travel before its rocket uses all the propellant and shuts down?

Solution

THIN    K
The total mass of propellant is the total mass of the spacecraft minus the mass of the 
spacecraft after all the propellant is ejected. The rocket ejects the propellant at a fixed 
rate, so we can calculate the amount of time during which the rocket operates. As the 
propellant is used up, the mass of the spacecraft decreases and the speed of the spacecraft 
increases. If the spacecraft starts from rest, the speed v(t) at any time while the rocket 
is operating can be obtained from equation 8.17, with the final mass of the spacecraft 
replaced by the mass of the spacecraft at that time. The distance traveled before all the 
propellant is used is given by the integral of the speed as a function of time.

S K ET C H
The flight of the spacecraft is sketched in Figure 8.24.

xxf0

m � mi

v � 0

m � mf

v � vf

m � m(t)

v � v(t)

Fully fueled No fuelFigure 8.24  ​The various parameters 
for the spacecraft as the rocket operates.
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RE  S EAR   C H
We symbolize the rate at which the propellant is ejected by rp . The time tmax during which 
the rocket will operate is then given by

t
m m

rmax
–

,= i f

p

( )

where mi is the initial mass of the spacecraft and mf is the mass of the spacecraft after all 
the propellant is ejected. The total distance the spacecraft travels in this time interval is 
the integral of the speed over time:

	 x v t dt
t

f = ( )∫
0

max

. 	 (i)

While the rocket is operating, the mass of the spacecraft at a time t is given by

m t m r t( )= i p– .

The speed of the spacecraft at any given time after the rocket starts to operate and before 
all the propellant is used up is given by (compare to equation 8.17)
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where vc is the speed of the ejected propellant with respect to the rocket.

S I M P LI  F Y
Now we substitute from equation (ii) for the time dependence of the speed of the space-
craft into equation (i) and obtain
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Because ln( ) – ln( – )–1 1 1−∫ ax dx ax
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ax x=  (you can look up this result in an integral 
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The distance traveled is then
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C AL  C ULATE  
The time during which the rocket is operating is

t m m
rmax
– , , ,

,
= = kg kg

k
i f

p

1 850 000 50 000
15 000

−
gg/s

= s.120

Putting numerical values into the factor 1–rptmax /mi gives

1 1 15 000 120
1 850 000

– – ,
, ,

maxr t
m

p

i
= kg/s s

kg
=⋅ 00.027027.

Continued—
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Thus, we find for the distance traveled

xf = m/s s s– –( ) {( )– .25 10 120 120 1 85 103 6⋅( ) + ⋅ kkg kg/s

=

( ) ⋅( )



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/ }ln( . )

.

15 10 0 027027

2 69

3

9909 106⋅ m.

R O UND 
Because the propellant speed was given to only two significant figures, we need to round 
to that accuracy:

xf = m.2 7 106. ⋅

D O UBLE    - C HE  C K
To double-check our answer for the distance traveled, we use equation 8.17 to calculate 
the final velocity of the spacecraft:

v v m
mf c
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90 3.

If the spacecraft accelerated at a constant rate, the speed would increase linearly with time, 
as shown in Figure 8.25, and the average speed during the time the propellant was being 
ejected would be v v= f / .2  Taking this average speed and multiplying by that time gives

x vt v ta-const f= = km/s s≈ ( ) ⋅max max/ . /2 90 3 2 120(( ) ⋅/ .2 5 4 106= m.

This approximate distance is bigger than our calculated answer, because in the calcula-
tion the velocity increases logarithmically in time until it reaches the value of 90.3 km/s. 
The approximation is about twice the calculated distance, giving us confidence that our 
answer at least has the right order of magnitude.

Figure 8.25 shows the exact solution for v(t) (red curve). The distance traveled, xf , is 
the area under the red curve. The blue line shows the case where constant acceleration 
leads to the same final velocity. As you can see, the area under the blue line is approxi-
mately twice that under the red curve. Since we just calculated the area under the blue 
line, xa-const, and found it to be about twice as big as our calculated result, we gain confi-
dence that we interpreted correctly.

Solved Problem 8.5  Center of Mass of a Disk with a Hole in It

Problem
Where is the center of mass of a disk with a rectangular hole in it (Figure 8.26)? The 
height of the disk is h =11.0 cm, and its radius is R =11.5 cm. The rectangular hole has a 
width w = 7.0 cm and a depth d = 8.0 cm. The right side of the hole is located so that its 
midpoint coincides with the central axis of the disk.

