Using just a fast run-up and flexible pole,
how can a pole vaulter reach an
astonishing 6 m (20 ft) off the ground?

Looking Ahead »

The goal of Chapter 10 is to introduce
the concept of energy and learn a new
problem-solving strategy based on
conservation of energy. In this chapter
you will learn to:

» Understand some of the important
forms of energy, and how energy
can be transformed and
transferred.

» Understand what work is,and how
to calculate it.

» Understand and use the concepts
of kinetic, potential, and thermal
energy.

» Solve problems using the law of
conservation of energy.

» Apply these ideas to elastic
collisions.

Looking Back «

Part of our introduction to energy will
be based on the kinematics of
constant acceleration. In addition, we
will need ideas from rotational
motion.We will also use the before-
and-after pictorial representation
developed for impulse and
momentum problems. Please review

4 Section 2.4 Constant-acceleration
kinematics.

4 Section 7.5 Moment of inertia.

4 Sections 9.2-9.3 Before-and-after
visual overviews and conservation
of momentum.

ENERGY AND WORK

\ '-' it

homes and bodies, electrical energy to run our lights and computers, and

solar energy to grow our crops and forests. We're told to use energy wisely
and not to waste it. Athletes and weary students consume “energy bars’ and
“energy drinks.”

But just what is energy? The concept of energy has grown and changed with
time, and it is not easy to definein agenera way just what energy is. Rather than
starting with a formal definition, we'll |et the concept of energy expand slowly
over the course of several chapters. In this chapter we introduce several funda-
mental forms of energy, including kinetic energy, potential energy, and thermal
energy. Our goal is to understand the characteristics of energy, how energy is
used, and, especially important, how energy is transformed from one form to
another. For example, this pole vaulter, after years of training, has become extra-
ordinarily proficient at transforming his energy of motion into energy associated
with height from the ground.

E nergy. It'saword you hear all the time. We use chemical energy to heat our
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302 CHAPTER 10 - Energy and Work

WEe'll also discover avery powerful conservation law for energy. Some scien-
tists consider the law of conservation of energy to be the most important of all the
laws of nature. But al that in due time. First we have to start with the basic ideas.

10.1 A“Natural Money” Called Energy

We will start by discussing what seems to be a completely unrelated topic:
money. As you will discover, monetary systems have much in common with
energy. Let’s begin with a short story.

The Parable of the Lost Penny

John was a hard worker. His only source of income was the
paycheck he received each month. Even though most of
each paycheck had to be spent on basic necessities, John
managed to keep a respectable balance in his checking
account. He even saved enough to occasionally buy a few
savings bonds, hisinvestment in the future.

John never cared much for pennies, so he kept ajar by the
door and dropped all his pennies into it at the end of each
day. Eventually, he reasoned, his saved pennies would be
worth taking to the bank and converting into crisp new dol-
lar bills.

John found it fascinating to keep track of these various
forms of money. He noticed, to his dismay, that the amount
of money in his checking account did not spontaneously
increase overnight. Furthermore, there seemed to be a defi-
nite correlation between the size of his paycheck and the
amount of money he had in the bank. So John decided to
embark on asystematic study of money.

He began, as would any good scientist, by using hisini-
tial observations to formulate a hypothesis, which he called
amodel of the monetary system. He found that he could rep-
resent his monetary model with the flowchart in Figure 10.1.

There are two kinds of money within
the system. These can be transformed
back and forth without loss.

Y

Liquid Assets L = cash-on-hand + checking account

Saved Assets S = stocks and bonds + penniesin jar
Total Wedth=W=L + S

Money into Incomell

system——

Moneyout— §
of system Expenditures E

FIGURE 10.1 John’s model of the monetary system.

As the chart shows, John divided his money into two
basic types, liquid assets and saved assets. The liquid assets
L, which included his checking account and the cash in his
pockets, were moneys available for immediate use. His
saved assets S, which included his savings bonds as well as
the jar of pennies, had the potential to be converted into lig-
uid assets, but they were not available for immediate use.

John decided to call the sum total of assets his wealth:
W=L+S

John’s assets were, more or less, simply definitions. The
more interesting question, he thought, was how his wealth
depended on hisincome | and expenditures E. These repre-
sented money transferred to him by his employer and money
transferred by him to stores and bill collectors. After
painstakingly collecting and analyzing his data, John finally
determined that the relationship between monetary transfers
and wealthis

AW=1-E

John interpreted this equation to mean that the changein his
wealth, AW, was numerically equal to the net monetary
transfer | — E.

During a week-long period when John stayed home sick,
isolated from the rest of the world, he had neither income
nor expenses. In grand confirmation of his hypothesis, he
found that his wealth W at the end of the week was identical
to hiswealth W at the week’s beginning. That is, W = W.
This occurred despite the fact that he had moved pennies
from his pocket to the jar and also, by telephone, had sold
some bonds and transferred the money to his checking
account. In other words, John found that he could make all
of the internal conversions of assets from one form to
another that he wanted, but his total wealth remained con-
stant (W = constant) as long as he was isolated from the
world. This seemed such aremarkable rule that John named
it the law of conservation of wealth.

Oneday, however, John added up hisincome and expend-
itures for the week, and the changes in his various assets,
and he was 1¢ off! Inexplicably, some money seemed to
have vanished. He was devastated. All those years of careful
research, and now it seemed that his monetary hypothesis
might not be true. Under some circumstances, yet to be dis-
covered, it looked like AW # | — E. Off by ameasly penny.
A wasted scientific life. . . .

But wait! In aflash of inspiration, John realized that per-
haps there were other types of assets, yet to be discovered,
and that his monetary hypothesis would still be valid if all
assets were included. Weeks went by as John, in frantic
activity, searched fruitlessly for previously hidden assets.
Then one day, as John lifted the cushion off the sofato vac-



uum out the potato chip crumbs—Ilo and behold, there it
was!—the missing penny!

John raced to complete his theory, now including money
in the sofa, the washing machine, and behind the radiator as
previously unknown forms of assets that were easy to con-
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Other researchers soon discovered other types of assets, such
asthe remarkable find of the “cash in the mattress.” To this
day, when all known assets areincluded, monetary scientists
have never found a violation of John's simple hypothesis
that AW = | — E. John waslast seen sailing for Stockholm

vert from other forms, but often rather difficult to recover. to collect the Nobel Prizefor his Theory of Wealth.

10.2 The Basic Energy Model

John, despite his diligent efforts, did not discover alaw of nature. The monetary
system is a human construction that, by design, obeys John’s “laws.” Monetary
system laws, such as that you cannot print money in your basement, are enforced
by society, not by nature. But suppose that physical objects possessed a“natural
money” that was governed by a theory, or model, similar to John’s. An object
might have several forms of natural money that could be converted back and
forth, but the total amount of an object’s natural money would change only if nat-
ural money were transferred to or from the object. Two key words here, as in
John’s model, are transfer and change.

One of the greatest and most significant discoveries of scienceisthat thereis
such a “natural money” called energy. You have heard of some of the many
forms of energy, such as solar energy or nuclear energy, but others may be new to
you. These forms of energy can differ as much as a checking account differs from
loose change in the sofa. Much of our study is going to be focused on the
transformation of energy from one form to another. Much of modern technology
is concerned with transforming energy, such as changing the chemical energy of
oil moleculesto electrical energy or to the kinetic energy of your car.

Aswe use energy concepts, we will be “accounting” for energy that is trans-
ferred in or out of a system or that istransformed from one form to another within
a system. Figure 10.2 shows a simple model of energy that is based on John's
model of the monetary system. Many details must be added to this model, but it's
agood starting point. The fact that nature “balances the books” for energy is one
of the most profound discoveries of science.

A major goal of oursisto discover the conditions under which energy is con-
served. Surprisingly, the law of conservation of energy was not recognized until
the mid-nineteenth century, long after Newton. The reason, similar to John’'s lost
penny, was that it took scientists along time to realize how many types of energy
there are and the various ways that energy can be converted from one form to
another. Asyou'’ll soon learn, energy ideas go well beyond Newtonian mechanics
to include new concepts about heat, about chemical energy, and about the energy
of theindividual atoms and molecules that comprise an object. All of these forms
of energy will ultimately haveto beincluded in our accounting scheme for energy.

Systems and Energy

In Chapter 9 we introduced the idea of a system of interacting objects. A system
can be quite simple, such as a saltshaker sliding across the table, or much more
complex, such as a city or a human body. But whether simple or complex, every
system in nature has associated with it a quantity we call its total energy E.
Like John's total wealth, which was made up of assets of many kinds, the total
energy of a system is made up of many kinds of energies. In the table below, we
give abrief overview of some of the more important forms of energy; in the rest
of the chapter we'll ook at several of these forms of energy in much greater
detail.

There are several kinds of energy
within the system. These can

be transformed back and forth
without loss.

Energy into system

v
Readily available energy K
Stored energy U
Hard-to-recover energy Ey,

Total energy E = K + U + E,

A

Energy out of system

FIGURE 10.2 An initial model of energy.
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Some important forms of energy
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Kineticenergy K

Kinetic energy isthe energy of motion. All
moving objects have kinetic energy. The
heavier an object, and the faster it moves,
the more kinetic energy it has. The wreck-
ing ball inthispictureiseffectivein part
because of itslarge kinetic energy.

Elastic or spring potential energy U

Gravitational potential energy U,

Elastic potential energy isenergy stored
when a spring or other elastic object, such
asthisarcher’sbow, is stretched. This
energy can later be transformed into the
kinetic energy of the arrow. We'll some-
times use the symbol U to represent poten-
tial energy when it is not important to
distinguish between U, and Us.

Gravitational potential energy is stored
energy associated with an object’s height
above the ground. Asthisroller coaster
ascends the track, energy is stored as
increased gravitational potential energy.
Asit descends, this stored energy is con-
verted into kinetic energy.

Thermal energy E,,

Hot objects have more thermal energy than
cold ones because the moleculesin ahot
object jiggle around more than thosein a
cold object. Thermal energy isreally just the
sum of the mi croscopic kinetic and potential
energiesof al themoleculesinan object. In
boiling water, some moleculeshave enough
energy to escape the water as steam.

Chemical energy E qem Nuclear energy E uqear

Electric forces cause atomsto bind

An enormous amount of energy isstored in

together to make molecules. Energy can be
stored in these bonds, energy that can later
be released as the bonds are rearranged
during chemical reactions. When we burn
fuel to run our car, or eat food to power our

the nucleus, thetiny core of an atom. Cer-
tain nuclei can be made to break apart,
releasing some of this nuclear energy,
which istransformed into the kinetic
energy of the fragments and then into ther-

mal energy. Thisisthe source of energy of
nuclear power plants and nuclear weapons.

bodies, we are using chemical energy.

A system may have many of these kinds of energy present in it at once. For
instance, amoving car has kinetic energy of motion, chemical energy stored inits
gasoline, thermal energy in its hot engine, and other forms of energy in its many
other parts. The total energy of the system, E, isjust the sum of the different ener-
gies present in the system, so that we have

E=K+ U+ U+ Ep + Egem + - (10.1)

The energies shown in this sum are the forms of energy in which we'll be most
interested in this and the next chapter. The ellipses (. . .) represent other forms of
energy, such as nuclear or electric, that also might be present. We'll treat these
and othersin later chapters.

Energy Transformations

We've seen that all systems contain energy in many different forms. But if the
amounts of each form of energy never changed, the world would be a very dull
place. What makes the world interesting is that energy of one kind can trans-



Jform into energy of another kind. The gravitational potential energy of theroller
coaster at the top of the track is rapidly converted into kinetic energy as the
coaster descends; the chemical energy of gasoline is converted into the kinetic
energy of your moving car. The following tableillustrates afew common energy
transformations. In thistable, we'll use an arrow — as a shorthand way of repre-
senting an energy transformation.

Some energy transformations

10.2 - The Basic Energy Model

A weightlifter liftsabarbell over her head

gravitational potential energy of the barbell.

Echem - Ug

A baserunner didesintothebase

K— Ep

A burning campfire

energy of the hot gases and embers.

Echem - Eth

A springboard diver

U= K= Uy

The barbell has much more gravitational potential energy when high above her head than
when on the floor. To lift the barbell, sheistransforming chemical energy in her body into

When running, he haslots of kinetic energy. After sliding, he has none. His kinetic energy
istransformed mainly into thermal energy: the ground and hislegs are slightly warmer.

The wood contains considerable chemical energy. When the carbon in the wood combines
chemically with oxygenin the air, this chemical energy istransformed largely into thermal

Here's atwo-step energy transformation. The picture shows the diver after hisfirst jump
onto the board itself. At the instant shown, the board is flexed to its maximum extent.
Thereisalarge amount of elastic potential energy stored in the board. Soon this energy
will begin to be transformed into kinetic energy; as herisesinto the air and slows, this
kinetic energy will betransformed into gravitational potential energy.

Figure 10.3 reinforces the idea that energy transformations are changes of
energy within the system from one form to another. Note that it is easy to con-
vert kinetic, potential, or chemical energiesinto thermal energy. But converting
thermal energy back into these other formsis not so easy. How it can be done, and
what possible limitations there might be in doing so, will form alarge part of the
next chapter.

Energy Transfers: Work and Heat

We've just seen that energy transformations occur between forms of energy
within a system. In our monetary model, these transformations are like John's
shifting of money between his own various assets, such as from his savings

Environment

K<=p U

V/

B

E=K+U+E,+Eg, +-.

FIGURE 10.3 Energy transformations
occur within the system.
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Environment

Energy istransferred
from the environment

to the system.
Work,
heat -

Energy istransferred
from the system to
the environment.

FIGURE 10.4 Work and heat are energy
transfers into and out of the system.

Onedictionary defineswork as:

1. Physical or mental effort; labor.

2. Theactivity by which onemakesaliving.
3. Atask or duty.
4

. Something produced as aresult of
effort, such asawork of art.

5. Plural works: The essential or operating
parts of amechanism.

6. Thetransfer of energy to abody by
application of aforce.

Energy transfers: work

account to stocks. But John also interacted with the greater world around him,
receiving money as income and outlaying it as expenditures. Every physical sys-
tem also interacts with the world around it, that is, with its environment. In the
course of these interactions, the system can exchange energy with the environ-
ment. An exchange of energy between system and environment is called an
energy transfer. There are two primary energy transfer processes: work, the
mechanical transfer of energy to or from a system by pushing or pulling on it, and
heat, the nonmechanical transfer of energy from the environment to the system
(or vice versa) because of a temperature difference between the two. Figure 10.4
shows how our energy model is modified to include energy transfers. In this
chapter we'll focus mainly on work; the concept of heat will be developed much
further in Chapters 11 and 12.

Work is a common word in the English language, with many meanings. When
you first think of work, you probably think of the first two definitionsin thislist.
After all, we talk about “working out,” or we say, “I just got home from work.”
But that is not what work meansin physics.

In physics we use work in the sense of definition 6: Work is the process of
transferring energy from the environment to a system, or from a system to the
environment, by the application of mechanical forces—pushes and pulls—to the
system. Once the energy has been transferred to the system, it can appear in many
forms. Exactly what form it takes depends on the details of the system and how
the forces are applied. The table below gives afew examples of energy transfers
due to work. We use W as the symbol for work.

Putting a shot

The system: The shot.
The environment: The athlete.

