
E
nergy. It’s a word you hear all the time. We use chemical energy to heat our
homes and bodies, electrical energy to run our lights and computers, and
solar energy to grow our crops and forests. We’re told to use energy wisely

and not to waste it. Athletes and weary students consume “energy bars” and
“energy drinks.”

But just what is energy? The concept of energy has grown and changed with
time, and it is not easy to define in a general way just what energy is. Rather than
starting with a formal definition, we’ll let the concept of energy expand slowly
over the course of several chapters. In this chapter we introduce several funda-
mental forms of energy, including kinetic energy, potential energy, and thermal
energy. Our goal is to understand the characteristics of energy, how energy is
used, and, especially important, how energy is transformed from one form to
another. For example, this pole vaulter, after years of training, has become extra-
ordinarily proficient at transforming his energy of motion into energy associated
with height from the ground.
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Looking Ahead  ��

The goal of Chapter 10 is to introduce
the concept of energy and learn a new
problem-solving strategy based on
conservation of energy. In this chapter
you will learn to:

� Understand some of the important
forms of energy, and how energy
can be transformed and
transferred.

� Understand what work is, and how
to calculate it.

� Understand and use the concepts
of kinetic, potential, and thermal
energy.

� Solve problems using the law of
conservation of energy.

� Apply these ideas to elastic
collisions.

Looking Back  ��

Part of our introduction to energy will
be based on the kinematics of
constant acceleration. In addition, we
will need ideas from rotational
motion.We will also use the before-
and-after pictorial representation
developed for impulse and
momentum problems. Please review

� Section 2.4 Constant-acceleration
kinematics.

� Section 7.5 Moment of inertia.
� Sections 9.2–9.3 Before-and-after

visual overviews and conservation
of momentum.

Using just a fast run-up and flexible pole,
how can a pole vaulter reach an
astonishing 6 m (20 ft) off the ground? 
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We’ll also discover a very powerful conservation law for energy. Some scien-
tists consider the law of conservation of energy to be the most important of all the
laws of nature. But all that in due time. First we have to start with the basic ideas.

10.1 A “Natural Money” Called Energy
We will start by discussing what seems to be a completely unrelated topic:
money. As you will discover, monetary systems have much in common with
energy. Let’s begin with a short story.

The Parable of the Lost Penny
John was a hard worker. His only source of income was the
paycheck he received each month. Even though most of
each paycheck had to be spent on basic necessities, John
managed to keep a respectable balance in his checking
account. He even saved enough to occasionally buy a few
savings bonds, his investment in the future.

John never cared much for pennies, so he kept a jar by the
door and dropped all his pennies into it at the end of each
day. Eventually, he reasoned, his saved pennies would be
worth taking to the bank and converting into crisp new dol-
lar bills.

John found it fascinating to keep track of these various
forms of money. He noticed, to his dismay, that the amount
of money in his checking account did not spontaneously
increase overnight. Furthermore, there seemed to be a defi-
nite correlation between the size of his paycheck and the
amount of money he had in the bank. So John decided to
embark on a systematic study of money.

He began, as would any good scientist, by using his ini-
tial observations to formulate a hypothesis, which he called
a model of the monetary system. He found that he could rep-
resent his monetary model with the flowchart in Figure 10.1.

John decided to call the sum total of assets his wealth:

John’s assets were, more or less, simply definitions. The
more interesting question, he thought, was how his wealth
depended on his income I and expenditures E. These repre-
sented money transferred to him by his employer and money
transferred by him to stores and bill collectors. After
painstakingly collecting and analyzing his data, John finally
determined that the relationship between monetary transfers
and wealth is

John interpreted this equation to mean that the change in his
wealth, was numerically equal to the net monetary
transfer 

During a week-long period when John stayed home sick,
isolated from the rest of the world, he had neither income
nor expenses. In grand confirmation of his hypothesis, he
found that his wealth at the end of the week was identical
to his wealth at the week’s beginning. That is, 
This occurred despite the fact that he had moved pennies
from his pocket to the jar and also, by telephone, had sold
some bonds and transferred the money to his checking
account. In other words, John found that he could make all
of the internal conversions of assets from one form to
another that he wanted, but his total wealth remained con-
stant as long as he was isolated from the
world. This seemed such a remarkable rule that John named
it the law of conservation of wealth.

One day, however, John added up his income and expend-
itures for the week, and the changes in his various assets,
and he was 1¢ off! Inexplicably, some money seemed to
have vanished. He was devastated. All those years of careful
research, and now it seemed that his monetary hypothesis
might not be true. Under some circumstances, yet to be dis-
covered, it looked like Off by a measly penny.
A wasted scientific life. . . .

But wait! In a flash of inspiration, John realized that per-
haps there were other types of assets, yet to be discovered,
and that his monetary hypothesis would still be valid if all
assets were included. Weeks went by as John, in frantic
activity, searched fruitlessly for previously hidden assets.
Then one day, as John lifted the cushion off the sofa to vac-

DW 2 I 2 E.

(W 5 constant)

Wf 5 Wi .Wi

Wf

I 2 E.
DW,

DW 5 I 2 E

W 5 L 1 S.

Liquid Assets L 5 cash-on-hand 1 checking account
Saved Assets S 5 stocks and bonds 1 pennies in jar

Total Wealth 5 W 5 L 1 S

There are two kinds of money within
the system. These can be transformed
back and forth without loss.