Solution

THIN    K
One way to approach this problem is to write mathematical formulas that describe the 
three-dimensional geometry of the disk with a hole in it and then integrate over that 
volume to obtain the coordinates of the center of mass. If we did that, we would be faced 
with several difficult integrals. A simpler way to approach this problem is to think of the 
disk with a hole in it as a solid disk minus a rectangular hole. That is, we treat the hole as 
a solid object with a negative mass. Using the symmetry of the solid disk and of the hole, 
we can specify the coordinates of the center of mass of the solid disk and of the center of 
mass of the hole. We can then combine these coordinates, using equation 8.1, to find the 
center of mass of the disk with a hole in it.

80

60

40

20

0
0 40 80 120

t (s)

v(
t) 

(k
m

/s
)

xf

Figure 8.25  ​Comparison of the ex-
act solution for v(t) (red curve) to one 
for constant acceleration (blue line).

w
d

h

R

Figure 8.26  ​Three-dimensional 
view of a disk with a rectangular hole 
in it.



271Problem-Solving Practice

Continued—

S K ET C H
Figure 8.27a shows a top view of the disk with a hole in it, with x- and y-axes assigned.

Figure 8.27b shows the two symmetry planes of the disk with a hole in it. One plane 
corresponds to the x-y plane, and the second plane is a plane along the x-axis and perpen-
dicular to the x-y plane. The line where the two planes intersect is marked A.

RE  S EAR   C H
The center of mass must lie along the intersection of the two planes of symmetry. Therefore, 
we know that the center of mass can only be located along the x-axis. The center of mass for 
the disk without the hole is at the origin of the coordinate system, at xd = 0, and the volume 
of the solid disk is Vd =R2h. If the hole were a solid object with the same dimensions 
(h =11.0 cm, w = 7.0 cm, and d = 8.0 cm), that object would have a volume of Vh = hwd. 
If this imagined solid object were located where the hole is, its center of mass would be in 
the middle of the hole, at xh =–3.5 cm. We now multiply each of the volumes by , the mass 
density of the material of the disk, to get the corresponding masses, and assign a negative 
mass to the hole. Then we use equation 8.1 to get the x-coordinate of the center of mass:

	 X x V x V
V V

= d d h h

d h

 

 

–
–

. 	 (i)

This method of treating a hole as an object of the same shape and then using its volume 
in calculations, but with negative mass (or charge), is very common in atomic and sub-
atomic physics. We will encounter it again when we explore atomic physics (Chapter 37) 
and nuclear and particle physics (Chapters 39 and 40).

S I M P LI  F Y
We can simplify equation (i) by realizing that xd = 0 and that  is a common factor:
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.

Substituting the expressions we obtained above for Vd and Vh, we get
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Defining the area of the disk in the x-y plane to be Ad = R2 and the area of the hole in 
the x-y plane to be Ah = wd, we can write

X x wd
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 2

 

C AL  C ULATE  
Inserting the given numbers, we find that the area of the disk is

A Rd
2= = cm = 415.475 cm 2 2

11 5. ,( )
and the area of the hole is

A wdh
2= = cm cm = cm7 0 8 0 56. . .( )( )

Therefore, the location of the center of mass of the disk with the hole in it (remember that 
xh =–3.5 cm ) is

X x A
A A

= = cm)(56 cm
(415.475 cm

h h

d h

2

2
–

–
–(– . )3 5

))– )(56 cm
= 0.545239 cm.

2

R O UND 
Expressing our answer with two significant figures, we report the x-coordinate of the 
center of mass of the disk with a hole in it as

X = cm.0 55.

y

xd

w

A

(a)

(b)

Figure 8.27  ​(a) Top view of the 
disk with a hole in it with a coordinate 
system assigned. (b) Symmetry planes 
of the disk with a hole in it.
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D O UBLE    - C HE  C K
This point is slightly to the right of the center of the solid disk, by a distance that is a 
small fraction of the radius of the disk. This result seems reasonable because taking 
material out of the disk to the left of x = 0 should shift the center of gravity to the right, 
just as we calculated.