Astheathlete pushesontheshot to get it
moving, heisdoing work onthe system.
That is, heistransferring energy from him-
self totheball. The energy transferredtothe
system appears askinetic energy.

Thetransfer: W— K

r

Striking amatch Firing a slingshot
The system: The match and matchbox. The system: The slingshot.
Theenvironment: The hand. Theenvironment: The boy.

Asthe hand quickly pullsthe match across ~ Asthe boy pulls back on the elastic bands,
the box, the hand does work on the system, he does work on the system, increasing its
increasing itsthermal energy. The match- elastic potential energy.
head becomes hot enough to ignite. Thetransfer: W— U,

Thetransfer: W— E,

Notice that in each example above, the environment applies aforce while the
system undergoes a displacement. Energy is transferred as work only when the
system moves while the force acts. A force applied to a stationary object, such as
when you push against awall, transfers no energy to the object and thus does no
work.

NOTE » Inthetable above, energy is being transferred from the athlete to the
shot by the force of his hand. We say he “does work” on the shot, or “work is
done” by theforce of hishand. «
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It is also possible to convert work into gravitational potential, electric, or even
chemical energy. We'll have much more to say about work in the next section.
But the key points to remember are that work is the transfer of energy to or
from a system by the application of forces, and that the system must undergo a
displacement for this energy to be transferred.

Thereis a second, nonmechanical means of transferring energy between a sys-
tem and its environment, which we discuss here only briefly. As mentioned
before, we'll have much more to say about heat in the next two chapters. When a
hot object is placed in contact with a cooler one, energy flows naturally from the
hot object to the cool one. The transfer of energy from a hot to a cold object is
called heat, and it is given the symbol Q. It isimportant to note that heat isnot an
energy of a system, as are kinetic energy and chemical energy. Rather, heat is
energy transferred between two systems.

A child dlides down a playground slide at constant speed.
The energy transformation is

A.U,—K B K—-U, CW—-K DU—E, EK-E,

10.3 The Law of Conservation of Energy

Remember that when John was isolated from the rest of the world—having nei-
ther income nor expenses—his internal wealth could be converted between its
many forms, but his total wealth remained constant. A similar but much more
fundamental law isfound for the “ natural money” of energy.

Let’s start our study of thislaw by considering an isolated system that is sepa-
rated from its surrounding environment in such a way that no energy can flow
into or out of the system. This means that no work is done on the system, nor is
any energy transferred as heat. We' ve already seen that the total energy of asys-
tem is made up of many forms of energy that are continually transforming from
one kind to another. It is a deep and remarkable fact of nature that during these
transformations, the total energy of an isolated system—the sum of all of theindi-
vidual kinds of energy—remains constant. Any increase in, say, the system'’s
kinetic energy must be accompanied by adecreasein its potential or thermal ener-
gies so that the total energy remains unchanged, as shown in Figure 10.5. We say
that the total energy of an isolated system is conserved, giving us the following
law of conservation of energy.

Thetotal energy of
an isolated system remains constant:

The energiesin the system are constantly ... but their sumis a constant:
transforming frorp onekind to another . . . it doesn’t chgnge.
K+ Ug + Ug + Ey + Egem + ... = E = constant (10.2)

Another way to think of this conservation law is in terms of energy changes.
Recall that we denote the change in a quantity by the symbol A, so we write the
changein asystem’skinetic energy, for instance, as AK. Now suppose that an iso-
lated system has its kinetic energy change by AK, its gravitational potential
energy by AUy, and so on. Then the sum of these changesisthe change in the total
energy. But sincethetotal energy isconstant, its changeis zero. We can thus write
the law of conservation of energy in an alternate form as

-

s

As the hand in the photo was held
against the wall, heat was transferred
from the warm hand to the cool wall,
warming up the wall.The warm
“handprint” can be imaged using a
special camera sensitive to the
temperature of objects.

Environment The system is
isolated from the

Energy c.an still be
The system’s'total transformed within
energy E is conserved. the system.

FIGURE 10.5 An isolated system.
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CONCEPTUAL EXAMPLE 10.1 Energy changes

in abungeeride

A popular fair attraction is
the trampoline bungee ride.
The rider bounces up and
down on large bungee cords. I
During part of her motion |
she is found to be moving
upward with the cords be-

coming more stretched. Is

she speeding up or slowing
downduringthisinterval?
REASON We'll take our sys-
tem to include the rider, the
bungee cords, and the earth.
WEe'll see later how gravita-

tional potential energy is stored in the system consisting of the

CHAPTER 10 - Energy and Work

The change in the total energy of an isolated system is zero:

AE = AK + AU, + AUg + AEy, + AEgg, + -+ =0 (10.3)

Any increase in one form of energy must be accompanied by a decrease in other
forms, so that the total changeis zero.

The law of conservation of energy sets a fundamental constraint on those
processes that can occur in nature. In any process that occurs within an isolated
system, the changes in each form of energy must add up to zero, as required by
Equation 10.3.

to agood approximation the system is isolated, with no energy
being transferred into or out of the system. Thusthetotal energy
= of the system is constant: AE = 0.

Because she's moving upward, her height is increasing—
and thus so is her gravitational potential energy. Thus AU, > O.
We also know that the cords are getting more stretched, hence
more elastic potential energy is being stored. Thus AUg > 0 as
well. Now the law of conservation of energy, Equation 10.3,
states that AE = AK + AUy + AU; =0, so that AK =
— (AU + AU). Both AUy and AU are positive, so AK must be
negative. This means that her kinetic energy is decreasing.
Since kinetic energy is energy of motion, this means that she's
slowing down.

Assess Inthat part of her motion where she’s moving upward
and the cords are stretching, she's approaching the highest point
of her motion. It makes sense that she's slowing down here,
since at the high point her speed isinstantaneously zero.

earth and an object such as the rider. With this choice of system,

Energy istransferred to  Environment
or from the system as

work and heat. ..., System
‘ Total
Work W energy E
Heat Q 4 >AE W+ Q

The change in the system’s
energy equals the amount of

work done or heat transferred.

FIGURE 10.6 The law of conservation of
energy.

Systems That Aren’t Isolated

When John had income and expenses, his total wealth could change. Indeed, he
found that his wealth increased by exactly the amount of his income, and
decreased by exactly the amount of his expenditures. Similarly, if a system is not
isolated, so that it can exchange energy with its environment, the system’s energy
can change. We have seen that the two primary means of energy exchange are
work and heat. If an amount of work W is done on the system, this means that an
amount of energy Wistransferred from the environment to the system, increasing
the system’s energy by exactly W. Similarly, if a certain amount of energy is
transferred from a hot environment to a cooler system as heat Q, the system’s
energy will increase by exactly the amount Q. Asillustrated in Figure 10.6, the
change in the system’s energy is simply the sum of the work done on the sys-
tem and the heat transferred to the system:

AE=W+Q

Thisgivesusamore general statement of conservation of energy:

Thechangein
the total energy of a nonisolated system is equal to the energy transferred into
or out of the system aswork W or heat Q:

AK + AUy + AUg + AEy + AEgen +

=W+Q (10.4)
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Equation 10.4 isthe fullest expression of the law of conservation of energy. It's
usually called thefirst law of thermodynamics, but it'sreally just arestatement of
the law of conservation of energy to include the possibility of energy transfers. In
thischapter we' ll refer to it sSimply asthelaw of conservation of energy.

NOTE » It'simportant to realize that even when the system is not isolated, - Lo
energy isconserved overall. The energy transferred to the system as, say, work |
. . . . ]
increasesthe energy of the system. But thisenergy isremoved from theenviron- L ﬁ-"
ment, so that thetotal energy of system plusenvironment isstill conserved. < — n— &
Systems and Conservation of Energy = k-
-

To apply the law of conservation of energy, you need to carefully define which
objects make up the system and which belong to the environment. This choice m
will affect how we analyze the various energy transfers and tranformations

that occur. In doing so, we need to make a distinction between two classes of Airplanes are assisted in takeoff from

forces. Internal forces are forces between ObjeCtS within thg system. If a aircraft carriers by a steam-powered

weightlifter and barbell are both part of the system, the forces Fegniifter onbaven ~ €atapult under the flight deck.The force

and Foabal onweigntifier A€ bOth internal forces. Internal forces are responsible for  of this catapult does work Won the

energy transformations within the system. Because they are internal to the sys-  Plane leading to alarge increase AK in
. the plane’s kinetic energy.

tem, however, internal forces cannot do work on the system and thereby

change its energy. External forces act on the system, but their agent is part of

the environment. External forces can do work on the system, transferring

energy in or out of it. Whether a given force is an internal or external force

depends on the choice of what's included in the system. The following table

shows some choices for a crane accelerating a heavy ball upward.

Different choices of the system

T =2 Many other
.= | System N \ a " intemal forces
> Tension T bound Tisstill an external of crane
\\ ounaary force, but now Wis All forces are

Both these forces are internal. now internal. | =

due to the environment: 5 S The system is T\

They are external forces i ght 7o isolated. @

that do work. » Weight w W

s Weight W
Earth

System: Theball only Bal + earth Ball + earth + crane
Internal forces. None W f, W, many internal forces of crane
External forces. T, W T None
System energies: K K, Uq K, Uy, Echem
Energy analysis: Tension does positive The weight forceis now an internal force. Now all theforcesareinternal, and no
work and the weight does negative work, That is, it isan interaction force between work isdone on the system: The systemiis
but since T > w the net work is positive. two objects—the ball and the earth—that isolated. With this choice of system, the
Thiswork servesto increase the only are part of the system. Thetensionforceis  increased potential and kinetic energy of
energy of the system, itskinetic energy. still an external force that doeswork onthe  the ball come from an energy transforma-
Notice that since the earth is not part of system. Thiswork increases the gravite- tion from the chemical energy of the
the system, the system has no gravitational ~ tional potential energy and the kinetic crane'sfuel.
potential energy. energy of the system.
Energy equation: AK = W AK + AU, = W AK + AU, + AEgen =0

There are evidently many possible choices of the system for a given situation.
However, certain choices can make problem solving using the law of energy con-
servation easier. For the crane above, we' d probably choose the second system
consisting of the ball and the earth, since it is a good balance between reducing
the number of external forces and having only simple system energies such as K
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and U,. The third choice would be hard to work with, since the many complicated
internal forces are difficult to calculate. Tactics Box 10.1 gives some suggestions
on how to make a good choice for the system.

MP TACTICS BOX 10.1 Exercise 6

The system should include al of the objectsidentified asfollows:

o |f the speed of an object or objects is changing, the system should
include these moving obj ects because their kinetic energy is changing.

e |f theheight of an object or objectsis changing, the system should include
the raised object(s) plus the earth. This is because potential energy is
stored viathe gravitational interaction of the earth and object(s).

« |If the compression or extension of a spring is changing, the system
should include the spring because el astic potential energy is stored in the
spring itself.

e |f kinetic or rolling friction is present, the system should include the
moving object and the surface on which it slides or rolls. Thisis because
thermal energy is created in both the moving object and the surface, and
we want this thermal energy to all be within the system.

Working with Energy Transformations

Thelaw of conservation of energy appliesto every form of energy, from kinetic to
chemical to nuclear. For the rest of this chapter, however, we'll narrow our focus
abit and only concern ourselves with the forms of energy typically transformed
during the motion of ordinary objects. These energies are the kinetic energy K, the
potential energy U (which includes both Uy and Us), and thermal energy E;;,. The
sum of the kinetic and potential energy, K + U = K + U, + U, is called the
mechanical energy of the system. We'll also limit our analysisto energy trans-
fersin the form of work W. In Chapter 11 we' I expand our scope to include other
forms of energy listed in the earlier table, aswell as energy transfers as heat Q.
The fact that energy is conserved can be a powerful tool for analyzing the
dynamics of moving objects. To see how we can apply the law of conservation of
energy to dynamics problems, let’s use the fact that the change in any quantity is
itsfinal value minusitsinitial value so that, for example, AK = K; — K;. Then
we can write the law of conservation of energy, Equation 10.4 (withQ = 0), as

(Ki = K) + (U — U) + AE,, =W (10.5)

NOTE » We don't rewrite AEy, as (Ey): — (Ey); because the initial thermal
energy of an object is typically unknown. Only the change in E;, can be
measured. <«

Rearranging, we have

Ki ar Ui +=\|/V2 Kf ar Uf + AEth (10.6)

of the system... the system aswork... possibly including extrathermal energy.



If no external forces do work on the system, W = 0 in Equation 10.6 and the sys-
temisisolated. If no kinetic friction is present, AE;, will be zero and mechanical
energy will be conserved. Equation 10.6 then becomes the law of conservation
of mechanical energy:

Ki + Ui = Kf + Uf (107)

Equations 10.6 and 10.7 summarize what we have learned about the conservation
of energy, and they will be the basis of our strategy for solving problems using the
law of conservation of energy. Much of the rest of this chapter will be concerned
with finding quantitative expressions for the different forms of energy in the sys-
tem and discussing the important question of what to include in the system. We'll
use the following Problem-Solving Strategy as we further devel op these ideas.

MP PROBLEM-SOLVING
STRATEGY 10.1

pREPARE  Choose what to include in your system (see Tactics Box 10.1).
Draw a before-and-after visual overview, as outlined in Tactics Box 9.1.
Note known quantities, and determine what quantity you’re trying to find.
If the system is isolated and if there is no friction, your solution will be
based on Equation 10.7, otherwise you should use Equation 10.6.

Identify which mechanical energiesin the system are changing:

If the speed of the object is changing, include K; and K; in your solution.
If the height of the object is changing, include (Uy); and (Uy);.

If the length of aspring is changing, include (Us); and (Uy);.

If kinetic friction is present, AE;, will be positive. Somekinetic or poten-
tial energy will be transformed into thermal energy.

If an external force acts on the system, you' |l need to include the work W
done by thisforcein Equation 10.6.

soLve Depending on the problem, you' Il need to calculate initial and/or
final values of these energies and insert them into Equation 10.6 or 10.7.
Then you can solve for the unknown energies, and from these any unknown
speeds (from K), positions (from U), or displacements or forces (from W).

assess  Check the signs of your energies. Kinetic energy, aswe'll seg, is
aways positive. In the systems we'll study in this chapter, thermal energy
can only increase, so that its changeis positive. In Chapters 11 and 12 we'll
study systems for which the thermal energy can decrease.

10.4 Work

WEe' ve already discussed work asthe transfer of energy between a system and its
environment by the application of forces on the system. We also noted that in order
for energy to betransferred in thisway, the system must undergo a displacement—
it must move—during the time that the force is applied. Let’s further investigate
the relationship between work, force, and displacement. We'll find that thereisa
simple expression for work, which we can then use to quantify other kinds of
energy aswell.
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Spring into action A locust can jump
as far as one meter, an impressive distance
for such a small animal. To make such a
jump, its legs must extend much more
rapidly than muscles can ordinarily contract.
Thus, instead of using its muscles to make
the jump directly, the locust uses them to
more slowly stretch an internal “spring” near
its knee joint. This stores elastic potential
energy in the spring. When the muscles
relax, the spring is suddenly released, and its
energy is rapidly converted into kinetic
energy of the insect.
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The system’skinetic

energy increases
and the boarder
speeds up.

v=0 :
Theforce of thewind F
does work on the system.