Expenditures E

Money into
system

Money out
of system

Income I

FIGURE 10.1 John’s model of the monetary system.

As the chart shows, John divided his money into two
basic types, liquid assets and saved assets. The liquid assets
L, which included his checking account and the cash in his
pockets, were moneys available for immediate use. His
saved assets S, which included his savings bonds as well as
the jar of pennies, had the potential to be converted into liq-
uid assets, but they were not available for immediate use.
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uum out the potato chip crumbs—lo and behold, there it
was!—the missing penny!

John raced to complete his theory, now including money
in the sofa, the washing machine, and behind the radiator as
previously unknown forms of assets that were easy to con-
vert from other forms, but often rather difficult to recover.

Other researchers soon discovered other types of assets, such
as the remarkable find of the “cash in the mattress.” To this
day, when all known assets are included, monetary scientists
have never found a violation of John’s simple hypothesis
that John was last seen sailing for Stockholm
to collect the Nobel Prize for his Theory of Wealth.

DW 5 I 2 E.

10.2 The Basic Energy Model
John, despite his diligent efforts, did not discover a law of nature. The monetary
system is a human construction that, by design, obeys John’s “laws.” Monetary
system laws, such as that you cannot print money in your basement, are enforced
by society, not by nature. But suppose that physical objects possessed a “natural
money” that was governed by a theory, or model, similar to John’s. An object
might have several forms of natural money that could be converted back and
forth, but the total amount of an object’s natural money would change only if nat-
ural money were transferred to or from the object. Two key words here, as in
John’s model, are transfer and change.

One of the greatest and most significant discoveries of science is that there is
such a “natural money” called energy. You have heard of some of the many
forms of energy, such as solar energy or nuclear energy, but others may be new to
you. These forms of energy can differ as much as a checking account differs from
loose change in the sofa. Much of our study is going to be focused on the
transformation of energy from one form to another. Much of modern technology
is concerned with transforming energy, such as changing the chemical energy of
oil molecules to electrical energy or to the kinetic energy of your car.

As we use energy concepts, we will be “accounting” for energy that is trans-
ferred in or out of a system or that is transformed from one form to another within
a system. Figure 10.2 shows a simple model of energy that is based on John’s
model of the monetary system. Many details must be added to this model, but it’s
a good starting point. The fact that nature “balances the books” for energy is one
of the most profound discoveries of science.

A major goal of ours is to discover the conditions under which energy is con-
served. Surprisingly, the law of conservation of energy was not recognized until
the mid-nineteenth century, long after Newton. The reason, similar to John’s lost
penny, was that it took scientists a long time to realize how many types of energy
there are and the various ways that energy can be converted from one form to
another. As you’ll soon learn, energy ideas go well beyond Newtonian mechanics
to include new concepts about heat, about chemical energy, and about the energy
of the individual atoms and molecules that comprise an object. All of these forms
of energy will ultimately have to be included in our accounting scheme for energy.

Systems and Energy
In Chapter 9 we introduced the idea of a system of interacting objects. A system
can be quite simple, such as a saltshaker sliding across the table, or much more
complex, such as a city or a human body. But whether simple or complex, every
system in nature has associated with it a quantity we call its total energy E.
Like John’s total wealth, which was made up of assets of many kinds, the total
energy of a system is made up of many kinds of energies. In the table below, we
give a brief overview of some of the more important forms of energy; in the rest
of the chapter we’ll look at several of these forms of energy in much greater
detail.

Readily available energy K
Stored energy U

Hard-to-recover energy Eth

Total energy E 5 K 1 U 1 Eth

Energy out of system

Energy into system

There are several kinds of energy
within the system. These can
be transformed back and forth
without loss.

FIGURE 10.2 An initial model of energy.
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A system may have many of these kinds of energy present in it at once. For
instance, a moving car has kinetic energy of motion, chemical energy stored in its
gasoline, thermal energy in its hot engine, and other forms of energy in its many
other parts. The total energy of the system, E, is just the sum of the different ener-
gies present in the system, so that we have

(10.1)

The energies shown in this sum are the forms of energy in which we’ll be most
interested in this and the next chapter. The ellipses (. . .) represent other forms of
energy, such as nuclear or electric, that also might be present. We’ll treat these
and others in later chapters.

Energy Transformations
We’ve seen that all systems contain energy in many different forms. But if the
amounts of each form of energy never changed, the world would be a very dull
place. What makes the world interesting is that energy of one kind can trans-

E 5 K 1 Ug 1 Us 1 Eth 1 Echem 1 c

Some important forms of energy

Kinetic energy K Gravitational potential energy Elastic or spring potential energy UsUg

Kinetic energy is the energy of motion. All
moving objects have kinetic energy. The
heavier an object, and the faster it moves,
the more kinetic energy it has. The wreck-
ing ball in this picture is effective in part
because of its large kinetic energy.

Gravitational potential energy is stored
energy associated with an object’s height
above the ground. As this roller coaster
ascends the track, energy is stored as
increased gravitational potential energy.
As it descends, this stored energy is con-
verted into kinetic energy.

Elastic potential energy is energy stored
when a spring or other elastic object, such
as this archer’s bow, is stretched. This
energy can later be transformed into the
kinetic energy of the arrow. We’ll some-
times use the symbol U to represent poten-
tial energy when it is not important to
distinguish between and Us .Ug

Hot objects have more thermal energy than
cold ones because the molecules in a hot
object jiggle around more than those in a
cold object. Thermal energy is really just the
sum of the microscopic kinetic and potential
energies of all the molecules in an object. In
boiling water, some molecules have enough
energy to escape the water as steam.