M u lt i p l e - C h o i c e  Q u e s t i o n s

8.1  A man standing on frictionless ice throws a boomerang, 
which returns to him. Choose the correct statement:
a)  Since the momentum of the man-boomerang system 
is conserved, the man will come to rest holding the 
boomerang at the same location from which he threw it.
b)  It is impossible for the man to throw a boomerang in this 
situation.
c)  It is possible for the man to throw a boomerang, but 
because he is standing on frictionless ice when he throws it, 
the boomerang cannot return.
d)  The total momentum of the man-boomerang system is 
not conserved, so the man will be sliding backward holding 
the boomerang after he catches it.
8.2  When a bismuth-208 nucleus at rest decays, thallium-204 
is produced, along with an alpha particle (helium-4 nucleus). 
The mass numbers of bismuth-208, thallium-204, and 
helium-4 are 208, 204, and 4, respectively. (The mass number 
represents the total number of protons and neutrons in the 
nucleus.) The kinetic energy of the thallium nucleus is
a)  equal to that of the alpha particle.
b)  less than that of the alpha particle.
c)  greater than that of the alpha particle.
8.3  Two objects with masses m1 and m2 are moving along 
the x-axis in the positive direction with speeds v1 and v2, 
respectively, where v1 is less than v2. The speed of the center 
of mass of this system of two bodies is
a)  less than v1.
b)  equal to v1.
c)  equal to the average of v1 and v2.
d)  greater than v1 and less than v2.
e)  greater than v2.
8.4  An artillery shell is moving on a parabolic trajectory 
when it explodes in midair. The shell shatters into a 
very large number of fragments. Which of the following 
statements is true (select all that apply)?
a)  The force of the explosion will increase the momentum 
of the system of fragments, and so the momentum of the 
shell is not conserved during the explosion.
b)  The force of the explosion is an internal force and thus 
cannot alter the total momentum of the system.
c)  The center of mass of the system of fragments will 
continue to move on the initial parabolic trajectory until the 
last fragment touches the ground.

d)  The center of mass of the system of fragments will 
continue to move on the initial parabolic trajectory until the 
first fragment touches the ground.
e)  The center of mass of the system of fragments will have 
a trajectory that depends on the number of fragments and 
their velocities right after the explosion.
8.5  An 80-kg astronaut becomes separated from his 
spaceship. He is 15.0 m away from it and at rest relative to 
it. In an effort to get back, he throws a 500-g object with 
a speed of 8.0 m/s in a direction away from the ship. How 
long does it take him to get back to the ship?
a)  1 s
b)  10 s

c)  20 s
d)  200 s

e)  300 s

8.6  You find yourself in the (realistic?) situation of being stuck 
on a 300-kg raft (including yourself) in the middle of a pond 
with nothing but a pile of 7-kg bowling balls and 55-g tennis 
balls. Using your knowledge of rocket propulsion, you decide 
to start throwing balls from the raft to move toward shore. 
Which of the following will allow you to reach the shore faster?
a) throwing the tennis balls at 35 m/s at a rate of 1 tennis 
ball per second
b)  throwing the bowling balls at 0.5 m/s at a rate of 1 
bowling ball every 3 s
c)  throwing a tennis ball and a bowling ball simultaneously, 
with the tennis ball moving at 15 m/s and the bowling ball 
moving at 0.3 m/s, at a rate of 1 tennis ball and 1 bowling 
ball every 4 s
d)  not enough information to decide
8.7  The figures show a high jumper using different 
techniques to get over the crossbar. Which technique would 
allow the jumper to clear the highest setting of the bar?

8.8  The center of mass of an irregular rigid object is always 
located
a)  at the geometrical center of 
the object.
b)  somewhere within the object.

	

c)  both of the above
d)  none of the above

(a) (b) (c) (d)

h
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Questions

( = 0.910 g/cm3) is at rest on a table. Initially, the oil and 
the vinegar are separated, with the oil floating on top of 
the vinegar. The bottle is shaken so that the oil and vinegar 
mix uniformly, and the bottle is returned to the table. How 
has the height of the center of mass of the salad dressing 
changed as a result of the mixing?
a)  It is higher.
b)  It is lower.
c)  It is the same.

	

d)  There is not enough 
information to answer 
this question.

8.12  A one-dimensional rod has a linear density that varies 
with position according to the relationship (x) = cx, where 
c is a constant and x = 0 is the left end of the rod. Where do 
you expect the center of mass to be located?
a)  the middle of the rod
b)  to the left of the middle of the rod
c)  to the right of the middle of the rod
d)  at the right end of the rod
e)  at the left end of the rod

8.9  A catapult on a level field tosses a 3-kg stone a horizontal 
distance of 100 m. A second 3-kg stone tossed in an identical 
fashion breaks apart in the air into 2 pieces, one with a mass 
of 1 kg and one with a mass of 2 kg. Both of the pieces hit the 
ground at the same time. If the 1-kg piece lands a distance of 
180 m away from the catapult, how far away from the catapult 
does the 2-kg piece land? Ignore air resistance.
a)  20 m
b)  60 m

c)  100 m
d)  120 m

e)  180 m

8.10  Two point masses are located in the same plane. The 
distance from mass 1 to the center of mass is 3.0 m. The 
distance from mass 2 to the center of mass is 1.0 m. What is 
m1/m2 , the ratio of mass 1 to mass 2?
a)  3/4
b)  4/3

c)  4/7
d)  7/4

e)  1/3
f)  3/1

8.11  A cylindrical bottle of oil-and-vinegar salad dressing 
whose volume is 1/3 vinegar ( = 1.01 g/cm3) and 2/3 oil 

Q u e s t i o n s

8.13  A projectile is launched into the air. Part way through 
its flight, it explodes. How does the explosion affect the mo-
tion of the center of mass of the projectile?
8.14  Find the center of mass of the arrangement of uniform 

identical cubes shown in the 
figure. The length of the sides 
of the each cube is d.