FIGURE 10.7 The force of the wind does
work on the system, increasing its kinetic
energy K.
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Consider a system consisting of a windsurfer at rest, as shown on the left in
Figure 10.7. Let's assume that there is no friction between his board and the
water. Initially the system has no kinetic energy. But if a force from outside the
system, such as the force due to the wind, begins to act on the system, the surfer
will begin to speed up, and his kinetic energy will increase. In terms of energy
transfers, we would say that the energy of the system hasincreased because of the
work done on the system by the force of thewind.

What determines how much work is done by the force of the wind? First, we
note that the greater the distance over which the wind pushes the surfer, the faster
the surfer goes, and the more his kinetic energy increases. Thisimplies agreater
transfer of energy. So the larger the displacement, the greater the work done.
Second, if the wind pushes with a stronger force, the surfer speeds up more
rapidly, and the change in his kinetic energy is greater than with aweaker force.
The stronger the force, the greater the work done.

This experiment suggeststhat the amount of energy transferred into asystem by
aforce F—that is, the amount of work done by IE—depends on both the magnitude
F of theforce and the displacement d of the system. Many experiments of thiskind
have established that the amount of work done by F isproportional to both F and d.
For the simplest case described above, wheretheforce F isconstant and pointsin
the direction of the object’s displacement, the expression for the work done is

foundtobe
(10.8) |:

LINEAR
p.38

W = Fd

Work done by a constant force F
in the direction of adisplacement d

The unit of work, that of force multiplied by distance, isN - m. Thisunit is so
important that it has been given its own name, the joule (rhymes with tool). We
define:

ljoule=1J=1N-m

Since work is simply energy being transferred, the joule is the unit of all forms
of energy. Note that work isascalar quantity.

EXAMPLE 10.1 Work done in pushing a crate

Sarah pushes a heavy crate 3.0 m along the floor at a constant
speed. She pushes with a constant horizontal force of magni-
tude 70 N. How much work does Sarah do on the crate?

PREPARE We begin with the visual overview in Figure 10.8.
Sarah pushes with a constant force in the direction of the crate's
motion, so we can use Equation 10.8 to find the work done.

E Known
F=70N
V . % d=30m
ﬁ _V> ﬁ l—p V= constant
> Find
Before d After W

FIGURE 10.8 Sarah pushing a crate.

soLve Thework done by Sarah isgiven by
W= Fd= (70N)(3.0m) = 210J

AssEsS Since the crate moves at a constant speed, it must bein
dynamic equilibrium with IfmEt = 0. This means that a friction
force (not shown) must act opposite to Sarah’s push. If friction
is present, Tactics Box 10.1 suggests taking the crate and the
floor as the system. The work Sarah does represents energy
transferred into the system. In this case, the work increases the
thermal energy in the crate and the part of the floor along which
it did. Contrast this with the windsurfer, where work increased
the windsurfer’s kinetic energy. Both situations are consistent
with the energy model shown in Figure 10.4, which you should
review at this point.



Force at an Angle to the Displacement

Pushing a crate in the same direction as the crate's displacement is the most effi-
cient way to transfer energy into the system, and so the largest possible amount of
work isdone. Lesswork is done if the force acts at an angle to the displacement.
To see this, consider the kite buggy of Figure 10.9a, pulled along a horizontal
path by the angled force of the kite string F. As shown in Figure 10.9b, we can
break F into a component F, perpendicular to the motion, and a component F,
parallel to the motion. Only the parallel component actsto accelerate the rider and
increase hiskinetic energy, so only the parallel component does work on therider.
From Figure 10.9b, we see that if the angle between F and the displacement is 6,
then the parallel component isF, = Fcosf. So when the force acts at an angle 6
to the direction of the displacement, we have

W = F,d = Fdcosf (10.9)

Work done by aconstant force F at an angle 6 to the displacement d

Notice that this more general definition of work agrees with Equation 10.8 if
0 = 0°.

concerTUAL EXAMPLE 10.2 Work done by a parachute

A drag racer is slowed by a parachute. What

isthe sign of thework done?

REASON Thedrag force on the drag racer is _ﬁ._-'

shown in Figure 10.10, along with the drag- =

ster’s displacement as it slows. The force

points in the opposite direction to the dis-

placement, so that the angle 6 in Equation 10.9 is 180°. Then cosf = cos(180°) =
—1. Since F and d in Equation 10.9 are magnitudes, and hence positive, this means
that thework W = Fdcosf# = —Fd done by the drag force is negative.

F

0 = 180°

FIGURE 10.10 The force acting on a drag racer.

Assess Applying Equation 10.4, thelaw of conservation of energy, to this situation,
we have

AK =W
because the only system energy that changes is the racer’s kinetic energy K. Since
the kinetic energy isdecreasing, its change AK is negative. Thisagreeswith thesign

of W. Thisexampleillustrates the general principle that negative work represents a
transfer of energy out of the system.

Tactics Box 10.2 shows how to calculate the work done by aforce at any angle
to the direction of motion. The system illustrated is a block sliding on afriction-
less horizontal surface, so that only the kinetic energy is changing. However, the
same relationships hold for any object undergoing a displacement.

The quantities F and d are always positive, so the sign of W is determined
entirely by the angle 0 between the force and the displacement. Note that
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The component ofF parallel to the
displacement accelerates the rider.

fhe component of F perpendicular to the
displacement only pulls up on the rider.
It doesn’t accelerate him.

FIGURE 10.9 Finding the work done when
the force is at an angle to the
displacement.
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Equation 10.9, W = Fdcos#, is valid for any angle 6. In three special cases,
0 =0°6=90° and 0 = 180°, however, there are simple versions of Equa-

tion 10.9 that you can use. These are noted in Tactics Box 10.2.

MP, TACTICS BOX 10.2 Exercises 9,11,12
Direction of force Anglesand
relativeto displacement work done Signof W Energy transfer
Before: After: 6=0° + Theforceisin the direction of motion. The
Vi Vi cost = 1 block hasits greatest positive acceleration. K
—> —— increases the most:
- | W= Fd .
d >e >F Maximum energy transfer to system.
0=0°
— —p 6 < 90° + The component of force parallel to the
i ——L¥- W = Fdcosf displacement islessthan F. The block hasa
./'Yv@< 90 ».//v': smaller positive acceleration. K increases less:
d Moderate energy transfer to system.
— 0 = 90° 0 Thereisno component of forcein direction of
0 — 90° F cosf = 0 motion.The block moves at constant speed. No
. changeinK:
1 d W=0
No energy transferred.
— —> 6 > 90° - The component of force parallel to the
‘{\9 >0 F W W = Fdcosd displacement is opposite to the motion. The
\ \ block slows down, and K decreases:
d Moderate energy transfer out of system.
— - 0 = 180° — Theforceisdirectly opposite to the motion. The
6 = 180° cosh = —1 block hasit greatest deceleration. K decreases
the most.
|f ¢ ® W= —Fd .
d Maximum energy transfer out of system.

exAmPLE 10.2 Work done in pulling a suitcase

A strap inclined upward at a 45° angle pulls a suitcase through
theairport. Thetensioninthestrapis20 N. How much work does
thetension doif the suitcaseis pulled 100 m at aconstant speed?

PREPARE Figure 10.11 shows avisual overview. Since the case
moves at a constant speed, there must be arolling friction force
acting to the |eft. Tactics Box 10.1 suggests in this case that we
take as our system the suitcase and the floor upon which it rolls.

soLve We can use Equation 10.9 to find that the tension does
work
W = Tdcosf = (20 N)(100 m) cos45° = 1400 J

ASSESS Because a person is pulling on the other end of the
strap, causing the tension, we would say informally that the per-
son does 1400 J of work on the suitcase. This work represents

FIGURE 10.11 A suitcase pulled by a strap.

energy transferred into the suitcase/floor system. Since the suit-
case moves at a constant speed, the system’s kinetic energy
doesn’t change. Thus the work goes entirely into increasing the
thermal energy E, of the suitcase and the floor.
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If several forcesact on an object that undergoes a di splacement, each doeswork
on the object. The total (or net) work W, is the sum of the work done by each
force. The total work represents the total energy transfer to the system from the
environment (if Wz > 0) or fromthe system to the environment (if W4 < 0).

Forces That Do No Work

Thefact that aforce acts on an object doesn’t mean that the force will do work on
the object. The table below shows three common cases where a force does no
work.

Forces that do no work

After:
E
Jt d >o
If the obj ect under goes no displacement A force perpendicular to thedisplace- If the part of the object on which the
whiletheforce acts, nowork isdone. ment does no work. force acts under goes no displacement, no

. . A . work isdone.
This can sometimes seem counterintuitive.  Thewoman exertsonly avertical force on

The weightlifter strugglesmightily tohold  the briefcase she'scarrying. Thisforcehas  Even though the wall pushes on the skater

the barbell over his head. But during the no component in the direction of the dis- with anormal force i and she undergoes a
timethe barbell remains stationary, hedoes  placement, so the briefcase movesat acon-  displacement d, the wall does no work on
no work on it because its displacement is stant velocity and its kinetic energy her, because the point of her body on which

zero. But why thenisit so hard for himto remains constant. Since the energy of the n acts—her hands—undergoes no displace-
hold it there? We'll seein Chapter 11thatit  briefcase doesn’t change, it must bethat no  ment. This makes sense: How could energy

takes arapid conversion of hisinternal energy isbeing transferred to it aswork. be transferred aswork from an inert, sta-
chemical energy tokeep hisarmsextended  (Thjsisthe casewhered = 90° in Tactics ~ tionary object? So where does her kinetic
under this great load. Box 10.2.) energy come from? Thiswill be the subject

of much of Chapter 11. Can you guess?

Which force does the most work?

A. The 10 N force.
B. The8 N force.

C. The6 N force. 10N 8%
D. They al do the same 60° 6N
3 > 3 > 3 >

amount of work.

10.5 Kinetic Energy Before After
We've dready qualitatively discussed kinetic energy, an object’s energy of L v;
motion. Let'snow use what we've |earned about work, and somesimplekinemat- == F N
ics, to find a quantitative expression for kinetic energy. Consider the system con- 0-—0 > O
sisting of acar being pulled by atow rope asin Figure 10.12. The rope pulls with d

aconstant force F while the car undergoes adisplacement d, so that theforce does  ¢gure 10.12 The work done by the tow
work W = Fd on the car. If weignore friction and drag, the work done by F will  rope increases the car’s kinetic energy.
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TABLE 10.1 Some approximate kinetic

energies

be transferred entirely into the car’s energy of motion—its kinetic energy. In this
case, the law of conservation of energy, Equation 10.6, reads

Ki + W= Kf
or

Using kinematics, we can find another expression for the work done, in terms
of the car’sinitial and final speeds. Recall from Chapter 2 the kinematic equation
relating an object’s displacement and its change in vel ocity:

V2 = V2 + 2aAx

Applied to the motion of our car, AXx = d is the car’s displacement and, from
Newton's second law, the accelerationisa = F/m. Thuswe can write
2Fd 2W
Vf2=Viz+T=Viz+*

where we have replaced Fd with the work W. If we now solve for the work, we
find

1 1 1
W= om(v — ) = Jmv — Smv?
If we compare this result with Equation 10.10, we see that
1 1
Ke = EmeZ and Ki = Em\/iz

In general, then, an object moving at a speed v haskinetic energy

1 | f
K =omv? (10.12)

QUADRATIC
p.50

Object Kinetic energy Kinetic energy of an object of mass m moving with speed v
Walking ant 1x 10787
Penny dropped 1 m 25x 1073J  From Equation 10.11, the units of kinetic energy are masstimes speed squared, or
Person walking 703 kg- (m/s)% But
100 mph fastball 1507 1kg- (m/s)®>=1kg- (M/s?) -m=1IN-m=1J
Bullet 5000 J — N
Car, 60 mph 5 X 1?5 J° We seethat the units of kinetic energy are the same as those of work, asthey must
Supertanker 2x10°J  pe Table 10.1 gives some approximate kinetic energies. Everyday kinetic ener-
giesrange from atiny fraction of afraction of ajouleto nearly amillion joulesfor
aspeeding car.
CONCEPTUAL EXAMPLE 10.3 Kinetic energy changes Thisgives
for a car

1 1
Compare the increase in a 1000 kg car’s kinetic energy as it AKs 10 = 5(1000 kg) (10 m/s)* — 5(1000 kg) (5.0 m/s)?

speeds up by 5.0 m/s starting from 5.0 m/s, to its increase in
kinetic energy asit speeds up by 5.0 m/s starting from 10 m/s.

REASON The change in the car’s kinetic energy in going from

5m/sto 10 m/sis

1
AKso0 = MV — SMY

2

=38 X 10*J
while

AKjgy15 = %(1000 kg) (15 m/s)? — %(1000 kg) (10 m/s)?

=6.3 % 10*J



Even though the increase in the car’s speed was the same in
both cases, the increase in kinetic energy is substantially larger
in the second case.

Assess Kinetic energy depends on the square of the speed v. If
we plot the kinetic energy of the car asin Figure 10.13, we see
that the energy of the car increases rapidly with speed. We can
also see graphically why the change in K for a fixed 5m/s
changein v isgreater at high speeds than at low speeds. In part
thisiswhy it's harder to accelerate your car at high speeds than

at low speeds.

FIGURE 10.13 The kinetic energy
increases as the square of the speed.

EXAMPLE 10.3 Speed of a bobsled after pushing

A two-man bobsled has amass of 390 kg. Starting from rest, the
two racers push the sled for the first 50 m with a net force of
270 N. Neglecting friction, what is the sled’s speed at the end of
the 50 m?

PREPARE Thisisthefirst example where we fully use Problem-
Solving Strategy 10.1. We start by identifying the bobsled as
the system; the two racers pushing the sled are part of the envi-
ronment. The racers do work on the system by pushing it with
force F. Because the speed of the sled changes, we'll need to
include kinetic energy. Neither Uy nor U changes, so we won't
need to consider these energies. Figure 10.14 lists the known
quantities and the quantity (v;) that we want to find.

Before: After:
Sl Al
T K
v,=0
Known Find: v,
m=390kg F=270N
d=50m v.=0m/s

FIGURE 10.14 The work done by the pushers increases the
sled’s kinetic energy.

Rank in order, from greatest to least, the kinetic energies

of the dliding pucks.

1kg 20mis 1kg 30mis —20m/s 1kg

2K9 5 oms
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ThechangeinK is
greater at high speeds
than at low speeds.

10-15

AK. | e

5-10

v (m/s)

0 5 % 10 7 15
In both cases fhe car's
speed increases by 5 m/s.

soLve With only kinetic energy changing, the conservation of
energy equation, Equation 10.6, is

Ki + W = K;

Using our expressions for kinetic energy and work, this
becomes
2

1 1
5mvi2+ Fd :EITM

Because v, = 0, the energy equation reducesto

1
Fd = -mv?
2 f

We can solve for the final speed to get

_ /27Fd _ |2(270N)(50m)
v = e kg = 83m/s

Assess We solved this problem using the concept of energy
conservation. In this case, we could also have solved it using
Newton's second law and kinematics. However, we'll soon see
that energy conservation can solve problems that would be very
difficult for usto solve using Newton's laws alone.

A. B. C.

Rotational Kinetic Energy

D.

We've just found an expression for the kinetic energy of an object moving along
a line or some other path. This energy is called translational kinetic energy.
Consider now an object rotating about a fixed axis, such as the windmill blades
in Figure 10.15. Although the blades have no overall translational motion, each

FIGURE 10.15 The large rotating blades of
a windmill have a great deal of kinetic
energy.
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Each particle in the object
has kinetic energy asthe
object rotates.