Electric forces cause atoms to bind
together to make molecules. Energy can be
stored in these bonds, energy that can later
be released as the bonds are rearranged
during chemical reactions. When we burn
fuel to run our car, or eat food to power our
bodies, we are using chemical energy.

An enormous amount of energy is stored in
the nucleus, the tiny core of an atom. Cer-
tain nuclei can be made to break apart,
releasing some of this nuclear energy,
which is transformed into the kinetic
energy of the fragments and then into ther-
mal energy. This is the source of energy of
nuclear power plants and nuclear weapons.

Thermal energy Chemical energy Nuclear energy EnuclearEchemEth
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Figure 10.3 reinforces the idea that energy transformations are changes of
energy within the system from one form to another. Note that it is easy to con-
vert kinetic, potential, or chemical energies into thermal energy. But converting
thermal energy back into these other forms is not so easy. How it can be done, and
what possible limitations there might be in doing so, will form a large part of the
next chapter.

Energy Transfers: Work and Heat
We’ve just seen that energy transformations occur between forms of energy
within a system. In our monetary model, these transformations are like John’s
shifting of money between his own various assets, such as from his savings

Echem

Eth

E 5 K 1 U 1 Eth 1 Echem 1 . . .

K U

Environment

System

FIGURE 10.3 Energy transformations
occur within the system.

Some energy transformations

A weightlifter lifts a barbell over her head
The barbell has much more gravitational potential energy when high above her head than
when on the floor. To lift the barbell, she is transforming chemical energy in her body into
gravitational potential energy of the barbell.

A base runner slides into the base
When running, he has lots of kinetic energy. After sliding, he has none. His kinetic energy
is transformed mainly into thermal energy: the ground and his legs are slightly warmer.

A burning campfire
The wood contains considerable chemical energy. When the carbon in the wood combines
chemically with oxygen in the air, this chemical energy is transformed largely into thermal
energy of the hot gases and embers.

A springboard diver
Here’s a two-step energy transformation. The picture shows the diver after his first jump
onto the board itself. At the instant shown, the board is flexed to its maximum extent.
There is a large amount of elastic potential energy stored in the board. Soon this energy
will begin to be transformed into kinetic energy; as he rises into the air and slows, this
kinetic energy will be transformed into gravitational potential energy.

Us S K S Ug

Echem S Eth

K S Eth

Echem S Ug

form into energy of another kind. The gravitational potential energy of the roller
coaster at the top of the track is rapidly converted into kinetic energy as the
coaster descends; the chemical energy of gasoline is converted into the kinetic
energy of your moving car. The following table illustrates a few common energy
transformations. In this table, we’ll use an arrow as a shorthand way of repre-
senting an energy transformation.

S
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account to stocks. But John also interacted with the greater world around him,
receiving money as income and outlaying it as expenditures. Every physical sys-
tem also interacts with the world around it, that is, with its environment. In the
course of these interactions, the system can exchange energy with the environ-
ment. An exchange of energy between system and environment is called an
energy transfer. There are two primary energy transfer processes: work, the
mechanical transfer of energy to or from a system by pushing or pulling on it, and
heat, the nonmechanical transfer of energy from the environment to the system
(or vice versa) because of a temperature difference between the two. Figure 10.4
shows how our energy model is modified to include energy transfers. In this
chapter we’ll focus mainly on work; the concept of heat will be developed much
further in Chapters 11 and 12.

Work is a common word in the English language, with many meanings. When
you first think of work, you probably think of the first two definitions in this list.
After all, we talk about “working out,” or we say, “I just got home from work.”
But that is not what work means in physics.

In physics we use work in the sense of definition 6: Work is the process of
transferring energy from the environment to a system, or from a system to the
environment, by the application of mechanical forces—pushes and pulls—to the
system. Once the energy has been transferred to the system, it can appear in many
forms. Exactly what form it takes depends on the details of the system and how
the forces are applied. The table below gives a few examples of energy transfers
due to work. We use W as the symbol for work.

Notice that in each example above, the environment applies a force while the
system undergoes a displacement. Energy is transferred as work only when the
system moves while the force acts. A force applied to a stationary object, such as
when you push against a wall, transfers no energy to the object and thus does no
work.

NOTE � In the table above, energy is being transferred from the athlete to the
shot by the force of his hand. We say he “does work” on the shot, or “work is
done” by the force of his hand. �

The system: The shot. The system: The match and matchbox. The system: The slingshot.

The environment: The athlete. The environment: The hand. The environment: The boy.

As the athlete pushes on the shot to get it
moving, he is doing work on the system.
That is, he is transferring energy from him-
self to the ball. The energy transferred to the
system appears as kinetic energy.

The transfer: W S K

As the hand quickly pulls the match across
the box, the hand does work on the system,
increasing its thermal energy. The match-
head becomes hot enough to ignite.

The transfer: W S Eth

As the boy pulls back on the elastic bands,
he does work on the system, increasing its
elastic potential energy.

The transfer: W S Us

Echem

Eth

K U

Environment

Work,
heat

System
Energy is transferred 
from the environment 
to the system.

Energy is transferred 
from the system to 
the environment.

FIGURE 10.4 Work and heat are energy
transfers into and out of the system.