8.15  A model rocket that has a horizontal range of 100 m 
is fired. A small explosion splits the rocket into two equal 
parts. What can you say about the points where the fragments 
land on the ground?
8.16  Can the center of mass of an object be located at a point 
outside the object, that is, at a point in space where no part of 
the object is located? Explain.
8.17  Is it possible for two masses to undergo a collision such 
that the system of two masses has more kinetic energy than the 
two separate masses had? Explain.
8.18  Prove that the center of mass of a thin metal plate in 
the shape of an equilateral triangle is located at the intersec-
tion of the triangle’s altitudes by direct calculation and by 
physical reasoning.
8.19  A soda can of mass m and height L is filled with soda of 
mass M. A hole is punched in the bottom of the can to drain 
out the soda.

a)  What is the center of mass of the system consisting of the 
can and the soda remaining in it when the level of soda in the 
can is h, where 0 < h < L?
b)  What is the minimum value of the center of mass as the 
soda drains out?
8.20  An astronaut of mass M is floating in space at a constant 
distance D from his spaceship when his safety line breaks. He is 
carrying a toolbox of mass M/2 that contains a big sledgeham-
mer of mass M/4, for a total mass of 3M/4. He can throw the 
items with a speed v relative to his final speed after each item is 
thrown. He wants to return to the spaceship as soon as possible.
a)  To attain the maximum final speed, should the astronaut 
throw the two items together, or should he throw them one 
at a time? Explain.
b)  To attain the maximum speed, is it best to throw the 
hammer first or the toolbox first, or does the order make no 
difference? Explain.
c)  Find the maximum speed at which the astronaut can 
start moving toward the spaceship.
8.21  A metal rod with a length 
density (mass per unit length)  is 
bent into a circular arc of radius R 
and subtending a total angle of , as 
shown in the figure. What is the distance of the center of 
mass of this arc from O as a function of the angle ? Plot 
this center-of-mass coordinate as a function of .
8.22  The carton shown in the figure is filled with a dozen 
eggs, each of mass m. Initially, the center of mass of the eggs 
is at the center of the carton, which is the same point as the 
origin of the Cartesian coordinate system shown. Where 
is the center of mass of the remaining eggs, in terms of the 
egg-to-egg distance d, in each of the following situations? 
Neglect the mass of the carton.

O
�

R

Continued—
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A blue problem number indicates a worked-out solution is 
available in the Student Solutions Manual. One • and two •• 
indicate increasing level of problem difficulty.

Section 8.1
8.25  Find the following center-of-mass information about 
objects in the Solar System. You can look up the necessary 
data on the Internet or in the tables in Chapter 12 of this 
book. Assume spherically symmetrical mass distributions 
for all objects under consideration.
a)  Determine the distance from the center of mass of the 
Earth-Moon system to the geometric center of Earth.
b)  Determine the distance from the center of mass of the 
Sun-Jupiter system to the geometric center of the Sun.
•8.26  The coordinates of the center of mass for the extend-
ed object shown in the figure are (L/4, –L/5). What are the 
coordinates of the 2-kg mass?

•8.27  Young acrobats are standing still on a circular hori-
zontal platform suspended at the center. The origin of the 
two-dimensional Cartesian coordinate system is assumed to 
be at the center of the platform. A 30-kg acrobat is located at 

(3m, 4m), and a 40-kg acrobat is located at (–2m, –2m). As-
suming that the acrobats stand still in their positions, where 
must a 20-kg acrobat be located so that the center of mass 
of the system consisting of the three acrobats is at the origin 
and the platform is balanced?

Section 8.2
8.28  A man with a mass of 55 kg stands up in a 65-kg 
canoe of length 4.0 m floating on water. He walks from a 
point 0.75 m from the back of the canoe to a point 0.75 
m from the front of the canoe. Assume negligible friction 
between the canoe and the water. How far does the canoe 
move?