FIGURE 10.16 Rotational kinetic energy is
due to the circular motion of the particles.

Rotational recharge The International
Space Station (1SS) getsits electrical power
from solar panels. But during each 92-min
orbit, the ISSisin the earth’s shadow for

30 min. The batteries that currently provide
power during these blackouts need periodic
replacement, which isvery expensivein
space. A promising new technology would
replace the batteries with a flywheel—a
cylinder rotating at very high angular speed.
Energy from the solar cellsis used to speed
up the flywheel, storing energy as rotational
kinetic energy, which can then be converted
back into electrical energy when the ISSisin
shadow.
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particle in the blade is moving and hence has kinetic energy. Adding up the
kinetic energy for each particle that makes up the blades, we find that the blades
have rotational kinetic energy, the kinetic energy due to rotation.

Figure 10.16 shows two of the particles making up a windmill blade that
rotates with angular velocity w. Recall from Section 7.2 that a particle moving
with angular velocity w inacircle of radiusr hasaspeed v = wr. Thus particle 1,
which rotates in a circle of radius r;, moves with speed v; = r,w. Particle 2,
which rotates in a circle with a larger radius r,, moves with a larger speed
V, = r,w. The object’s rotational kinetic energy isthe sum of the kinetic energies
of all of the particles:

1 2.1 o
Krm:§m1V1 oMt

120 1 o _1 2\ 2
= omirfe? + Smprf’ + - = 2(Em Joo
You will recognize the term in parentheses as our old friend, the moment of iner-
tial. Thustherotational kinetic energy is

1 | f
Kig = 5 l0? (10.12)

QUADRATIC
.50
Rotational kinetic energy of object with ’

moment of inertial and angular velocity w

NOTE » Rotational kinetic energy is not a new form of energy. Thisis the
familiar kinetic energy of motion, only now expressed in aform that is espe-
cially convenient for rotational motion. Comparison with the familiar 3mv2
shows again that the moment of inertial isthe rotational equivalent of mass. «

A rolling object, such as awheel, is undergoing both rotational and transla-
tional motions. Consequently, itstotal kinetic energy isthe sum of its rotational
and trandational kinetic energies:

1 1
K= Ktrans + Krot = EI'T'I\/2 + 5|a)2

Recall from Section 6.3 that v and w of arolling object of radius R are related by
o = VIR Thuswe can write the kinetic energy of arolling object as

1 1 (v 1 |
Krolting = Emv2 + 5l R) =5|m+ = v2 (10.13)

This illustrates the important fact that the kinetic energy of a rolling object is
always greater than that of a nonrotating object moving at the same speed.

examPLE 10.4 Kinetic energy of a bicycle

Bike 1 has a 10.0 kg frame and 1.00 kg wheels, while bike 2
has a 9.00 kg frame and 1.50 kg wheels. Both bikes thus have
the same 12.0 kg total mass. What is the kinetic energy of each
bike when they are ridden at 12.0 m/s? Model each wheel as a
hoop of radius 35.0 cm.

PREPARE Each bike'sframehasonly translational kinetic energy
Kirame = MV, where M is the mass of the frame. The kinetic
energy of each rolling wheel is given by Equation 10.13. From

Table7.2, wefindthat | for ahoopismR?, where misthe mass of
onewhesel.

soLvE From Equation 10.13 the kinetic energy of each rolling
whed is

mR?
m+ e

1

Kuhed = 2 2

V2 = %(Zm)v2 = mv



Then thetotal kinetic energy of abikeis
1
K = Kiame + 2Kuhea = E|\/|v2 + 2mv?

Thefactor of 2 in the second term occurs because each bike has
two wheels. Thus the kinetic energies of the two bikes are

K, = %(10.0 kg) (12.0 m/s)? + 2(1.00 kg) (12.0 m/s)?
= 1010J
1
Kz = 5(9.00kg) (120 m/s)” + 2(1.50 kg) (12.0 m/s)?

= 1080J
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Thekinetic energy of bike 2 isabout 7%
higher than that of bike 1. Note that the
radius of the wheels was not needed in
this calculation.

Assess As the cyclists on these bikes
accelerate from rest to 12 m/s, they
must convert some of their internal
chemical energy into the kinetic energy
of the bikes. Racing cyclists want to use
aslittle of their own energy as possible.
Although both bikes have the same total
mass, the one with the lighter wheels
will take less energy to get it moving.
Shaving alittle extraweight off your wheelsis more useful than
taking that same weight off your frame.

It's important that
racing bike wheels
are as light as
possible.

10.6 Potential Energy

When two or more objectsin a system interact, it is sometimes possible to store
energy in that system in a way that the energy can be easily recovered. For
instance, the earth and a ball interact by the gravitational force between them. If
the ball islifted up into the air, energy is stored in the ball-earth system, energy
that can later be recovered as kinetic energy when the ball is released and falls.
Similarly, a spring is a system made up of countless atoms that interact viatheir
atomic “springs.” If we push abox against a spring, energy is stored that can be
recovered when the spring later pushes the box across the table. This sort of
stored energy iscalled potential energy, since it has the potential to be converted
into other forms of energy such askinetic or thermal energy.

The forces due to gravity and springs are specia in that they allow for the
storage of energy. Other interaction forces do not. When a crate is pushed across
the floor, the crate and the floor interact via the force of friction, and the work
done on the system is converted into thermal energy. But this energy is not stored
up for later recovery—it slowly diffuses into the environment and cannot be
recovered.

Interaction forces that can store useful energy are called conservative forces.
The name comes from the important fact, which we'll soon look at in detail, that
when only conservative forces act, the mechanical energy of a system is
conserved. Gravity and elastic forces are conservative forces, and later we'll see
that the electric force is a conservative force as well. Friction, on the other hand,
isanonconservative force. When two objectsinteract viaafriction force, energy
isnot stored. It isusually transformed into thermal energy.

Let’'slook more closely at the potential energies associated with the two con-
servative forces—gravity and springs—that we'll study in this chapter.

Gravitational Potential Energy

To find an expression for gravitational potential energy, let’s consider the system
of the book and the earth shown in Figure 10.17a on the next page. The book is
lifted at a constant speed from itsinitial position at y: to afinal height y;.

We can analyze this situation using the approach of Problem-Solving Strat-
egy 10.1. Thelifting force of the hand is external to the system and so does work
W on the system, increasing its energy. The book is lifted at a constant speed, so
its kinetic energy doesn’t change. Because there's no friction, the book’s thermal
energy doesn’t change either. Thus the work done goes entirely into increasing
the gravitational potential energy of the system. The law of conservation of
energy, Equation 10.6, then reads
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(a) The external force F
from the hand does
work on the system.

PR
yf ’ (Ug)f T 5 After

Thiswork increases the
Ay system’s gravitational
potential energy.

E
Yir (Ui~ N Before
*The book an
~theearth are
y=0 [:thesystem. \system
U=0 “ boundary
Earth

(b)  Because the book is being lifted at
aconstant speed, it isin dynamic
equilibriumwith F_, = C. Thus

FIGURE 10.17 Lifting a book increases its
gravitational potential energy.

EXAMPLE 10.5 Hitting the bell

At the county fair, Katietries her hand at the ring-the-bell attrac-
tion, as shown in Figure 10.18. She swings the mallet hard
enough to givethe ball aninitial upward speed of 8.0 m/s. Will
theball ring the bell, 3.0 m from the bottom?

CHAPTER 10 - Energy and Work

Theinitial gravitational potential energy. . . .
2y (Ug)i + W= (Ug)f ‘.,

... .plusthe energy put into the system aswork. . .

(10.14)

.. .equalsthe final gravitational potential energy.

The work doneisW = FAy, where Ay = y; — v, isthe vertical distance that
the book is lifted. From the free-body diagram of Figure 10.17b, we see that
F = mg. ThisgivesW = mgAy, so that

(Ug)i + mgAy = (Ug)f
or
(Ug)f = (Ug)i + mgAy

Since our final height was greater than our initial height, Ay is positive and
(Ug)s > (Uy)i. The higher the object is lifted, the greater the gravitational
potential energy in the object/earth system.

Equation 10.15 givesthe final gravitational potentia energy (Uy); in terms of
itsinitial value (Ug);. But what isthe value of (U,);? We can gain someinsight by
writing Equation 10.15 in terms of energy changes. We have

(Ug)f - (Ug)i = mgAy

(10.15)

or
AU, = mgAy

For example, if welift a 1.5 kg book up by 2.0 m, we increase its gravitational
potential energy by AU, = (1.5kg)(9.8 m/s?)(2.0m) = 29.4J. Thisincreaseis
independent of the book’s starting height: We would get the same increase
whether we lifted the book 2.0 m starting at sea level or starting at the top of
Mount Everest. If we then dropped the book 2.0 m, we would recover the same
29.4 J as kinetic energy, whether in Miami or on Everest. This illustrates an
important general fact about every form of potential energy: Only changes in
potential energy are significant.

Because of thisfact, we are free to choose areference level where we define Uy
to be zero. Our expression for Uy is particularly simpleif we choose this reference

level tobeat y = 0. Wethen have
(10.16) |:

Gravitational potential energy of an object of massmat aheight y t"if,““

(assuming Uy = Owhen the objectisaty = 0)

Ug: mgy

NOTE » We ve emphasized that gravitational potential energy is an energy of
the earth-object system. In solving problems using the law of conservation of
energy, you'll need to include the earth as part of your system. For simplicity,
we'll usually speak of “the gravitational potential energy of the ball,” but what
we really mean isthe potential energy of the earth-ball system. «

PREPARE As discussed above and in Tactics Box 10.1, we'll
choose the ball and the earth as the system. Figure 10.18 shows
the visual overview. If we assume that the track along which the
ball moves is frictionless, then only the mechanical energy of
the system changes. The only force on the ball after it leavesthe



We'll calculate how high the After:

ball would go if the bell %

weren't there. Then we'll " v, = 0m/s
seeif that height isenough .+
to have reached the bell. -~

Find: y,
30m

Before:
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soLve Equation 10.7 tells us that K; + (Uy); = K¢ + (Ug)s.
We can use our expressions for kinetic and potential energy to
writethisas

1 2 1 2

oM™ +mgyi=§m\/f + Mgy
Let’'signore the bell for the moment and figure out how far the
ball would riseif there were nothing in its way. We know that
the ball starts at y; = O m and that its speed v; at the highest

v, =8.0m/s

e | y,=0m

FIGURE 10.18 Before-and-after visual overview of the ring-
the-bell attraction.

bottom lever is gravity, but gravity is an internal force due to
our choice of the ball plus the earth as the system. This means
that the gravitational interaction is included as gravitational
potential energy rather than as external work. Since no external
forces do work on the earth-ball system, the system is isolated.
We can then use the law of conservation of mechanical energy,
Equation 10.7.

Yi

An important conclusion from Equation 10.16 is that gravitational poten-
tial energy depends only on the height of the object above the reference
level y = 0, not on the object’s horizontal position. Consider carrying a brief-
case while walking on level ground at a constant speed. As shown in the table
on page 15, the force of your hand on the briefcase is vertical and hence
perpendicular to the displacement. No work is done on the briefcase and conse-
quently its gravitational potential energy remains constant as long as its height
above the ground doesn’'t change as you walk.

Thisidea can be applied to more complicated cases, such asthe 51 kg hiker in
Figure 10.19. His gravitational potential energy depends only on his height y
above the reference level, so it’s the same value U, = mgy = 50 kJ at any point
on path A where heisat aheight y = 100 m above the reference level. If he had
instead taken path B, his gravitational potential energy at 100 m would be the
same 50 kJ. It doesn’t matter how he gets to 100 m, his potential energy at that
height will be the same. This demonstrates an important aspect of all potential
energies. The potential energy depends only on the position of the object and
not on the path the object took to get to that position. Thisfact will allow usto
use the law of conservation of energy to easily solve a variety of problems that
would be very difficult to solve using Newton's laws alone, because we won’t
need to know the details of the path of the object—just its starting and ending
points.

T 29 208mi)

point is zero. Thusthe energy equation simplifiesto

2

.
may; 2 i

Thisiseasily solved for the height y;:

8.0 m/s)?
= ( ) =33m

This is higher than the point where the bell sits, so the ball
would actualy hit it on the way up.

Assess Notice that the mass canceled and wasn't needed, afact
about freefall that you should remember from Chapter 2.

The hiker’s potential
energy at the top is 100 kJ
regardless of whether he
took path A or path B.-.,

U, = 100kJ
His potential energy isthe

same at any point where
his elevation is 100 m.

-‘"~..,_The referencelevel y=0m
iswhere U,=0J

FIGURE 10.19 The hiker’s gravitational
potential energy depends only on his
height above the y = Oreference level.

EXAMPLE 10.6 Speed at the bottom of a water slide

Still at the county fair, Katie tries the water dide, whose shape
is shown in Figure 10.20. The starting point is 9.0 m above
the ground. She pushes off with an initial speed of 2.0 m/s. If
the slide is frictionless, how fast will Katie be traveling at the
bottom?

PREPARE Figure 10.20 on the next page shows a visua
overview of the slide. Because there is no friction, Tactics
Box 10.1 suggests that we take as our system Katie (the mov-
ing object) and the earth. With this choice of system, the only
energies in the system are kinetic and gravitational potential
energy. Notethat the slope of the slideis not constant, so Katie's

Continued
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Y Before: or
y,=90m 1 1
= 2.0m/:
g SMVE Mgy, = SmvE + mgy;
Find: v, .
Taking y; = 0 mwe have
After:
y,=0m 1, 1,
v, Em\/i + mgy; = Em\/f
0 which we can solve to get
FIGURE 10.20 Before-and-after visual overview of Katie on v = VW + 20y,

the water slide.

=V(20m/s)? + 2(9.8M/<)(9.0m) = 13 m/s

acceleration will not be constant either. Thus we can’'t use con-
stant-accel eration kinematics to find her speed. But we can use
the law of conservation of energy to easily solve for her speed.
Becausethereisno friction, the mechanical energy isconserved.

Assess It isimportant to realize that the shape of the slide does
not matter because gravitational potential energy depends only
on the height above a reference level. In sliding down any
(frictionless) slide of the same height, your speed at the bot-

soLVE Conservation of mechanical energy gives tom would be the same.

Ki + (Ug)i = Ki + (Ug)s

Rank in order, from 3Qv=0
largest to smallest, the gravitational potential
energies of identical balls1to 4.
2 4

Elastic Potential Energy

Energy can aso be stored in acompressed or extended spring as elastic (or spring)
potential energy U,. We can find out how much energy is stored in a spring by
using an external force to slowly compress the spring. This external force does
work on the spring, transferring energy to the spring. Since only the elastic potential
energy of the spring is changing, the law of conservation of energy reads

W = AU, (10.17)

x=0 That is, we can find out how much elastic potential energy is stored in the spring
. I by cal culating the amount of work needed to compress the spring.

[MWMW Spring in equilibrium Figure 10.21 shows a spring being compressed by a hand. In Section 8.4 we

found that the force that the spring will exert on the hand is equal to —kx, where x

isthe displacement of the end of the spring from its equilibrium positionat x = 0

and k is the spring constant. By Newton's third law, this means that the force that

the hand exerts on the spring is equal to +kx.