Putting a shot Striking a match Firing a slingshot

One dictionary defines work as:

1. Physical or mental effort; labor.

2. The activity by which one makes a living.

3. A task or duty.

4. Something produced as a result of
effort, such as a work of art.

5. Plural works: The essential or operating
parts of a mechanism.

6. The transfer of energy to a body by
application of a force.

Energy transfers: work
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It is also possible to convert work into gravitational potential, electric, or even
chemical energy. We’ll have much more to say about work in the next section.
But the key points to remember are that work is the transfer of energy to or
from a system by the application of forces, and that the system must undergo a
displacement for this energy to be transferred.

There is a second, nonmechanical means of transferring energy between a sys-
tem and its environment, which we discuss here only briefly. As mentioned
before, we’ll have much more to say about heat in the next two chapters. When a
hot object is placed in contact with a cooler one, energy flows naturally from the
hot object to the cool one. The transfer of energy from a hot to a cold object is
called heat, and it is given the symbol Q. It is important to note that heat is not an
energy of a system, as are kinetic energy and chemical energy. Rather, heat is
energy transferred between two systems.

10.3 The Law of Conservation of Energy
Remember that when John was isolated from the rest of the world—having nei-
ther income nor expenses—his internal wealth could be converted between its
many forms, but his total wealth remained constant. A similar but much more
fundamental law is found for the “natural money” of energy.

Let’s start our study of this law by considering an isolated system that is sepa-
rated from its surrounding environment in such a way that no energy can flow
into or out of the system. This means that no work is done on the system, nor is
any energy transferred as heat. We’ve already seen that the total energy of a sys-
tem is made up of many forms of energy that are continually transforming from
one kind to another. It is a deep and remarkable fact of nature that during these
transformations, the total energy of an isolated system—the sum of all of the indi-
vidual kinds of energy—remains constant. Any increase in, say, the system’s
kinetic energy must be accompanied by a decrease in its potential or thermal ener-
gies so that the total energy remains unchanged, as shown in Figure 10.5. We say
that the total energy of an isolated system is conserved, giving us the following
law of conservation of energy.

Law of conservation of energy for an isolated system The total energy of
an isolated system remains constant:

(10.2)

Another way to think of this conservation law is in terms of energy changes.
Recall that we denote the change in a quantity by the symbol so we write the
change in a system’s kinetic energy, for instance, as Now suppose that an iso-
lated system has its kinetic energy change by its gravitational potential
energy by and so on. Then the sum of these changes is the change in the total
energy. But since the total energy is constant, its change is zero. We can thus write
the law of conservation of energy in an alternate form as

DUg ,
DK,

DK.
D,

The energies in the system are constantly 
transforming from one kind to another . . .

. . . but their sum is a constant: 
it doesn’t change.

K 1 Ug 1 Us 1 Eth 1 Echem 1 . . . 5 E 5 constant

As the hand in the photo was held
against the wall, heat was transferred
from the warm hand to the cool wall,
warming up the wall.The warm
“handprint” can be imaged using a
special camera sensitive to the
temperature of objects.

A child slides down a playground slide at constant speed.
The energy transformation is

A. B. C. D. E. K S EthUg S EthW S KK S UgUg S K

STOP TO THINK 10.1

Echem

Eth

E 5 K 1 U 1 Eth 1 Echem 1 . . .
5 constant

K U

Environment

System

The system is 
isolated from the 
environment.

Energy can still be 
transformed within 
the system.

The system’s total 
energy E is conserved. 

FIGURE 10.5 An isolated system.
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Law of conservation of energy for an isolated system (alternate form)
The change in the total energy of an isolated system is zero:

(10.3)

Any increase in one form of energy must be accompanied by a decrease in other
forms, so that the total change is zero.

The law of conservation of energy sets a fundamental constraint on those
processes that can occur in nature. In any process that occurs within an isolated
system, the changes in each form of energy must add up to zero, as required by
Equation 10.3.

DE 5 DK 1 DUg 1 DUs 1 DEth 1 DEchem 1 c5 0

CONCEPTUAL EXAMPLE 10.1 Energy changes 
in a bungee ride
A popular fair attraction is
the trampoline bungee ride.
The rider bounces up and
down on large bungee cords.
During part of her motion
she is found to be moving
upward with the cords be-
coming more stretched. Is
she speeding up or slowing
down during this interval?

REASON We’ll take our sys-
tem to include the rider, the
bungee cords, and the earth.
We’ll see later how gravita-
tional potential energy is stored in the system consisting of the
earth and an object such as the rider. With this choice of system,

to a good approximation the system is isolated, with no energy
being transferred into or out of the system. Thus the total energy
of the system is constant: 

Because she’s moving upward, her height is increasing—
and thus so is her gravitational potential energy. Thus 
We also know that the cords are getting more stretched, hence
more elastic potential energy is being stored. Thus as
well. Now the law of conservation of energy, Equation 10.3,
states that so that 

Both and are positive, so must be
negative. This means that her kinetic energy is decreasing.
Since kinetic energy is energy of motion, this means that she’s
slowing down.

ASSESS In that part of her motion where she’s moving upward
and the cords are stretching, she’s approaching the highest point
of her motion. It makes sense that she’s slowing down here,
since at the high point her speed is instantaneously zero.

DKDUsDUg2(DUg 1 DUs).
DK 5DE 5 DK 1 DUg 1 DUs 5 0,

DUs . 0

DUg . 0.