8.29  A toy car of mass 2.0 kg is stationary, and a child rolls 
a toy truck of mass 3.5 kg straight toward it with a speed of 
4.0 m/s.
a)  What is the velocity of the center of mass of the system 
consisting of the two toys?
b)  What are the velocities of the truck and the car with respect 
to the center of mass of the system consisting of the two toys?

8.23  A circular pizza of 
radius R has a circular 
piece of radius R/4 
removed from one side, 
as shown in the figure. 
Where is the center of 
mass of the pizza with 
the hole in it?
8.24  Suppose you 
place an old-fashioned 
hourglass, with sand in 
the bottom, on a very 
sensitive analytical bal-
ance to determine its mass. You then turn it over (handling 
it with very clean gloves) and place it back on the balance. 
You want to predict whether the reading on the balance will 
be less than, greater than, or the same as before. What do 
you need to calculate to answer this question? Explain care-
fully what should be calculated and what the results would 
imply. You do not need to attempt the calculation.

a)  Only egg A is removed.
b)  Only egg B is removed.
c)  Only egg C is removed.
d)  Eggs A, B and C are removed.
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Problems

•8.33  Many nuclear collisions studied in laboratories are 
analyzed in a frame of reference relative to the laboratory. 
A proton, with a mass of 1.6605 · 10–27 kg and traveling at a 
speed of 70% of the speed of light, c, collides with a tin-116 
(116Sn) nucleus with a mass of 1.9096 · 10–25 kg. What is the 
speed of the center of mass with respect to the laboratory 
frame? Answer in terms of c, the speed of light.
•8.34  A system consists of two particles. Particle 1 with 
mass 2.0 kg is located at (2.0 m, 6.0 m) and has a velocity of 
(4.0 m/s, 2.0 m/s). Particle 2 with mass 3.0 kg is located at 
(4.0 m, 1.0 m) and has a velocity of (0, 4.0 m/s).
a)  Determine the position and the velocity of the center of 
mass of the system.
b)  Sketch the position and velocity vectors for the 
individual particles and for the center of mass.
•8.35  A fire hose 4.0 cm in diameter is capable of spraying 
water at a velocity of 10 m/s. For a continuous horizontal 
flow of water, what horizontal force should a fireman exert 
on the hose to keep it stationary?
••8.36  A block of mass mb = 1.2 kg slides to the right at 
a speed of 2.5 m/s on a frictionless horizontal surface, as 
shown in the figure. It “collides” with a wedge of mass mw, 
which moves to the left at a speed of 1.1 m/s. The wedge 
is shaped so that the block slides seamlessly up the Teflon 
(frictionless!) surface, as the two come together. Relative to 
the horizontal surface, block and wedge are moving with a 
common velocity vb+w at the instant the block stops sliding 
up the wedge.
a)  If the block’s center of 
mass rises by a distance 
h = 0.37 m, what is the 
mass of the wedge?
b)  What is vb+w?

Section 8.3
8.37  One important characteristic of rocket engines is the 
specific impulse, which is defined as the total impulse (time 
integral of the thrust) per unit ground weight of fuel/oxi-
dizer expended. (The use of weight, instead of mass, in this 
definition is due to purely historical reasons.)
a)  Consider a rocket engine operating in free space with an 
exhaust nozzle speed of v. Calculate the specific impulse of 
this engine.
b)  A model rocket engine has a typical exhaust speed of 
vtoy = 800 m/s. The best chemical rocket engines have exhaust 
speeds of approximately vchem = 4.00 km/s. Evaluate and 
compare the specific impulse values for these engines.
•8.38  An astronaut is performing a space walk outside the In-
ternational Space Station. The total mass of the astronaut with 
her space suit and all her gear is 115 kg. A small leak develops 
in her propulsion system and 7 g of gas are ejected each second 
into space with a speed of 800 m/s. She notices the leak 6 s after 
it starts. How much will the gas leak have caused her to move 
from her original location in space by that time?

8.30  A motorcycle stunt rider plans to start from one end 
of a railroad flatcar, accelerate toward the other end of the 
car, and jump from the flatcar to a platform. The motor-
cycle and rider have a mass of 350. kg and a length of 2.00 
m. The flatcar has a mass of 1500. kg and a length of 20.0 m. 
Assume that there is negligible friction between the flatcar’s 
wheels and the rails and that the motorcycle and rider can 
move through the air with negligible resistance. The flatcar 
is initially touching the platform. The promoters of the event 
have asked you how far the flatcar will be from the platform 
when the stunt rider reaches the end of the flatcar. What is 
your answer?