Aswe compress the end of the spring from its equilibrium position to afinal
displacement x, the force we apply increases from zero to kx. Thisis not a con-
stant force, so we can't use Equation 10.8, W = Fd, to find the work done,
because thisequationisvalid only for aconstant force. However, it seems reason-
able that we could calculate the work by using the average force in Equa-
tion 10.8. Because theforcevariesfromF, = 0to F; = kx, the average force used
to compressthe springis

AS X increases,
so doesF.

FIGURE 10.21 The force required to F. = E(F +F) = l(kx +0) = Ekx
. . avg f [
compress a spring is not constant. 2 2 2



Thusthework done by the hand is

1
X = =kx?

1
W = Fagd = Fagx = |Zkx

This work is stored as potential energy in the spring, so we can use Equa-
tion 10.17 to find that the el astic potential energy increases by

1
AUg = —kx?
S 2
Just asin the case of gravitational potential energy, we have found an expression

for the changein U, not U, itself. Again, we are free to set U, = 0 at any conve-
nient spring extension. An obvious choiceisto set U, = 0 at the point where the
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Calf muscle

Achilles tendon

On each stride, the tendon
stretches, storing about 35 J
of energy.

spring isin equilibrium, neither compressed nor stretched; that is, at x = 0. With

(10.18) | /

this choice we have

1
U, =~k
=72

Elastic potential energy of a spring displaced a distance x from equilibrium »
(assuming U = 0 when the end of the springisat x = 0)

NOTE » Since U, depends on the square of the displacement x, U, isthe same
whether x is positive (the spring is compressed asin Figure 10.21) or negative

(the spring is stretched). <«

EXAMPLE 10.7 Speed of a spring-launched ball

A spring-loaded toy gun is used to launch a 10 g plastic ball.
The spring, which has a spring constant of 10 N/m, is com-
pressed by 10 cm asthe ball is pushed into the barrel. When the
trigger is pulled, the spring is released and shoots the ball back
out. What isthe ball’s speed asit leaves the barrel ? Assume that
frictionisnegligible.

PREPARE Assumethe spring obeysHooke'slaw F = —kx, and
ismassless so that it has no kinetic energy of itsown. Using Tac-
ticsBox 10.1 we choose the system to be the spring and the ball.
There's no friction, hence the system’s mechanical energy
K + Ugisconserved.

Before: W‘? v, =0m/s
T T X
x =—-10cm— x=0
After: v,
R
Find: v,

FIGURE 10.22 The before-and-after visual overview of a ball
being shot out of a spring-loaded toy gun.

Spring in your step Asyou run, you
|ose some of your mechanical energy each
time your foot strikes the ground; this energy
is transformed into unrecoverable thermal
energy. Luckily, about 35% of the decrease of
your mechanica energy when your foot lands
is stored as elastic potentia energy in the
stretchable Achilles tendon of the lower leg.
On each plant of the foot the tendon is
stretched, storing some energy. The tendon
springs back as you push off the ground
again, helping to propel you forward. This
recovered energy reduces the amount of
internal chemical energy you use, increasing
your efficiency.

QUADRATIC

Figure 10.22 shows a before-and-after visual overview. The
compressed spring will push on the ball until the spring has
returned to its equilibrium length. We have chosen the origin of
the coordinate system at the equilibrium position of the free end
of the spring, making x;, = —10 cmand x; = 0 cm.

soLVE The energy conservation equation is K; + (Uy), =
Ki + (Us);. We can use the elastic potential energy of the
spring, Equation 10.18, to writethisas

1 2 1 2 1 2

—mve + —kx® = —my

1
&L= 2
2 2 2 2I<Xf

Weknow that xi = Omand v; = 0 m/s, so thissimplifiesto

1 1
Em\/fz = Ekxiz

It is now straightforward to solve for the ball’s speed:

lo?
P
m

Assess Thisisnot aproblem that we could have easily solved
with Newton's laws. The acceleration is not constant, and we
have not learned how to handle the kinematics of nonconstant
acceleration. But with conservation of energy—it’s easy!

(10 N/m)(—0.10 m)?

0.010kg = 3.2mls
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Hot object: Fast-moving molecules have lots of
kinetic and elastic potent.ial energy.
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Cold object: Slow-moving molecules havelittle
kinetic and elastic potentia energy.
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FIGURE 10.23 A molecular view of thermal
energy.

Atoms.ai the interface push
and pull on each other asthe
upper objects slides past.

)

MM I

s TS TS T

I
MG N

MR M

MMM

A

MM

©
2
¢

,?r/ri)mf)mi)m?

e T e W 1)

The spring-li ké molecular bonds
stretch and store elastic potential
energy.

When the bonds break, the elastic
potentia energy is converted into

kinetic and potential energy of the
atoms, that is, into thermal energy.
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FIGURE 10.24 How friction causes an
increase in thermal energy.

A spring-loaded gun shoots a plastic ball with a speed of
4 m/s. If the spring is compressed twice asfar, the ball’s speed will be
C. 8mis. D. 16 m/s.

A. 2m/s. B. 4m/s.

10.7 Thermal Energy

We noted earlier that thermal energy isrelated to the microscopic motion of the
molecules of an object. As Figure 10.23 shows, the moleculesin a hot object jig-
gle around their average positions more than the moleculesin a cold object. This
has two consequences. First, each atom is on average moving faster in the hot
object. This means that each atom has a higher kinetic energy. Second, each atom
in the hot object tends to stray further from its equilibrium position, leading to a
greater stretching or compressing of the spring-like molecular bonds. This means
that each atom has on average a higher potential energy. The potential energy
stored in any one bond and the kinetic energy of any one atom are both exceed-
ingly small, but there are incredibly many bonds and atoms. The sum of all these
microscopic potential and kinetic energiesiswhat we call thermal energy.

I's this microscopic energy worth worrying about? To see, consider a 500 g
(=11b) iron ball moving at the respectable speed of V5 = 20 m/s (=45 mph).
Itskinetic energy isK = $mv,,2 = 100 J.

How fast do the atoms jiggle about their equilibrium positions? This speed
depends on the temperature, but at room temperature it’s very high—roughly
500 m/s. So each atom ison average traveling in astraight line at 20 m/s, but jig-
gling about this average motion at a speed of 500 m/s! This afactor of 25 times
faster. And since kinetic energy is proportional to the square of the speed, the
kinetic energy due to the microscopic motion is about 625 times greater than that
dueto the overall motion. And it turns out that the microscopic potentia energy is
just as large. Thus the ball that has an ordinary kinetic energy of 100 J has an
internal thermal energy of 2 X 625 X 100J = 125,000 J!

Transforming Mechanical Energy into Thermal Energy

Consider a snowboarder sliding on level snow. After awhile, he will glideto a
stop because of the friction force of the snow on his board. We can analyze this
using the law of conservation of energy. Following Tactics Box 10.1 we'll take
the system to be the boarder plus the snow. Then there are no forces external to
the system that do work on it and, since he’s moving horizontally, his potential
energy doesn't change. Then the law of conservation of energy is
Ki = K; + AE, or AE, = K; — K;. HE'sslowing to astop, so K; > K; and AE;,
is positive. The system’s thermal energy increases as Kinetic energy is trans-
formed into thermal energy.

Thisincrease in thermal energy is ageneral feature of any system where fric-
tion between dliding objects is present: When two objects slide against each
other with friction present, mechanical energy is always transformed into
thermal energy. An atomic-level explanationis shown in Figure 10.24.

The presence of friction has two important consequences for our conservation
of energy Problem-Solving Strategy 10.1:

1. Asstated in Tactics Box 10.1, we must include in the system not only the
moving object but also the surface against which it slides. Thisis because
the thermal energy generated by friction resides in both object and surface
(asinFigure 10.24), and it is usually impossible to tell what fraction resides
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in each. By choosing both object and surface to be in the system, we know

that all the thermal energy ends up in the system.

2. In addition to the mechanical energy K + U we now must include AE;, in

the conservation of energy equation.

TRY IT YOURSELF

into motion!

exAMPLE 10.8 Thermal energy created sledding

down a hill

George jumps onto his sled and starts from rest at the top of a
5.0-m-high hill. His speed at the bottom is 8.0 m/s. The mass of
George and the sled is 55 kg. How much thermal energy was
produced in this process?

PREPARE Figure 10.25 shows the before-and-after visual
overview. The statement of the problem implies that thermal
energy will be generated, so following Tactics Box 10.1, we'll
take the system to include both George and the sled and the
slope. Because his height is changing, his gravitational poten-
tial energy is changing and we' I need to include the earth in the
system as well. No forces act from outside this system, so the
work Wiszero.

Y
w

Before

=5em Fnd |'Ai+h
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FIGURE 10.25 Visual overview of George sliding down the hill.

Agitating atoms Vigorously rub asome-
what soft object such as ablackboard eraser
on your desktop for about 10 seconds. If you
then pass your fingers over the spot where
you rubbed, you'll feel adistinct warm area.
Congratulations: you' vejust set some
100,000,000,000,000,000,000,000 atoms

soLVE Herethelaw of conservation of energy reads
Ki + (Ug)i = Ki + (Ug)s + AR,
In terms of positions and speeds,

1 1
Emvi2 + mgy, =5mvf2 + mgy; + AEy,

Becausev, = 0 m/sand y; = O m, thissimplifiesto
1 2
mgy, = M + AEy,
from which we have

1
AEy, = mgy; — Emez

= (55kg)(9.8 m/s?)(5.0m) — %(55 kg) (8.0 m/s)?

= 940J

Assess The changein Ey, is positive, asit must be. This extra
thermal energy residesin the sled and all along the slope where
George slid. You should be able to show that about 35% of
George's origina gravitational potential energy was trans-
formed into thermal energy as he slid down the hill.
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10.8 Further Examples of
Conservation of Energy

In this section, we'll tie together what we' ve learned about using the law of con-
servation of energy to solve dynamics problems. In each, we use the key idea of
setting the “before” energy equal to the “after” energy.

(Y 52.57,7.117.13
Physics
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EXAMPLE 10.9 Where will the sled stop?

A dedder, starting from rest, slides down a 10-m-high hill. At
the bottom of the hill is a long horizontal patch of rough
snow. The hill is nearly frictionless, but the coefficient of fric-
tion between the sled and the rough snow at the bottom is
i = 0.30. How far will the sled slide along the rough patch?

PREPARE A picture of the sledder is shown in Figure 10.26.
WE Il break this problem into Part A, his motion down the hill;
and Part B, his motion along the ice. We know how to use con-
servation of energy to find his speed at the bottom of the hill.
Along the rough patch, however, we'll use kinematics and
Newton’s laws, as studied in Chapters 2 and 5, to find how far
he slides.

y Part A . Part B .
Known 1 Known 1
Y,=10m y =0m \ X =0m g, =030 \
Vv, =0m/s ' Ve, v,=0m/s !

1 .. . 1
% . I 1 1
Find: v, 1 Thiswasfoundinpart A. 1
1 1
. Find: x, !
Yo Vo ! I
1 1
Frictionless 1 I
/ 1 1
yl’“vl Xl’ Vlr: XZ’ VZ
0 -- J%l— X

i x=0
The final velocity for part A is
theinitial velocity for part B.

FIGURE 10.26 Visual overview of a sledder sliding downhill.

soLve We'll solve Part A first and find the sled’s speed v; at the
bottom. The hill is frictionless, so mechanical energy is con-
served and we have

1 2 1 2
mgy; + SV = mgy; + 2 mv

exAMPLE 10.10 Who wins the great downhill race?
Figure 10.27 shows a contest in which a sphere, a cylinder, and
acircular hoop, each with mass M and radius R, are placed at
height h on a slope of angle 6. All three are simultaneously
released from rest and roll down the ramp without slipping.
Which onewill win the race to the bottom of the hill?

FIGURE 10.27 Which will win the downhill race?

Sincev; = 0m/sand y; = 0 m, thisreducesto

1

may;, = Emvf2

so that

vi = V2gy = V2(9.8m/$?) (10 m) = 14.0 m/s

On the rough patch in Part B, where the only horizontal forceis
the kinetic friction force f, pointing to the left, the sled’s accel-
erationis

m  m  m
= —ug = —(0.30)(9.8M/s) = —2.94 M/

The negative acceleration indicates that the sled is slowing
down, as expected.

We now use kinematics to find how far the sled slides. We
know the acceleration a, as well astheinitial and final veloci-
ties along the horizontal patch, and we want to know the final
position x,. This suggests using the kinematic equation

W=V + 2a(x — x)

to find the final position. For the motion of Part B, the final
velocity vy = v, = 0m/s, theinitia velocity isv, = 14.0 m/s,
and theinitial positionisx, = x;, = 0 m. We can then solve for
thefinal position in the kinematic equation to get

v (140mls)®

X, = =" "~ _33m
2 2a —5.88 m/s?

Assess When friction is present, mechanical energy is not con-
served: Some of the mechanical energy of the system is
inevitably transformed into thermal energy. Thus we cannot use
the law of conservation of mechanical energy for such prob-
lems. Instead, we'll need to use Newton's laws and kinematics
to find how far objects slide. Asin this example, however, there
will often be a part of the problem with no friction that we can
solve using the law of conservation of mechanical energy.

PREPARE With no sliding friction, the total mechanical energy
is conserved. However, the kinetic energy of each object must
include a contribution from itsrotational kinetic energy.

soLVE Conservation of energy tells us that the gravitational
potential energy (Uy); = Mgh at the top will be transformed
into an equal amount of kinetic energy K; at the bottom. Thus

1 |
(Ug)i:Mgh:KfZEM‘F?VZ

where we used Equation 10.13 for the total (translational plus
rotational) kinetic energy. The speed at the bottom isthen

2Mgh

|
M+




10.9 - Energy in Collisions 327

Table 7.2 gives the moment of inertia for each of the three
shapes. We have

hoop or the cylinder, it will win the race, followed by the cylin-
der and the hoop.

Assess All the objects have the same kinetic energy at the bot-
tom, because they all started with the same energy, Mgh, at the

Shape  Moment of Inertial v ="V 2Mgh/(M + I/R?)

2. 5 _J10, Vah top. But the object with the smallest | will have the smallest
Sphere EMR V= 7gh =119Vah  otational kinetic energy at the bottom, and hence the largest
translational kinetic energy and the largest v. An ordinary slid-

1 4
Cylinder ~“MR? v=./ —gh = 1.15Vgh ing object (no rotation) reaches the bottom with speed v =
2 3 V/2gh = 1.41\V/gh. This s significantly faster than any of the
Hoop MR2 - @ rolling objects. The sliding object is faster because all its

kinetic energy istranslational—and it’s the translational motion
that gets you down the hill.

The sphere hasthe largest speed at the bottom, afull 19% faster
than the hoop. Because the sphere always travels faster than the

10.9 Energy in Collisions

In Chapter 9 we studied collisions between two objects. We found that if no exter-
nal forces are acting on the objects, the total momentum of the objectswill be con-
served. Now we wish to study what happens to energy in collisions. The
energetics of collisions are important in many applications in biokinetics, such as
designing safer automobiles and bicycle helmets.

Let’sfirst re-examine aperfectly inelastic collision. We studied just such a col-
lision in Example 9.8. Recall that in such a collision the two objects stick together
and then move with acommon final velocity. What happensto the energy?