DE 5 0.

Systems That Aren’t Isolated
When John had income and expenses, his total wealth could change. Indeed, he
found that his wealth increased by exactly the amount of his income, and
decreased by exactly the amount of his expenditures. Similarly, if a system is not
isolated, so that it can exchange energy with its environment, the system’s energy
can change. We have seen that the two primary means of energy exchange are
work and heat. If an amount of work W is done on the system, this means that an
amount of energy W is transferred from the environment to the system, increasing
the system’s energy by exactly W. Similarly, if a certain amount of energy is
transferred from a hot environment to a cooler system as heat Q, the system’s
energy will increase by exactly the amount Q. As illustrated in Figure 10.6, the
change in the system’s energy is simply the sum of the work done on the sys-
tem and the heat transferred to the system:

This gives us a more general statement of conservation of energy:

Law of conservation of energy including energy transfers The change in
the total energy of a nonisolated system is equal to the energy transferred into
or out of the system as work W or heat Q:

(10.4)DK 1 DUg 1 DUs 1 DEth 1 DEchem 1 c5 W 1 Q

DE 5 W 1 Q

Environment

Work W
Heat Q

System
Total

energy E
DE 5 W 1 Q

Energy is transferred to 
or from the system as 
work and heat.

The change in the system’s 
energy equals the amount of 
work done or heat transferred.

FIGURE 10.6 The law of conservation of
energy.
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Equation 10.4 is the fullest expression of the law of conservation of energy. It’s
usually called the first law of thermodynamics, but it’s really just a restatement of
the law of conservation of energy to include the possibility of energy transfers. In
this chapter we’ll refer to it simply as the law of conservation of energy.

NOTE � It’s important to realize that even when the system is not isolated,
energy is conserved overall. The energy transferred to the system as, say, work
increases the energy of the system. But this energy is removed from the environ-
ment, so that the total energy of system plus environment is still conserved. �

Systems and Conservation of Energy
To apply the law of conservation of energy, you need to carefully define which
objects make up the system and which belong to the environment. This choice
will affect how we analyze the various energy transfers and tranformations
that occur. In doing so, we need to make a distinction between two classes of
forces. Internal forces are forces between objects within the system. If a
weightlifter and barbell are both part of the system, the forces
and are both internal forces. Internal forces are responsible for
energy transformations within the system. Because they are internal to the sys-
tem, however, internal forces cannot do work on the system and thereby
change its energy. External forces act on the system, but their agent is part of
the environment. External forces can do work on the system, transferring
energy in or out of it. Whether a given force is an internal or external force
depends on the choice of what’s included in the system. The following table
shows some choices for a crane accelerating a heavy ball upward.

F
r

barbell on weightlifter

F
r

weightlifter on barbell

Airplanes are assisted in takeoff from
aircraft carriers by a steam-powered
catapult under the flight deck.The force
of this catapult does work on the
plane, leading to a large increase in
the plane’s kinetic energy.

DK
W

Different choices of the system

System: The ball only

Internal forces: None many internal forces of crane

External forces: None

System energies: K K, K, EchemUg ,Ug

T
r

wrT
r

,

wr ,T
r

,wr
Ball 1 earth 1 craneBall 1 earth

Energy analysis: Tension does positive
work and the weight does negative work,
but since the net work is positive.
This work serves to increase the only
energy of the system, its kinetic energy.
Notice that since the earth is not part of
the system, the system has no gravitational
potential energy.

T . w

The weight force is now an internal force.
That is, it is an interaction force between
two objects—the ball and the earth—that
are part of the system. The tension force is
still an external force that does work on the
system. This work increases the gravita-
tional potential energy and the kinetic
energy of the system.

Now all the forces are internal, and no
work is done on the system: The system is
isolated. With this choice of system, the
increased potential and kinetic energy of
the ball come from an energy transforma-
tion from the chemical energy of the
crane’s fuel.

Energy equation: DK 1 DUg 1 DEchem 5 0DK 1 DUg 5 WDK 5 W

Both these forces are 
due to the environment: 
They are external forces 
that do work.

Tension T
"

Weight w
"

System
boundary

ar

T is still an external 
force, but now w is 
internal.

Weight w
"

T
"

"

"

arar

Earth

All forces are 
now internal. 
The system is 
isolated.

T
"

Many other
internal forces
of crane

ar
w

"

There are evidently many possible choices of the system for a given situation.
However, certain choices can make problem solving using the law of energy con-
servation easier. For the crane above, we’d probably choose the second system
consisting of the ball and the earth, since it is a good balance between reducing
the number of external forces and having only simple system energies such as K
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and The third choice would be hard to work with, since the many complicated
internal forces are difficult to calculate. Tactics Box 10.1 gives some suggestions
on how to make a good choice for the system.

TACTICS BOX 10.1 Choosing the system for Exercise 6
conservation-of-energy problems

The system should include all of the objects identified as follows:

●1 If the speed of an object or objects is changing, the system should
include these moving objects because their kinetic energy is changing.

●2 If the height of an object or objects is changing, the system should include
the raised object(s) plus the earth. This is because potential energy is
stored via the gravitational interaction of the earth and object(s).

●3 If the compression or extension of a spring is changing, the system
should include the spring because elastic potential energy is stored in the
spring itself.