•8.31  Starting at rest, two students stand on 10-kg sleds, 
which point away from each other on ice, and they pass a 
5-kg medicine ball back and forth. The student on the left 
has a mass of 50 kg and can throw the ball with a relative 
speed of 10 m/s. The student on the right has a mass of 45 kg  
and can throw the ball with a relative speed of 12 m/s. (As-
sume there is no friction between the ice and the sleds and 
no air resistance.)
a)  If the student on the left throws the ball horizontally to 
the student on the right, how fast is the student on the left 
moving right after the throw?
b)  How fast is the student on the right moving right after 
catching the ball?
c)  If the student on the right passes the ball back, how fast 
will the student on the left be moving after catching the pass 
from the student on the right?
(d)  How fast is the student on the right moving after the pass?
•8.32  Two skiers, Annie and Jack, start skiing from rest at dif-
ferent points on a hill at the same time. Jack, with mass 88 kg,  
skis from the top of the hill down a steeper section with an 
angle of inclination of 35°. Annie, with mass 64 kg, starts 
from a lower point and skis a less steep section, with an angle 
of inclination of 20°. The length of the steeper section is 100 m. 
Determine the acceleration, velocity, and position vectors of 
the combined center of mass for Annie and Jack as a function 
of time before Jack reaches the less steep section.
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•8.39  A rocket in outer space has a payload of 5190.0 kg 
and 1.551 · 105 kg of fuel. The rocket can expel propellant 
at a speed of 5.600 km/s. Assume that the rocket starts 
from rest, accelerates to its final velocity, and then begins 
its trip. How long will it take the rocket to travel a distance 
of 3.82 · 105 km (approximately the distance between Earth 
and Moon)?
••8.40  A uniform chain with a mass of 1.32 kg per meter 
of length is coiled on a table. One end is pulled upward at a 
constant rate of 0.47 m/s.
a)  Calculate the net force acting on the chain.
b)  At the instant when 0.15 m of the chain has been lifted 
off the table, how much force must be applied to the end 
being raised?
••8.41  A spacecraft engine creates 53.2 MN of thrust with a 
propellant velocity of 4.78 km/s.
a)  Find the rate (dm/dt) at which the propellant is expelled.
b)  If the initial mass is 2.12 · 106 kg and the final mass is 
7.04 · 104 kg, find the final speed of the spacecraft (assume 
the initial speed is zero and any gravitational fields are small 
enough to be ignored).
c)  Find the average acceleration till burnout (the time at 
which the propellant is used up; assume the mass flow rate 
is constant until that time).
••8.42  A cart running on frictionless air tracks is propelled by 
a stream of water expelled by a gas-powered pressure washer 
stationed on the cart. There is a 1.0-m3 water tank on the cart 
to provide the water for the pressure washer. The mass of the 
cart, including the operator riding it, the pressure washer with 
its fuel, and the empty water tank, is 400. kg. The water can be 
directed, by switching a valve, either backward or forward. In 
both directions, the pressure washer ejects 200 L of water per 
min with a muzzle velocity of 25.0 m/s.
a)  If the cart starts from rest, after what time should the 
valve be switched from backward (forward thrust) to forward 
(backward thrust) for the cart to end up at rest? 
b)  What is the mass of the cart at that time, and what is its 
velocity? (Hint: It is safe to neglect the decrease in mass due to 
the gas consumption of the gas-powered pressure washer!)
c)  What is the thrust of this “rocket”?
d)  What is the acceleration of the cart immediately before 
the valve is switched?

Section 8.4
8.43  A 32-cm-by-32-cm 
checkerboard has a mass of 
100 g. There are four 20-g 
checkers located on the 
checkerboard, as shown in 
the figure. Relative to the ori-
gin located at the bottom left 
corner of the checkerboard, 
where is the center of mass of 
the checkerboard-checkers 
system?