EXAMPLE 10.11 Energy transformations soLVE Theinitial kinetic energy is
in a perfectly inelastic collision

Figure 10.28 showstwo air track glidersthat are pushed toward
each other, collide, and stick together. In Example 9.8, we used
conservation of momentum to find the final velocity shownin 1 , 1 2
Figure 10.28 from given initial velocities. Compare the initial (0.200 kg)(3.00 m/s)” + 5(0.400 kg) (—2.25 m/s)

T2
and final mechanical energies of the system.

1 1
Ki = Eml(le)iz + EmZ(VZX)iZ

=191J
Before: . . . .
3 B Because the gliders stick together and move as a single object
(le)iE = LS (Vs = _25125 5 with massm, + m,, thefinal kinetic energy is
m P
r 2009 4009 n 1 .
Ki = E(m1 + My) (Vs
1
X = 5(0.600 kg) (—0.500 m/s)? = 0.0750 J
After: .
(v,), = —0.500 m/s m M, From the conservation of energy eguation above, we find that
g — 1 I thethermal energy increases by
1 ]

AE, = K, — K; = 1.91J — 0.075J = 1.84J

FIGURE 10.28 Initial and final velocities in a completely
inelastic collision.

PREPARE We'll choose our system to be the two gliders.
Because the tracks are horizontal, thereis no change in potential
energy. Thusthe law of conservation of energy, Equation 10.6,
reads K; = K; + AEy,. The total energy before the collision
must equal the total energy after, but the total mechanical ener-
giesneed not be equal.

This amount of the initia kinetic energy is transformed into
thermal energy during the impact of the collision.

Assess About 96% of the initial kinetic energy is trans-
formed into thermal energy. Thisistypical of many real-world
collisions.
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In a collision between a cue ball and a

stationary ball, the mechanical energy of
the balls is almost perfectly conserved.

v,

Before: @—1> @) K
Energy isstored in
compressed

During: molecular bonds,

®® then released as the
bonds re-expand.

After: O @ K =K,

Vlf v2f

FIGURE 10.29 A perfectly elastic collision.

Elastic Collisions

Figure 9.1 showed a collision of a tennis ball with a racket. The ball is com-
pressed and the racket strings stretch as the two collide, then the ball expands and
the stringsrelax asthe two are pushed apart. In the language of energy, the kinetic
energy of the objectsis transformed into the elastic potential energy of the ball
and strings, then back into kinetic energy as the two objects spring apart. If all of
the kinetic energy is stored as elastic potential energy, and then all of the elastic
potential energy is transformed back into the post-collision kinetic energy of the
objects, then mechanical energy is conserved. A collision for which mechanical
energy isconserved is called a perfectly elastic collision.

Needless to say, most real collisionsfall somewhere between perfectly elastic
and perfectly inelastic. A rubber ball bouncing on the floor might “lose” 20% of its
kinetic energy on each bounce and return to only 80% of the height of the previous
bounce. But collisions between two very hard objects, such as two pool balls or
two steel balls, come close to being perfectly elastic. And collisions between
microscopic particles, such as atoms or el ectrons, can be perfectly elastic.

Figure 10.29 shows a head-on, perfectly elastic collision of aball of mass m,,
having initial velocity (vy,);, with aball of mass m, that isinitially at rest. The
balls’ velocities after the collision are (v;,); and (v, ). These are velocities, not
speeds, and have signs. Ball 1, in particular, might bounce backward and have a
negative value for (vy,);.

The collision must obey two conservation laws: conservation of momentum
(obeyed in any collision) and conservation of mechanical energy (because the
collision is perfectly elastic). Although the energy is transformed into potential
energy during the collision, the mechanical energy before and after the collision
ispurely kinetic energy. Thus

momentum conservation: My (V)i = My (Vi) + My(Voy)s
. 1 , 1 , 1 5
energy conservation: Eml(le)i = Eml(le)f + Emz(vz)()f

Momentum conservation alone is not sufficient to analyze the collision
because there are two unknowns: the two final velocities. That iswhy we did not
consider perfectly elastic collisions in Chapter 9. Energy conservation gives us
another condition. The complete solution of these two equations involves
straightforward but rather lengthy algebra. We'll just give the solution here,
whichis:

m —m

Vit =
(=

2m,
(Vi (Va)s = m(le)i (10.19)

Perfectly elastic collision with object 2 initially at rest
Equations 10.19 allow us to compute the final velocity of each object. Let’s ook

at a common and important example: a perfectly elastic collision between two
objects of equal mass.

EXAMPLE 10.12 Velocities in an air hockey collision PREPARE The before-and-after visual overview is shown
On an air hockey table, a moving puck, traveling at 2.3 m/s,  Figure 10.30. We've sketched in final velocities in the picture,
makes a head-on collision with a stationary puck. What arethe  but we don’t really know yet which way the pucks will move.

final velocities of each of the pucks?

Because one puck was initially at rest, we can use Equa-
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tion 10.19 to find the final velocities of the pucks. The pucks soLve We use Equation 10.19 withm; = m, = mto get
areidentical, sowehavem, = m, = m.

(v = 2T

m
s m(le)i =0m/s

2m
Before: (v,), = 23m/s (v,), = Om/s (Vadr = 7 (Vi = (Vadi = 23 mis
o Yy E]J The incoming puck stops dead, and the initially stationary puck
goes off with the same velocity that the incoming one had.

ASSESS You can see that momentum and energy are conserved:
the incoming puck’s momentum and energy are completely
1t Vi transferred to the outgoing puck. If you’'ve ever played pool,
Bl [ - you’ ve probably seen this sort of collision when you hit a ball
head-on with the cue ball: the cue ball stops and the other ball

FIGURE 10.30 A moving puck collides with a stationary puck.  picks up the cue ball’s velocity.

After: Find: (v,), and (v,,),

Other cases where the colliding objects are of unequal mass will be treated in the
end-of-chapter problems.

Forces in Collisions

The collision between two pool balls occurs very quickly, and the forces are typi-
cally very large and difficult to calculate. Fortunately, by using the concepts of
momentum and energy conservation we can often cal culate the final velocities of
the balls without having to know the forces between them. There are collisions,
however, where knowing the forces involved is of critical importance. The fol-
lowing example shows how a helmet helps protect the head from the large forces
involved in abicycle accident.

EXAMPLE 10.13 Protecting your head The headform is dropped
A bike helmet is basically a from aheight of 2 m.
shell of hard, crushable foam 7
3.0 cm thick. In testing, the
helmet is strapped onto a
5.0 kg headform that is drop-
ped from a height of 2.0 m
onto a hard anvil. What force
is encountered by the head in
such afal?

PREPARE A visual overview Thefoam inside a bike helmet
of the test is shown in Fig- !s designed to crush upon

ure 10.31. We can use the 'MPact.

law of conservation of en-

The helmet has just touched
the anvil. The foam is now
€ pushing up on the headform.

=Y, V.
Yl The headform is subject to

alarge force from the foam.
This force does negative
work on the headform,
slowing it down.

ergy, Equation 10.6, to estimate the force on the headform. y=0

WE'll choose the headform and the earth to be the system; the

foam in the helmet will be part of the environment. We make d=0.030m

this choice so that the force on the headform due to the foam is Before: After:

an external force that does work W on the headform. Y, =20m,yv, =0m/s y,=0m,v,=0m/s

Find: F
FIGURE 10.31 The foam in the helmet does negative work on
the headform.

soLVE The headform starts at initial height y; = 2.0 m above
the anvil and ends at rest with the foam fully crushed. Then the
law of conservation of energy is

Ki + (Ug)i + W= K¢ + (Ug)¢

Continued
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In words, this states that the initial energy of the system, plus
the energy transferred to the system as work, equals the final
energy of the system.

Since the headform starts and ends at rest, both K; and K; are
zero. Taking our reference height y = 0 at the anvil, (Uy); is
zero aswell. Since (Ug); = mgy;, conservation of energy gives
simply mgy; + W = 0, or

mgy, = —W

Asthefoam is crushed, it pushes up on the headform with force
F, doi ng work on it. This force is directed opposite to the dis-
placement d of the headform, so the work done is negative—
kinetic energy is being removed from the headform, slowing it
down. The work done is —Fd, if we assume the forceis rela-

Thisistheforce that acts on the head to bring it to ahalt in only

3 cm. More important from the perspective of possible brain

injury isthe head's acceleration
F _3300N

m  5.0kg

= 660 m/s? = 67g

where g isthe acceleration due to gravity.

Assess The accepted threshold for serious brain injury is
around 300g, so this helmet would protect therider in all but the
most serious accidents. Without the helmet, the rider’s head
would come to a stop in a much smaller distance and thus be
subjected to amuch larger acceleration.

It's also interesting to ask where the original energy of the
headform went. The work on it was negative, indicating atrans-

tively constant, so we have

mgy = —(~Fd)
or

F =

mgy, _ (5.0kg)(9.8m/s)(20m)

fer of energy from the headform to the environment—the foam.
Asthe foam crushes, thereisagreat deal of internal friction and
rubbing between parts of the foam. This causes the foam to get
warmer, increasing its thermal energy. This increase must be
exactly equal to the energy lost by the headform.

d 0.030 m

Both these cars take about the same
energy to reach 60 mph, but the race car
gets there in a much shorter time, so its
power is much greater.

= 3300N

10.10 Power

We' ve now studied how energy can be transformed from one kind to another and
how it can be transferred between the environment and the system as work. In
many situations we would like to know how quickly the energy is transformed or
transferred. Is atransfer of energy very rapid, or does it take place over along
time? In passing a truck, your car needs to transform a certain amount of the
chemical energy initsfuel into kinetic energy. It makes a big difference whether
your engine can do thisin 20 sor 60 s!

The question “How quickly?’ implies that we are talking about a rate. For
example, the velocity of an object—how fast it is going—is the rate of change
of position. So when we raise the issue of how fast the energy is transformed,
we are talking about the rate of transformation of energy. Suppose in a time
interval At an amount of energy AE is transformed from one form to another.
The rate at which this energy is transformed is called the power P, and it is
defined as

_AE

P=a

(10.20)

Power when amount of energy AE istransformed in time interval At

The unit of power isthe watt, whichisdefinedas1watt = 1W = 1J/s.

Power also measures the rate at which energy is transferred into or out of a
system as work W. If work W is done in time interval At, the rate of energy
transfer is

w

P=—
At

(10.21)

Power when amount of work Wisdonein timeinterval At



A forcethat is doing work (i.e., transferring energy) at arate of 3 J/s has an “out-
put power” of 3 W. A system gaining energy at the rate of 3 J/sis said to “con-

10.10 - Power

331

The English unit of power isthe horse-
power. The conversion factor to wattsis

sume” 3 W of power. Common prefixes used with power are mW (milliwatts),

kW (kilowatts), and MW (megawatts).

We can express Equation 10.21 in adifferent form. If in thetime interval At an
object undergoes a displacement Ax, the work done by a force acting on the

objectisW = FAx. Then Equation 10.21 can be written
W  FAx _Ax

“a oA ta P

1 horsepower = 1 hp = 746 W

Many common appliances, such as motors,
arerated in hp.

The rate at which energy is transferred to an object as work—the power—is the
product of the force that does the work, and the velocity of the object:

P=Fv

Rate of energy transfer dueto aforce F
acting on an object moving at velocity v

EXAMPLE 10.14 Power to pass a truck

You are behind a 1500 kg truck traveling at 60 mph (27 m/s).
To pass it, you speed up to 75 mph (34 m/s) in 6.0 s. What
power isrequired to do this?

PREPARE Your car isundergoing an energy transformation from
the chemical energy of your fuel to the kinetic energy of the car.
We can calculate the amount of energy transformed by finding
the change AK in the kinetic energy.

soLvE Wehave

K, = %m\/i2 = %(1500 kg) (27 m/s)? = 5.47 x 10°J

K = %mvf = %(1500 kg) (34 m/s)? = 8.67 X 10°J
so that

AK = K; — K;

=867 X 10°J — 547 X 10°J = 3.20 X 10°J

(10.22) |i

LINEAR
.38

To transform this amount of energy in 6 s, the power required is

AK 320X 10°J
=—=———=53000W = 53 kW
At 6.0s '
This is about 71 hp. This power is in addition to the power
needed to overcome drag and friction and cruise at 60 mph, so
the total power required from the engine will be even greater
than this.

AssESs You use alarge amount of energy to perform asimple
driving maneuver such as this. 3.20 X 10° Jis enough energy
to lift an 80 kg person 410 m in the air—the height of atall sky-
scraper. And 53 kW would lift him therein only 6 s!

Four students run up the stairsin the time shown. Rank in

order, from largest to smallest, their power outputs P, to Pp.

A. B. C.

80 kg 80 kg 64 kg
m
At=10s At=8s At=8s
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SUMMARY

The goal of Chapter 10 has been to learn about energy and how to solve problems using the law of
conservation of energy.

GENERAL PRINCIPLES

Energy is Environment

transformed
Within a system, energy can be within the I solated system: No energy is transferred into or out
transformed between various forms. sysem... of the system. Each form of energy within the
----- system can change, but the total change in energy is
Energy can betransferred into or - zero. Energy of the system is conserved:

out of asysem intwo basic WaYS. The change in the system’s energy is zero. ey

* Work: The transfer of energy e E AK + AUg + AU + AEy, + AEgpen + - - =0
by mechanical forces. )

. . Enferg& Ishtransfmefd to Nonisolated system: Energy can be exchanged with
* Heat: The nonmechanical - t;‘)tr;eta‘ﬁ gr?rn:er:tom the environment as work or heat. The energy of the
transfer of energy from a system changes by the amount of work done or heat
hotter to a colder object. transferred:

AK + AUy + AUg + AEy + AEgen + ... = W+ Q

The system’s energy changes by the

. . f work d d h ferred. .-+
PREPARE Choose your system (Tactics Box 10.1). Decide what forms of amount of workcdone andi et fransierr

energy are changing. If there is friction, then thermal energy will be Systems with mechanical and thermal ener gy
created. Check for external forces that will do work on your system. only: Theinitial mechanical energy, plus the work
done, equals the final mechanical energy plus

soLveE Use Equation 10.6 to relate the initial energy of your system, plus additional thermal energy:

the work done, to the final energy of the system:
Ki+Ui+W:Kf+Uf+AEth
Ki + U + W= K; + U; + AE,
In terms of energy changes, this can be written

Assess Kinetic energy is always positive. The change in thermal energy _
should be positive. AK + AU; + AU + AE, = W

IMPORTANT CONCEPTS

isthe sum of asystem’s is the sum of the microscopic kinetic and potential
kinetic and potential energies: energy of al the moleculesin an object. The hotter an object, the more
. _ _ thermal energy it has. When kinetic (dliding) friction is present,
Mechanical energy = K + U = K + Uy + Us mechanical energy will be transformed into thermal energy.
is an energy of motion

K= %mvz+ %Iw2 isthe processby which energy is R
Trendationgl e ... Rotationdl transferreq to or from a system by the application —9
i ) of mechanical forces. - ---- F
is energy stored in a system of F I
interacting objects If a particle moves through a displacement d 9
+ Gravitational potential energy: U, = mgy while acted upon by a constant force F, the force F, = Fooso .,

does work Only the component of

R R 0 _ 1 2 the force parallel to the
Elastic potential energy: U = 2kx W = F,d = Fdcosf

APPLICATIONS

istherate at which energy istransformed . . .
Both mechanical energy and

momentum are conserved T = m —m (Vo) p= AE ¢eeeeenes Amount of energy transformed
e W M+ m, s At ¢ Time required to transform it
( )Object2|n|t|allyatrest 1 2
Vi, ... or at which work is done.
Before (D—> @k, Wl = — a3,
20t = T m, Vi _ W e Amount of work done
h 7 P

After: @-> @—> K, =K, T AL ¢ Time required to do work
(le)f (V2x)f
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Problems |abeled: can be done on aWorkbook

Energy Workshest; [\ integrate significant material
from earlier chapters; are of biological or medical
interest.