●4 If kinetic or rolling friction is present, the system should include the
moving object and the surface on which it slides or rolls. This is because
thermal energy is created in both the moving object and the surface, and
we want this thermal energy to all be within the system.

Working with Energy Transformations
The law of conservation of energy applies to every form of energy, from kinetic to
chemical to nuclear. For the rest of this chapter, however, we’ll narrow our focus
a bit and only concern ourselves with the forms of energy typically transformed
during the motion of ordinary objects. These energies are the kinetic energy K, the
potential energy U (which includes both and and thermal energy The
sum of the kinetic and potential energy, is called the
mechanical energy of the system. We’ll also limit our analysis to energy trans-
fers in the form of work W. In Chapter 11 we’ll expand our scope to include other
forms of energy listed in the earlier table, as well as energy transfers as heat Q.

The fact that energy is conserved can be a powerful tool for analyzing the
dynamics of moving objects. To see how we can apply the law of conservation of
energy to dynamics problems, let’s use the fact that the change in any quantity is
its final value minus its initial value so that, for example, Then
we can write the law of conservation of energy, Equation 10.4 (with as

(10.5)

NOTE � We don’t rewrite as because the initial thermal
energy of an object is typically unknown. Only the change in can be
measured. �

Rearranging, we have

(10.6)

Eth

(Eth)f 2 (Eth)iDEth

(Kf 2 Ki) 1 (Uf 2 Ui) 1 DEth 5 W

Q 5 0),
DK 5 Kf 2 Ki .

K 1 U 5 K 1 Ug 1 Us ,
Eth.Us),Ug

Ug .

The initial energy 
of the system…

…plus the energy transferred to 
the system as work…

…equals the final system energy, now 
possibly including extra thermal energy.

Ki 1 Ui 1 W 5 Kf 1 Uf 1 DEth
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If no external forces do work on the system, in Equation 10.6 and the sys-
tem is isolated. If no kinetic friction is present, will be zero and mechanical
energy will be conserved. Equation 10.6 then becomes the law of conservation
of mechanical energy:

(10.7)

Equations 10.6 and 10.7 summarize what we have learned about the conservation
of energy, and they will be the basis of our strategy for solving problems using the
law of conservation of energy. Much of the rest of this chapter will be concerned
with finding quantitative expressions for the different forms of energy in the sys-
tem and discussing the important question of what to include in the system. We’ll
use the following Problem-Solving Strategy as we further develop these ideas.

Conservation of energy problems

PREPARE Choose what to include in your system (see Tactics Box 10.1).
Draw a before-and-after visual overview, as outlined in Tactics Box 9.1.
Note known quantities, and determine what quantity you’re trying to find.
If the system is isolated and if there is no friction, your solution will be
based on Equation 10.7, otherwise you should use Equation 10.6.

Identify which mechanical energies in the system are changing:

■ If the speed of the object is changing, include and in your solution.
■ If the height of the object is changing, include and 
■ If the length of a spring is changing, include and 
■ If kinetic friction is present, will be positive. Some kinetic or poten-

tial energy will be transformed into thermal energy.

If an external force acts on the system, you’ll need to include the work W
done by this force in Equation 10.6.

SOLVE Depending on the problem, you’ll need to calculate initial and/or
final values of these energies and insert them into Equation 10.6 or 10.7.
Then you can solve for the unknown energies, and from these any unknown
speeds (from K ), positions (from U), or displacements or forces (from W).

ASSESS Check the signs of your energies. Kinetic energy, as we’ll see, is
always positive. In the systems we’ll study in this chapter, thermal energy
can only increase, so that its change is positive. In Chapters 11 and 12 we’ll
study systems for which the thermal energy can decrease.

10.4 Work
We’ve already discussed work as the transfer of energy between a system and its
environment by the application of forces on the system. We also noted that in order
for energy to be transferred in this way, the system must undergo a displacement—
it must move—during the time that the force is applied. Let’s further investigate
the relationship between work, force, and displacement. We’ll find that there is a
simple expression for work, which we can then use to quantify other kinds of
energy as well.

DEth

(Us)f .(Us)i

(Ug)f .(Ug)i

KfKi

PROBLEM-SOLVING

STRATEGY 10.1

Ki 1 Ui 5 Kf 1 Uf

DEth

W 5 0

Spring into action A locust can jump
as far as one meter, an impressive distance
for such a small animal. To make such a
jump, its legs must extend much more
rapidly than muscles can ordinarily contract.
Thus, instead of using its muscles to make
the jump directly, the locust uses them to
more slowly stretch an internal “spring” near
its knee joint. This stores elastic potential
energy in the spring. When the muscles
relax, the spring is suddenly released, and its
energy is rapidly converted into kinetic
energy of the insect.
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Consider a system consisting of a windsurfer at rest, as shown on the left in
Figure 10.7. Let’s assume that there is no friction between his board and the
water. Initially the system has no kinetic energy. But if a force from outside the
system, such as the force due to the wind, begins to act on the system, the surfer
will begin to speed up, and his kinetic energy will increase. In terms of energy
transfers, we would say that the energy of the system has increased because of the
work done on the system by the force of the wind.

What determines how much work is done by the force of the wind? First, we
note that the greater the distance over which the wind pushes the surfer, the faster
the surfer goes, and the more his kinetic energy increases. This implies a greater
transfer of energy. So the larger the displacement, the greater the work done.
Second, if the wind pushes with a stronger force, the surfer speeds up more
rapidly, and the change in his kinetic energy is greater than with a weaker force.
The stronger the force, the greater the work done.