•8.44  A uniform, square metal 
plate with side L = 5.70 cm and 
mass 0.205 kg is located with 
its lower left corner at (x, y) = 
(0, 0), as shown in the figure. 
A square with side L/4 and its 
lower left edge located at (x, y) = 
(0, 0) is removed from the plate. 
What is the distance from the 
origin of the center of mass of 
the remaining plate?
•8.45  Find the x- and 
y-coordinates of the 
center of mass of the flat 
triangular plate of height 
H = 17.3 cm and base  
B = 10.0 cm shown in the 
figure.
•8.46  The density of a 
1.0-m long rod can be 
described by the linear 
density function (x) =  
100 g/m +10.0x g/m2. 
One end of the rod is 
positioned at x = 0 and 
the other at x = 1 m. Determine (a) the total mass of the rod, 
and (b) the center-of-mass coordinate.
•8.47  A thin rectangular plate of uniform area density  
1 = 1.05 kg/m2 has a length a = 0.600 m and a width  
b = 0.250 m. The lower left corner is placed at the origin, 
(x, y) = (0, 0). A circular hole of radius r = 0.048 m with 
center at (x, y) = (0.068 m, 0.068 m) is cut in the plate. 
The hole is plugged with a disk of the same radius that is 
composed of another 
material of uniform 
area density 2 = 5.32 
kg/m2. What is the dis-
tance from the origin 
of the resulting plate’s 
center of mass?
•8.48  A uniform, square 
metal plate with side L = 
5.70 cm and mass 0.205 kg 
is located with its lower left 
corner at (x, y) = (0, 0) as 
shown in the figure. Two 
squares with side length 
L/4 are removed from the 
plate.
a)  What is the 
x-coordinate of the center 
of mass?
b)  What is the y-coordinate of the center of mass?
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8.56  A baseball player uses a bat with mass mbat to hit a ball 
with mass mball. Right before he hits the ball, the bat’s initial 
velocity is 35 m/s, and the ball’s initial velocity is –30 m/s 
(the positive direction is along the positive x-axis). The bat 
and ball undergo a one-dimensional elastic collision. Find 
the speed of the ball after the collision. Assume that mbat 
is much greater than mball, so the center of mass of the two 
objects is essentially at the bat.
8.57  A student with a mass of 40 kg can throw a 5-kg ball 
with a relative speed of 10.0 m/s. The student is standing at 
rest on a cart of mass 10 kg that can move without friction. 
If the student throws the ball horizontally, what will the 
velocity of the ball with respect to the ground be?
•8.58  Find the location 
of the center of mass of a 
two-dimensional sheet of 
constant density  that has 
the shape of an isosceles 
triangle (see the figure).
•8.59  A rocket consists of 
a payload of 4390.0 kg and 
1.761 · 105 kg of fuel. Assume 
that the rocket starts from 
rest in outer space, accelerates 
to its final velocity, and then begins its trip. What is the speed 
at which the propellant must be expelled to make the trip from 
the Earth to the Moon, a distance of 3.82 · 105 km, in 7.0 h?
•8.60  A 350-kg cannon, sliding freely on a frictionless hori-
zontal plane at a speed of 7.5 m/s, shoots a 15-kg cannonball 
at an angle of 55° above the horizontal. The velocity of the 
ball relative to the cannon is such that when the shot occurs, 
the cannon stops cold. What is the velocity of the ball rela-
tive to the cannon?
•8.61  The Saturn V rocket, which was used to launch the 
Apollo spacecraft on their way to the Moon, has an initial 
mass M0 = 2.8 · 106 kg and a final mass M1 = 0.8 · 106 kg and 
burns fuel at a constant rate for 160. s. The speed of the 
exhaust relative to the rocket is about v = 2700. m/s.
a)  Find the upward acceleration of the rocket, as it lifts off 
the launch pad (while its mass is the initial mass).
b)  Find the upward acceleration of the rocket, just as it 
finishes burning its fuel (when its mass is the final mass).
c)  If the same rocket were fired in deep space, where there is 
negligible gravitational force, what would be the net change in 
the speed of the rocket during the time it was burning fuel?
•8.62  Find the location of the center of mass for a one-
dimensional rod of length L and of linear density (x) = cx, 
where c is a constant. (Hint: You will need to calculate the 
mass in terms of c and L.)
•8.63  Find the center of mass of a rectangular plate of 
length 20 cm and width 10 cm. The mass density varies lin-
early along the length. At one end, it is 5 g/cm2; at the other 
end, it is 20 g/cm2.

••8.49  The linear mass density, (x), for a one-dimensional 
object is plotted in the graph. What is the location of the 
center of mass for this object?

Additional Problems
8.50  A 750-kg cannon fires a 15-kg projectile with a speed 
of 250 m/s with respect to the muzzle. The cannon is on 
wheels and can recoil with negligible friction. Just after the 
cannon fires the projectile, what is the speed of the projec-
tile with respect to the ground?
8.51  The distance between a carbon atom (m = 12 u) and an 
oxygen atom (m = 16 u) in a carbon monoxide (CO) mol-
ecule is 1.13 · 10–10 m. How far from the carbon atom is the 
center of mass of the molecule? (1 u = 1 atomic mass unit.)
8.52  One method of detecting extrasolar planets involves 
looking for indirect evidence of a planet in the form of wob-
bling of its star about the star-planet system’s center of mass. 
Assuming that the Solar System consisted mainly of the Sun 
and Jupiter, how much would the Sun wobble? That is, what 
back-and-forth distance would it move due to its rotation 
about the center of mass of the Sun-Jupiter system? How far 
from the center of the Sun is that center of mass?
8.53  The USS Montana is a massive battleship with a weight 
of 136,634,000 lb. It has twelve 16-inch guns, which are 
capable of firing 2700-lb projectiles at a speed of 2300 ft/s. If 
the battleship fires three of these guns (in the same direc-
tion), what is the recoil velocity of the ship?
8.54  Three identical balls of mass m are placed in the con-
figuration shown in the 
figure. Find the location 
of the center of mass.