QUESTIONS

Conceptual Questions

1. The brake shoes of your car are made of a material that can
tolerate very high temperatures without being damaged. Why
isthisso?

2. When you pound a nail with a hammer, the nail gets quite
warm. Describe the energy transformations that lead to the
addition of thermal energy in the nail.

For Questions 3 through 8, give a specific example of a system
with the energy transformation shown. In these questions, W isthe
work done on the system by the environment, and K and U are the
kinetic and potential energies of the system, respectively.

. W— KwithAU = 0.

. W— U withAK = 0.

. K= Uwithw = 0.

. K= WwithAU = 0.

. U—= Kwithw = 0.

. U—> WwithAK = 0.

. A ball of putty is dropped from a height of 2 m onto a hard
floor, where it sticks. What object or objects need to be
included within the system if the system isto be isolated dur-
ing this process?

10. A 0.5 kg masson al-m-long string swingsin acircle on ahor-
izontal, frictionless table at a steady speed of 2 m/s. How
much work does the tension in the string do on the mass dur-
ing onerevolution? Explain.

11. Particle A has less mass than particle B. Both are pushed for-
ward across africtionless surface by equal forcesfor 1 s. Both
start from rest.

a. Compare the amount of work done on each particle. That
is, isthework done on A greater than, less than, or equal to
thework done on B? Explain.

b. Compare the impulses delivered to particles A and B.
Explain.

c. Comparethefinal speeds of particlesA and B. Explain

12. The meaning of the word “work” is quite different in physics
from its everyday usage. Give an example of an action a per-
son could do that “feels like work” but that does not involve
any work aswe' ve defined it in this chapter.

13. To change atire, you need to use a jack to raise one corner of
your car. While doing so, you happen to notice that pushing
the jack handle down 20 cm raises the car only 0.2 cm. Use
energy concepts to explain why the handle must be moved so
far to raise the car by such asmall amount.

Questions 14 through 17 refer to a weightlifter raising a barbell
from the floor to above his head. Describe the energy transforma-
tionsthat occur if the system is chosen as specified in the question.
Use the notation of Section 10.2 for the various forms of energy
and energy transfer.

14. The systemisthe barbell alone.

© oOo~NOO U W

15. The system isthe weightlifter alone.
16. The system isthe barbell plusthe earth.
17. The systemisthe barbell plusthe earth plusthe weightlifter.

In Questions 18 through 20, imagine yourself doing a chin-up. You
start from rest with your arms extended above your head, and end
at rest with your elbows bent and your hands still gripping the bar.
Describe the energy transformations that occur if the systemis cho-
sen as specified in the question. Use the notation of Section 10.2
for the various forms of energy and energy transfer.

18. Thesystemisyou aone.

19. Thesystem isyou plusthe chin-up bar.

20. The systemisyou plusthe chin-up bar plusthe earth.

21. One kilogram of matter contains approximately 10Y J of
nuclear energy. Why don’'t we need to include this energy
when we study ordinary energy transformations?

22. A roller coaster car rolls down a frictionless track, reaching
speed v; at the bottom.

a. If you want the car to go twice as fast at the bottom, by
what factor must you increase the height of the track?

b. Doesyour answer to part a depend on whether thetrack is
straight or not? Explain.

23. A spring gun shoots out a plastic ball at speed vi. The spring is
then compressed twice the distance it was on thefirst shot.

a. By what factor isthe spring’s potential energy increased?
b. By what factor isthe ball’s speed increased? Explain.

24, Sandy and Chris stand on the edge of acliff and throw identi-
cal mass rocks at the same speed. Sandy throws her rock hori-
zontally while Chris throws his upward at an angle of 45° to
the horizontal . Are the rocks moving at the same speed when
they hit the ground, or is one moving faster than the other? If
oneis moving faster, which one? Explain.

25. If you allow a can of chicken broth to join the rolling-object
race discussed in Example 10.10, it wins handily. A can of
tomato paste, on the other hand, ties with the cylinder. Why?
Hint: Try to picture how the stuff inside each can moves as
thecanrolls.

26. A solid cylinder and a cylin-
drical shell have the same
mass, same radius, and turn
on frictionless, horizontal
axles. (The cylindrical shell
has light-weight spokes con-
necting the shell to the axle.)
A rope is wrapped around
each cylinder and tied to a
block. The blocks have the same mass and are held the
same height above the ground as shown in Figure Q10.26.
Both blocks are released simultaneously. The ropes do not
slip. Which block hits the ground first? Or is it a tie?
Explain.

FIGURE Q10.26
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27. You are much more likely to be injured if you fall on a con-
crete sidewalk than if you fall on a grassy field. Use energy
and work concepts to explain why thisis so.

Multiple-Choice Questions

28. | If youwalk upaflight of stairsat constant speed, gaining ver-
tical height h, thework doneonyou (thesystem, of massm) is
A. +mgh, by the normal force of the stairs.
B. —mgh, by the normal force of the stairs.
C. +mgh, by the gravitational force of the earth.
D. —mgh, by the gravitational force of the earth.

29. | Youandafriend each carry a 15 kg suitcase up two flights of
stairs, walking at a constant speed. Take each suitcaseto bethe
system. Suppose you carry your suitcase up the stairsin 30 s
while your friend takes 60 s. Which of thefollowing istrue?

A. You did more work, but both of you expended the same
power.

B. You did more work and expended more power.

C. Both of you did the same work, but you expended more
power.

D. Bothof youdidthesamework, but you expendedlesspower.

30

31.

32.

33.

. | Awoman usesapulley and aropeto raise a20 kg weight to
a height of 2 m. If it takes 4 s to do this, about how much
power is she supplying?

A.100W B. 200W C. 300w D. 400W

| A hockey puck sliding along frictionlessice with speed v to
the right collides with a horizontal spring and compresses it
by 2.0 cm before coming to a momentary stop. What will be
the spring’s maximum compression if the same puck hitsit at
aspeed of 2v?

A.20cm B. 28cm C. 40cm

D.56cm E. 80cm

[ A block slides down a smooth ramp and movesonto alevel,
rough surface at a speed of 2.0 m/s. It comes to rest after trav-
eling 1.0 m. At what distance from the base of the ramp was
the block moving at 1.0 m/s?

A.012m B. 025m C. 050m D. 0.75m

[ A wrecking ball is suspended from a 5.0-m-long cable that
makes a 30° angle with the vertical. The ball is released and
swings down. What is the ball’s speed at the lowest point?
A.77m/s B. 44m/s C. 36m/s D. 3.1m/s

PROBLEMS

Section 10.4 Work

1. | During an etiquette class, you walk slowly and steadily at
0.20 m/s for 2.5 m with a 0.75 kg book balanced on top of
your head. How much work does your head do on the book?

2. | A2.0kgbook islying on a0.75-m-high table. You pick it
up and place it on abookshelf 2.3 m above the floor.

a. How much work does gravity do on the book?
b. How much work does your hand do on the book?

3. | The two ropes seen in Figure P10.3 are used to lower a
255 kg piano exactly 5 m from a second-story window to the
ground. How much work is done by each of the three forces?

7 1295N 7 3%y
2
45 R
500N T, D 20
S
W T,
223N
FIGURE P10.3 FIGURE P10.4

4. ||| Thetwo ropesshown inthebird's-eyeview of Figure P10.4
are used to drag a crate exactly 3 m across the floor. How
much work is done by each of the ropes on the crate?

5. || a Attheairport, you ride a“moving sidewalk” that carries
you horizontally for 25 m at 0.70 m/s. Assuming that you
were moving at 0.70 m/s before stepping onto the mov-
ing sidewak and continue at 0.70 m/s afterward, how
much work does the moving sidewalk do on you? Your
massis 60 kg.

b. Anescalator carriesyou from onelevel to the next in the
airport terminal. The upper level is 4.5 m above the
lower level, and the length of the escalator is 7.0 m.

6

How much work does the up escalator do on you when
you rideit from the lower level to the upper level?
¢. How much work does the down escalator do on you
when you ride it from the upper level to the lower level ?
. | A boy flies akite with the string at a 30° angle to the hori-
zontal. The tension in the string is 4.5 N. How much work
does the string do on the boy if the boy
a standstill?
b. walksahorizontal distance of 11 m away from the kite?
c. waksahorizontal distance of 11 m toward the kite?

Section 10.5 Kinetic Energy

7

8.

9.

10.

11

12.

13.

. | Which has the larger kinetic energy, a 10 g bullet fired at
500 m/sor a10 kg bowling ball sliding at 10 m/s?

| At what speed does a 1000 kg compact car have the same
kinetic energy asa 20,000 kg truck going 25 km/hr?

[ Anoxygen atomisfour timesas massive asahelium atom.
In an experiment, ahelium atom and an oxygen atom have the
samekinetic energy. What istheratio v/ Vo of their speeds?

[I Sam’sjob at the amusement park isto slow down and bring
to astop theboatsin thelogride. If aboat and itsriders have a
mass of 1200 kg and the boat driftsin at 1.2 m/s, how much
work does Sam do to stop it?

[ A 20 g plastic ball is moving to the left at 30 m/s. How
much work must be done on the ball to cause it to moveto the
right at 30 m/s?

| The turntable in a microwave oven has a moment of inertia
of 0.040 kg - m? and is rotating once every 4.0 s. What isiits
kinetic energy?

| An energy storage system based on a flywheel (arotating
disk) can store a maximum of 4.0 MJ when the flywheel is
rotating at 20,000 revolutions per minute. What is the moment
of inertia of the flywheel ?



Section 10.6 Potential Energy

14. | Thelowest point in Death Valley is 85.0 m below sealevel.
The summit of nearby Mt. Whitney has an elevation of 4420
m. What is the change in gravitational potential energy of an
energetic 65.0 kg hiker who makes it from the floor of Death
Valley to the top of Mt. Whitney?
15. | a Whatisthekinetic energy of a1500 kg car traveling at a
speed of 30 m/s (=65 mph)?
b. From what height should the car be dropped to have this
sameamount of kinetic energy just beforeimpact?
c. Doesyour answer to part b depend on the car’s mass?
16. [ A boy reaches out of awindow and tosses a ball straight up
with a speed of 10 m/s. The ball is 20 m above the ground as
he releasesit. Use conservation of energy to find
a. Theball’s maximum height above the ground.
b. Theball’'s speed asit passes the window on itsway down.
¢. The speed of impact on the ground.
17. | a With what minimum speed must you toss a 100 g ball
straight up to just barely hit the 10-m-high ceiling of the
gymnasium if you release the ball 1.5 m above the
floor? Solve this problem using energy.
b. With what speed does the ball hit the floor?
18. | What minimum speed does a 100 g puck need to make it to
the top of africtionless ramp that is 3.0 m long and inclined
at 20°?
19. | A carisparked at the top of a 50-m-high hill. It slips out of
gear and rolls down the hill. How fast will it be going at the
bottom? (Ignore friction.)
20. | A pendulum is made by tying a 500 g ball to a 75-cm-long
string. The pendulum is pulled 30° to one side, then released.
a. What isthe ball’s speed at the lowest point of itstrajectory?
b. Towhat angle does the pendulum swing on the other side?
21. || A 1500 kg car is approaching the hill shown in Figure
P10.21 at 10 m/swhen it suddenly runs out of gas.
a Canthecar makeit to the top of the hill by coasting?
b. If your answer to () is yes, what is the car’s speed after
coasting down the other side?

FIGURE P10.21

22. | How much energy can be stored in a spring with a spring
constant of 500 N/mif its maximum possible stretchis20 cm?

23. | How far must you stretch a spring with k = 1000 N/m to
store 200 J of energy?

24. | A student places her 500 g physics book on a frictionless

table. She pushes the book against a spring, compressing the
spring by 4.00 cm, then rel eases the book. What is the book’s
speed asit slides away? The spring constant is 1250 N/m.

25. | A 10kgrunaway grocery cart runsinto a spring with spring

constant 250 N/m and compressesit by 60 cm. What was the
speed of the cart just beforeit hit the spring?

26. | Asal5,000 kg jet lands on an aircraft carrier, itstail hook

snagsacableto slow it down. The cableis attached to aspring
with spring constant 60,000 N/m. If the spring stretches 30 m
to stop the plane, what was the plane’s landing speed?

27. [l The elastic energy stored in your tendons can contribute up
to 35% of your energy needs when running. Sports scientists
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have studied the change in length of the knee extensor tendon
in sprinters and nonathletes. They find (on average) that the
sprinters’ tendons stretch 41 mm, while nonathletes’ stretch
only 33 mm. The spring constant for the tendon is the same
for both groups, 33 N/mm. What is the difference in maxi-
mum stored energy between the sprinters and the nonathl etes?
28. | You're driving at 35km/hr when the road suddenly
descends 15 m into a valley. You take your foot off the accel-
erator and coast down the hill. Just as you reach the bottom
you see the police officer hiding behind the speed limit sign
that reads “70 km/hr.” Are you going to get a speeding
ticket?
29. | Your friend’s Frisbee has become stuck 16 m above the
ground in atree. You want to dislodge the Frisbee by throwing
arock at it. The Frisbee is stuck pretty tight, so you figure the
rock needs to be traveling at least 5.0 m/s when it hits the
Frisbee. If you release the rock 2.0 m above the ground, with
what minimum speed must you throw it?

Section 10.7 Thermal Energy

30. | A 1500 kg car traveling at 20 m/s skidsto a halt.
a What energy transfers and transformations occur during
the skid?
b. What isthe changein the thermal energy of the car and the
road surface?
31. | A 20 kg child slides down a 3.0-m-high playground slide.
She starts from rest, and her speed at the bottom is 2.0 m/s.
a What energy transfers and transformations occur during
the dide?
b. What is the change in the thermal energy of the slide and
the seat of her pants?
32. || A fireman of mass 80 kg slides down a pole. When he
reaches the bottom, 4.2 m below his starting point, his speed
is2.2 m/s. By how much has thermal energy increased during
hisslide?

Section 10.9 Energy in Collisions

33. | A 50 g marble moving at 2.0 m/s strikes a 20 g marble at
rest. What is the speed of each marble immediately after the
collision? Assumethe collisionis perfectly elastic.

34. | Bal 1, with amass of 100 g and traveling at 10 m/s, col-
lides head-on with ball 2, which has a mass of 300 g and is
initially at rest. What are the final velocities of each ball if the
collision is (@) perfectly elastic? (b) perfectly inelastic?

35. | A protonistraveling totheright at 2.0 X 10" m/s. It hasa
head-on, perfectly elastic collision with a stationary carbon
atom. The mass of the carbon atom is 12 times the mass of the
proton. What are the speed and direction of each after the
collision?

36. | Two ballsundergo aperfectly elastic head-on collision, with
one ball initially at rest. If the incoming ball has a speed of
200 m/s, what are thefinal speed and direction of each ball if
a. theincoming ball is much more massive than the station-

ary ball?
b. the stationary ball is much more massive than the incom-
ing ball?