This experiment suggests that the amount of energy transferred into a system by
a force —that is, the amount of work done by —depends on both the magnitude
F of the force and the displacement d of the system. Many experiments of this kind
have established that the amount of work done by is proportional to both F and d.
For the simplest case described above, where the force is constant and points in
the direction of the object’s displacement, the expression for the work done is
found to be

(10.8)

Work done by a constant force 
in the direction of a displacement 

The unit of work, that of force multiplied by distance, is This unit is so
important that it has been given its own name, the joule (rhymes with tool). We
define:

Since work is simply energy being transferred, the joule is the unit of all forms
of energy. Note that work is a scalar quantity.

1 joule 5 1 J 5 1 N # m

N # m.

d
r

F
r

W 5 Fd

F
r

F
r

F
r

F
r

d
"

v 5 0
" "

vr

The system’s kinetic 
energy increases 
and the boarder 

speeds up.

The force of the wind F 
does work on the system. 

"

F
"

FIGURE 10.7 The force of the wind does
work on the system, increasing its kinetic
energy K.

EXAMPLE 10.1 Work done in pushing a crate
Sarah pushes a heavy crate 3.0 m along the floor at a constant
speed. She pushes with a constant horizontal force of magni-
tude 70 N. How much work does Sarah do on the crate?

PREPARE We begin with the visual overview in Figure 10.8.
Sarah pushes with a constant force in the direction of the crate’s
motion, so we can use Equation 10.8 to find the work done.

d
"

vr

F
" Known

F 
d 
v 

5 70 N
5 3.0 m
5 constant

Find
WBefore After

FIGURE 10.8 Sarah pushing a crate.

SOLVE The work done by Sarah is given by

ASSESS Since the crate moves at a constant speed, it must be in
dynamic equilibrium with This means that a friction
force (not shown) must act opposite to Sarah’s push. If friction
is present, Tactics Box 10.1 suggests taking the crate and the
floor as the system. The work Sarah does represents energy
transferred into the system. In this case, the work increases the
thermal energy in the crate and the part of the floor along which
it slid. Contrast this with the windsurfer, where work increased
the windsurfer’s kinetic energy. Both situations are consistent
with the energy model shown in Figure 10.4, which you should
review at this point.

F
r

net 5 0
r

.

W 5 Fd 5 (70 N)(3.0 m) 5 210 J

LINEAR
p. 38
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Force at an Angle to the Displacement
Pushing a crate in the same direction as the crate’s displacement is the most effi-
cient way to transfer energy into the system, and so the largest possible amount of
work is done. Less work is done if the force acts at an angle to the displacement.
To see this, consider the kite buggy of Figure 10.9a, pulled along a horizontal
path by the angled force of the kite string As shown in Figure 10.9b, we can
break into a component perpendicular to the motion, and a component 
parallel to the motion. Only the parallel component acts to accelerate the rider and
increase his kinetic energy, so only the parallel component does work on the rider.
From Figure 10.9b, we see that if the angle between and the displacement is 
then the parallel component is So when the force acts at an angle 
to the direction of the displacement, we have

(10.9)

Work done by a constant force at an angle to the displacement 

Notice that this more general definition of work agrees with Equation 10.8 if
u 5 0°.

d
r
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r

W 5 Fi  d 5 Fd cos u

uFi 5 F cos u.
u,F
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FiF'F
r
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"

d
"

u 5 180°

FIGURE 10.10 The force acting on a drag racer.

Tactics Box 10.2 shows how to calculate the work done by a force at any angle
to the direction of motion. The system illustrated is a block sliding on a friction-
less horizontal surface, so that only the kinetic energy is changing. However, the
same relationships hold for any object undergoing a displacement.

The quantities F and d are always positive, so the sign of W is determined
entirely by the angle between the force and the displacement. Note thatu

u 

d
"

F
"

F
"

The rider undergoes a 
displacement d.

"

The component of F parallel to the 
displacement accelerates the rider.

"

The component of F perpendicular to the 
displacement only pulls up on the rider. 
It doesn’t accelerate him.

"

u 

F
'

Fi 5 F cos u

(b)

(a)

FIGURE 10.9 Finding the work done when
the force is at an angle to the
displacement.

ASSESS Applying Equation 10.4, the law of conservation of energy, to this situation,
we have

because the only system energy that changes is the racer’s kinetic energy K. Since
the kinetic energy is decreasing, its change is negative. This agrees with the sign
of W. This example illustrates the general principle that negative work represents a
transfer of energy out of the system.

DK

DK 5 W

CONCEPTUAL EXAMPLE 10.2 Work done by a parachute
A drag racer is slowed by a parachute. What
is the sign of the work done?

REASON The drag force on the drag racer is
shown in Figure 10.10, along with the drag-
ster’s displacement as it slows. The force
points in the opposite direction to the dis-
placement, so that the angle in Equation 10.9 is Then 

Since F and d in Equation 10.9 are magnitudes, and hence positive, this means
that the work done by the drag force is negative.W 5 Fd cos u 5 2Fd
21.

cos u 5 cos(180°) 5180°.u

5.1
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TACTICS BOX 10.2 Calculating the work done by a constant force Exercises 9,11,12

Direction of force Angles and 
relative to displacement work done Sign of W Energy transfer

The force is in the direction of motion. The 
block has its greatest positive acceleration. K
increases the most:

Maximum energy transfer to system.