8.55  Sam (61 kg) and Alice (44 kg) stand on an ice rink, 
providing them with a nearly frictionless surface to slide on. 
Sam gives Alice a push, causing her to slide away at a speed 
(with respect to the rink) of 1.20 m/s.
a)  With what speed does Sam recoil?
b)  Calculate the change in the kinetic energy of the Sam-
Alice system.
c)  Energy cannot be created or destroyed. What is the 
source of the final kinetic energy of this system?
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a)  the total momentum of the system
b)  the momentum of mass 1, and 
c)  the momentum of mass 2. 
••8.70  You are piloting a spacecraft whose total mass is 
1000 kg and attempting to dock with a space station in deep 
space. Assume for simplicity that the station is stationary, 
that your spacecraft is moving at 1.0 m/s toward the sta-
tion, and that both are perfectly aligned for docking. Your 
spacecraft has a small retro-rocket at its front end to slow its 
approach, which can burn fuel at a rate of 1.0 kg/s and with 
an exhaust velocity of 100 m/s relative to the rocket. Assume 
that your spacecraft has only 20 kg of fuel left and sufficient 
distance for docking. 
a)  What is the initial thrust exerted on your spacecraft by 
the retro-rocket? What is the thrust’s direction? 
b)  For safety in docking, NASA allows a maximum docking 
speed of 0.02 m/s. Assuming you fire the retro-rocket 
from time t = 0 in one sustained burst, how much fuel (in 
kilograms) has to be burned to slow your spacecraft to this 
speed relative to the space station? 
c)  How long should you sustain the firing of the retro-
rocket? 
d)  If the space station’s mass is 500,000 kg (close to the 
value for the ISS), what is the final velocity of the station 
after the docking of your spacecraft, which arrives with a 
speed of 0.02 m/s? 
••8.71  A chain whose 
mass is 3.0 kg and length is 
5.0 m is held at one end so 
that the bottom end of the 
chain just touches the floor 
(see the figure). The top 
end of the chain is released. 
What is the force exerted 
by the chain on the floor 
just as the last link of the 
chain lands on the floor? 

•8.64  A uniform log of length 2.50 m has a mass of 91 kg 
and is floating in water. Standing on this log is a 72-kg man, 
located 22 cm from one end. On the other end is his daugh-
ter (m = 20 kg), standing 1 m from the end.
a)  Find the center of mass of this system.
b)  If the father jumps off the log backward away from his 
daughter (v = 3.14 m/s), what is the initial speed of log 
and child?
8.65  A sculptor has commissioned 
you to perform an engineering 
analysis of one of his works, which 
consists of regularly shaped metal 
plates of uniform thickness and 
density, welded together as shown 
in the figure. Using the intersection 
of the two axes shown as the origin 
of the coordinate system, deter-
mine the Cartesian coordinates of 
the center of mass of this piece.
•8.66  A jet aircraft is traveling at 223 m/s in horizontal 
flight. The engine takes in air at a rate of 80.0 kg/s and burns 
fuel at a rate of 3.00 kg/s. The exhaust gases are ejected at 
600. m/s relative to the speed of the aircraft. Find the thrust 
of the jet engine. 
•8.67  A bucket is mounted on a skateboard, which rolls 
across a horizontal road with no friction. Rain is falling  
vertically into the bucket. The bucket is filled with water, 
and the total mass of the skateboard, bucket, and water is  
M = 10 kg. The rain enters the top of the bucket and simul-
taneously leaks out of a hole at the bottom of the bucket at 
equal rates of  = 0.10 kg/s. Initially, bucket and skateboard 
are moving at a speed of v0. How long will it take before the 
speed is reduced by half? 
•8.68  A 1000-kg cannon shoots a 30-kg shell at an angle of 
25° above the horizontal and a speed of 500 m/s. What is the 
recoil velocity of the cannon? 
•8.69  Two masses, m1 = 2.0 kg and m2 = 3.0 kg, are moving 
in the xy-plane. The velocity of their center of mass and the 
velocity of mass 1 relative to mass 2 are given by the vectors 
vcm = (–1.0, +2.4) m/s and vrel = (+5.0, +1.0) m/s. Determine 
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