37. ||| Derive Equations 10.19 for the final speeds of two objects
undergoing a perfectly elastic collision, with one object ini-
tiadly stationary.
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on 10.10 Power

| a How much work does an elevator motor do to lift a
1000 kg elevator a height of 100 m?
b. How much power must the motor supply to do thisin
50 s at constant speed?
[ & How much work must you do to push a 10 kg block of
steel across a steel table at a steady speed of 1.0 m/sfor
3.0 s?The coefficient of kinetic friction for steel on steel
is0.60.
b. What isyour power output while doing so?

. | Which consumes more energy, a1.2 kW hair dryer used for

10 minor a10 W night light left on for 24 hr?

[I A 1000 kg sports car accelerates from 0 to 30 m/sin 10 s.
What is the average power of the engine?

I Tn just 0.30 s, you compress a spring (spring constant
5000 N/m), which is initialy at its equilibrium length, by
4.0 cm. What is your average power output?

. [Il 'n the winter sport of curling, players give a 20 kg stone a

push across a sheet of ice. A curler accelerates a stone to a

speed of 3.0 m/sover atimeof 2.0s.

a How much force doesthe curler exert on the stone?

b. What average power does the curler use to bring the stone
up to speed?

. [ll A 710 kg car drives at a constant speed of 23 m/s. It is sub-

ject to adrag force of 500 N. What power is required from the
car'sengineto drive the car

a. onlevel ground?

b. upahill with aslope of 2.0°?

[ Anelevator weighing 2500 N ascends at a constant speed of
8.0 m/s. How much power must the motor supply to do this?

eral Problems

[I' A 2.3 kg box, starting from rest, is pushed up aramp by a
10 N force paralel to the ramp. The ramp is 2.0 m long and
tilted at 17°. The speed of the box at the top of the ramp is
0.80 m/s. Consider the system to bethe box + ramp + earth.
a How much work W does the force do on the system?

b. What isthe change AK inthe kinetic energy of the system?
c. What is the change AUy in the gravitational potential

energy of the system?
d. What isthechange AE;, inthethermal energy of the system?

.| A 55 kg skateboarder

wants to just make it to the

upper edge of a “half-pipe” Vi

with a radius of 3.0 m, as

shown in Figure P10.47.

What speed v; does he need

at the bottom if heisto coast all the way up?

a. First do the calculation treating the skateboarder and board
as a point particle, with the entire mass nearly in contact
with the half-pipe.

b. Moreredlistically, the mass of the skateboarder in a deep
crouch might be thought of as concentrated 0.75 m from
the half-pipe. Assuming he remainsin that position all the
way up, what v; is needed to reach the upper edge ?

FIGURE P10.47

. || Fleas have remarkable jumping ability. If a 0.50 mg flea

jumpsstraight up, it will reach aheight of 40 cmif thereisnoair
resistance. Inreality, air resistancelimitstheheight to 20 cm.
a. What istheflea'skinetic energy asit leaves the ground?

49.

51.

52.

53.

b. At its highest point, what fraction of the initial kinetic
energy has been converted to potential energy?

[I' A marble slides without friction in avertical plane around

the inside of a smooth, 20-cm-diameter horizontal pipe. The

marble's speed at the bottom is 3.0 m/s; thisis fast enough so

that the marble makes a complete loop, never losing contact

with the pipe. What isits speed at the top?

. [l A 20 kg child is on a swing that hangs from 3.0-m-long

chains, as shown in Figure P10.50. What is her speed v; at the
bottom of the arc if she swings out to a 45° angle before
reversing direction?

FIGURE P10.50

FIGURE P10.51

| Supposeyou lift a20 kg box by aheight of 1.0 m.

a. How much work do you do in lifting the box?

Instead of lifting the box straight up, suppose you push it up a

1.0-m-high ramp that makes a 30° degree angle with the hori-

zontal, as shown in Figure P10.51. Being clever, you choose a

ramp with no friction.

b. How much force F isrequired to push the box straight up
the slope at a constant speed?

c. How long isthe ramp?

d. Use your force and distance results to calculate the work
you do in pushing the box up the ramp. How does this
compare to your answer to part a?

[ A cannon tilted up at a 30° angle fires a cannon ball at

80 m/sfrom atop a 10-m-high fortresswall. What isthe ball’s

impact speed on the ground below? Ignore air resistance.

[I' The sledder shown in Figure P10.53 starts from the top of a

frictionless hill and dides down into the valley. What initial

speed v; does the dedder need to just make it over the next hill?

FIGURE P10.53

. |I A 100 g granite cube slides down africtionless 40° incline.

At the bottom, just after it exits onto a horizontal table, the
granite collides with a 200 g steel cube at rest. How high
above the table should the granite cube be released to give the
steel cube a speed of 150 cm/s?

. || A 50 g ice cube can slide without friction up and down a

30° slope. Theice cube is pressed against a spring at the bot-
tom of the slope, compressing the spring 10 cm. The spring
constant is 25 N/m. When the ice cube is released, what dis-
tance will it travel up the slope beforereversing direction?

. [lll 'n a physics lab experiment, a spring clamped to the table

shootsa 20 g ball horizontally. When the spring is compressed
20 cm, the ball travels horizontally 5.0 m and lands on the
floor 1.5 m below the point at which it Ieft the spring. What is
the spring constant?
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| The desperate contestantson a TV survival show are very

hungry. The only food they can seeis some fruit hanging on a

branch high in atree. Fortunately, they have a spring they can

use to launch arock. The spring constant is 1000 N/m, and
they can compress the spring a maximum of 30 cm. All the

rocks on theisland seem to have amass of 400 g.

a. With what speed does the rock |eave the spring?

b. If the fruit hangs 15 m above the ground, will they feast or
go hungry?

| The maximum energy a bone can absorb without breaking

is surprisingly small. For a healthy human of mass 60 kg,

experimental data show that the leg bones can absorb about

200 J.

a. From what maximum height could a person jump and land
rigidly upright on both feet without breaking his legs?
Assumethat all the energy is absorbed in theleg bonesina
rigid landing.

b. Peoplejump from much greater heights than this; explain
how thisis possible.

Hint: Think about how people land when they jump from

greater heights.

59. [ In an amusement park water slide, people slide down an

essentially frictionlesstube. They drop 3.0 m and exit theslide,
moving horizontally, 1.2 m above aswimming pool. What hor-
izontal distance do they travel fromthe exit point beforehitting
thewater? Doesthe mass of the person make any difference?

. || The 5.0-m-long rope in

Figure P10.60 hangs verti-
cally from atreeright at the

edge of aravine. A woman 50m
wants to use the rope to
swing to the other side of the
ravine. She runs as fast as /¢ >~ 30m

she can, grabsthe rope, and

swingsout over theravine.

a. As she swings, what
energy conversion istaking place?

b. When she's directly over the far edge of the ravine, how
much higher is she than when she started?

c. Given your answersto parts aand b, how fast must she be
running when she grabs the rope in order to swing all the
way acrossthe ravine?

FIGURE P10.60

61. || You have been asked to design a“ballistic spring system”

to measure the speed of bullets. A bullet of mass mis fired
into ablock of mass M. The block, with the embedded bullet,
then slides across a frictionless table and collides with a hori-
zontal spring whose spring constant is k. The opposite end of
the spring is anchored to awall. The spring’s maximum com-
pression d is measured.

a Find an expression for the bullet’s initial speed vg in terms
of m, M, k, and d.

Hint: Thisis atwo-part problem. The bullet’s collision with

the block isan inelastic collision. What quantity is conserved

in an inelastic collision? Subsequently the block hits a spring
on africtionless surface. What quantity is conserved in this
collision?

b. What was the speed of a5.0 g bullet if the block’'s massis
2.0 kg and if the spring, with k = 50 N/m, was com-
pressed by 10 cm?

¢c. What fraction of the bullet's initial kinetic energy is
“lost”?Wheredid it go?

62.

65.

66.

67.
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[ A new event, shown in
Figure P10.62, has been
proposed for the Winter
Olympics. An athlete will
sprint 100 m, starting o/ W

from rest, then leap onto a
20 kg bobsled. The person  FIGURE P10.62
and bobsled will then slide down a 50-m-long ice-covered
ramp, sloped at 20°, and into a spring with a carefully cali-
brated spring constant of 2000 N/m. The athlete who com-
presses the spring the farthest wins the gold medal. Lisa,
whose mass is 40 kg, has been training for this event. She can
reach a maximum speed of 12 m/sin the 100 m dash.

a. How far will Lisacompressthe spring?

b. The Olympic committee has very exact specifications
about the shape and angle of the ramp. Isthis necessary? If
the committee asks your opinion, what factors about the
ramp will you tell them are important?

. I A 20 g ball isfired horizontally with initial speed v; toward

a 100 g ball that is hanging motionless from a 1.0-m-long
string. The balls undergo a head-on, perfectly elastic collision,
after which the 100 g ball swings out to a maximum angle
Omax = 50°. What wasv,?

. | A 70 kg human sprinter can accelerate from rest to 10 m/s

in 3.0 s. During the same interval, a 30 kg greyhound can

accelerate from rest to 20 m/s. Compute (@) the change in

kinetic energy and (b) the average power output for each.

| A 50g ball of clay traveling at speed v; hits and sticksto a

1.0 kg block sitting at rest on africtionless surface.

a. What isthe speed of the block after the collision?

b. Show that the mechanical energy is not conserved in this
collision. What percentage of the ball’s initial kinetic
energy is“lost”? Where did this kinetic energy go?

|| A package of mass mis released from rest at a warehouse

loading dock and slides down a 3.0-m-high frictionless chute

to awaiting truck. Unfortunately, the truck driver went on a

break without having removed the previous package, of mass

2m, from the bottom of the chute as shown in Figure P10.66.

a. Suppose the packages stick together. What is their com-
mon speed after the collision?

b. Suppose the collision between the packages is perfectly
elastic. To what height does the package of mass m
rebound?

o

DZm

FIGURE P10.66

Il A 50 kg sprinter, starting from rest, runs 50 min 7.0 s at

constant acceleration.

a What isthe magnitude of the horizontal force acting on the
sprinter?

b. What isthe sprinter’s average power output during thefirst
2.0sof hisrun?

¢c. What is the sprinter’'s average power output during the
find 2.0s?
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68. || Bob can throw a 500 g rock with a speed of 30 m/s. He
moves his hand forward 1.0 m while doing so.

a. How much force, assumed to be constant, does Bob apply
to therock?

b. How much work does Bob do on the rock?

69. [l A 2.0 hp electric motor on awater well pumps water from
10 m below the surface. The density of water is 1.0 kg per L.
How many liters of water can the motor pumpin 1 hr?

70. | The human heart has to pump the average adult’s 6.0 L of
blood through the body every minute. The heart must do work
to overcome frictional forces that resist the blood flow. The
average blood pressureis 1.3 X 10* N/m?.

a. Compute the work done moving the 6.0 L of blood com-
pletely through the body, assuming the blood pressure
awaystakesits average value.

b. What power output must the heart have to do thistask once
aminute?

Hint: When the heart contracts, it applies force to the blood.

Pressureisjust force/area, so we can writework = (pressure)

(area) (distance). But (area) (distance) is just the blood vol-

ume passing through the heart.

Passage Problems
Tennis Ball Testing

A tennis ball bouncing on a hard surface compresses and then
rebounds. The details of the rebound are specified in tennis regula-
tions. Tennis balls, to be acceptable for tournament play, must have
amass of 57.5 g. When dropped from a height of 2.5 m onto a con-
crete surface, a ball must rebound to a height of 1.4 m. During
impact, the ball compresses by approximately 6 mm.
71. | How fast isthe ball moving when it hits the concrete sur-
face? (Ignore air resistance.)
A.5m/s B. 7m/s C. 25m/s D. 50m/s
72. | If theball accelerates uniformly when it hitsthe floor, what is
its approximate acceleration as it comes to rest before
rebounding?
A. 1000m/s?> B. 2000 m/s*> C. 3000m/s’ D. 4000 m/s’

Stop to Think 10.1: D. Since the child slides at a constant speed,
his kinetic energy doesn’t change. But his gravitational potential
energy at the top of the slide decreases as he descends, and istrans-
formed into thermal energy in the slide and his bottom.

Stop to Think 10.2: C. W = Fdcos6. The 10 N force at 90° does
no work at all. cos60° = 3, so the 8 N force does less work than
the6 N force.

Stop to Think 10.3: B> D > A = C. K = (1/2)mv2 Using the
given masses and velocities, we find K, = 2.0J, Kz = 45,
Kc = 20 J, KD = 40 J.

Stop to Think 10.4: (Ug); > (Ug), = (Ug)s > (Uy),. Gravita-
tional potential energy depends only on height, not speed.

73. | Theball’s kinetic energy just after the bounce is less than
just before the bounce. In what form does this lost energy
end up?

A. Elastic potential energy

B. Gravitational potential energy
C. Thermal energy

D. Rotational kinetic energy

74. | By what percent doesthe kinetic energy decrease?
A. 35% B. 45% C. 55% D. 65%

75. | When a tennis ball bounces from a racket, the ball loses
approximately 30% of its kinetic energy to thermal energy. A
ball that hits a racket at a speed of 10 m/s will rebound with
approximately what speed?
A.85m/s B. 7.0m/s

C. 45m/s D. 3.0m/s

Work and Power in Cycling

When you ride a bicycle at constant speed, almost al of the energy
you expend goes into the work you do against the drag force of the
air. In this problem, assume that all of the energy expended goes
into working against drag. Aswe saw in Section 5.7, the drag force
on an object isapproximately proportional to the square of its speed
with respect to the air. For this problem, assume that F o v? exactly
and that the air is motionless with respect to the ground unless
noted otherwise. Suppose a cyclist and her bicycle have a com-
bined mass of 60 kg and sheiscycling along at aspeed of 5 m/s.
76. | If the drag force on the cyclist is 10 N, how much energy
doessheuseincycling 1 km?
A. 6kJ B. 10kJ C. 50kJ D. 100kJ
77. | Under these conditions, how much power does she expend
asshecycles?
A.10W B. 50W C. 100w D. 200W
78. | If she doubles her speed to 10 m/s, how much energy does
sheusein cycling 1 km?

A. 20kJ B. 40kJ C. 400kJ D. 400kJ

79. | How much power does she expend when cycling at that
speed?
A.100W  B. 200W C. 400W D. 1000W

80. | Upon reducing her speed back down to 5m/s, she hits a
headwind of 5 m/s. How much power is she expending now?
A.100W  B. 200W C. 500w D. 1000 W

Stop to Think 10.5: C. U, depends on x2, so doubling the com-
pression increases Ug by a factor of 4. All the potential energy is
converted to kinetic energy, so K increases by afactor of 4. But K
depends on v?, so v increases by only afactor of Va4 =2

Stop to Think 10.6: Pz > P, = P > Pp. The power hereisthe
rate at which each runner’sinternal chemical energy is converted
into gravitational potential energy. The change in gravitational
potential energy is mgAy, so the power is mgAy/At. For runner A,
the ratio mAy/At equal (80 kg) (10 m)/(10s) = 80kg - m/s. For
C, it'sthe same. For B, it's 100 kg - m/s, while for D theratio is
64 kg - m/s.