The component of force parallel to the 
displacement is less than F. The block has a
smaller positive acceleration. K increases less:

Moderate energy transfer to system.

0 There is no component of force in direction of  
motion.The block moves at constant speed. No 
change in K:

No energy transferred.

The component of force parallel to the 
displacement is opposite to the motion. The 
block slows down, and K decreases:

Moderate energy transfer out of system.

The force is directly opposite to the motion. The
block has it greatest deceleration. K decreases 
the most.

Maximum energy transfer out of system.
W 5 2Fd

cos u 5 21

2u 5 180°

W 5 Fd cos u

2u . 90°

W 5 0

cos u 5 0

u 5 90°

W 5 Fd cos u

1u , 90°

W 5 Fd

cos u 5 1

1u 5 0°

EXAMPLE 10.2 Work done in pulling a suitcase
A strap inclined upward at a angle pulls a suitcase through
the airport. The tension in the strap is 20 N. How much work does
the tension do if the suitcase is pulled 100 m at a constant speed?

PREPARE Figure 10.11 shows a visual overview. Since the case
moves at a constant speed, there must be a rolling friction force
acting to the left. Tactics Box 10.1 suggests in this case that we
take as our system the suitcase and the floor upon which it rolls.

SOLVE We can use Equation 10.9 to find that the tension does
work

ASSESS Because a person is pulling on the other end of the
strap, causing the tension, we would say informally that the per-
son does 1400 J of work on the suitcase. This work represents

W 5 Td cos u 5 (20 N)(100 m) cos  45° 5 1400 J

45°

energy transferred into the system. Since the suit-
case moves at a constant speed, the system’s kinetic energy
doesn’t change. Thus the work goes entirely into increasing the
thermal energy of the suitcase and the floor.Eth

suitcase/floor

FIGURE 10.11 A suitcase pulled by a strap.

Equation 10.9, is valid for any angle In three special cases,
and however, there are simple versions of Equa-

tion 10.9 that you can use. These are noted in Tactics Box 10.2.
u 5 180°, u 5 90°,u 5 0°,

u.W 5 Fd cos u,

F
"d

"
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If several forces act on an object that undergoes a displacement, each does work
on the object. The total (or net) work is the sum of the work done by each
force. The total work represents the total energy transfer to the system from the
environment (if or from the system to the environment (if

Forces That Do No Work
The fact that a force acts on an object doesn’t mean that the force will do work on
the object. The table below shows three common cases where a force does no
work.

Wtotal , 0).Wtotal . 0)

Wtotal
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Forces that do no work

If the object undergoes no displacement
while the force acts, no work is done.

This can sometimes seem counterintuitive.
The weightlifter struggles mightily to hold
the barbell over his head. But during the
time the barbell remains stationary, he does
no work on it because its displacement is
zero. But why then is it so hard for him to
hold it there? We’ll see in Chapter 11 that it
takes a rapid conversion of his internal
chemical energy to keep his arms extended
under this great load.

A force perpendicular to the displace-
ment does no work.

The woman exerts only a vertical force on
the briefcase she’s carrying. This force has
no component in the direction of the dis-
placement, so the briefcase moves at a con-
stant velocity and its kinetic energy
remains constant. Since the energy of the
briefcase doesn’t change, it must be that no
energy is being transferred to it as work.

(This is the case where in Tactics
Box 10.2.)

u 5 90°

If the part of the object on which the
force acts undergoes no displacement, no
work is done.

Even though the wall pushes on the skater
with a normal force and she undergoes a
displacement the wall does no work on
her, because the point of her body on which

acts—her hands—undergoes no displace-
ment. This makes sense: How could energy
be transferred as work from an inert, sta-
tionary object? So where does her kinetic
energy come from? This will be the subject
of much of Chapter 11. Can you guess?

nr

d
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,
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F

d 5 0
r r

r

F

d

r

r

F

Before: After:

d

r

r

Which force does the most work?

A. The 10 N force.
B. The 8 N force.
C. The 6 N force.
D. They all do the same 

amount of work.

STOP TO THINK 10.2

10.5 Kinetic Energy
We’ve already qualitatively discussed kinetic energy, an object’s energy of
motion. Let’s now use what we’ve learned about work, and some simple kinemat-
ics, to find a quantitative expression for kinetic energy. Consider the system con-
sisting of a car being pulled by a tow rope as in Figure 10.12. The rope pulls with
a constant force while the car undergoes a displacement so that the force does
work on the car. If we ignore friction and drag, the work done by willF

r

W 5 Fd
d
r

,F
r

F

vi
r vf

r

d

Before: After:

r

r

FIGURE 10.12 The work done by the tow
rope increases the car’s kinetic energy.
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TABLE 10.1 Some approximate kinetic
energies

Object Kinetic energy

Walking ant

Penny dropped 1 m

Person walking 70 J

100 mph fastball 150 J

Bullet 5000 J

Car, 60 mph

Supertanker 2 3 1010 J

5 3 105 J

2.5 3 1023 J

 1 3 1028 J

CONCEPTUAL EXAMPLE 10.3 Kinetic energy changes 
for a car
Compare the increase in a 1000 kg car’s kinetic energy as it
speeds up by starting from to its increase in
kinetic energy as it speeds up by starting from 

REASON The change in the car’s kinetic energy in going from
to is

DK5S10 5
1

2
 mvf 

2 2
1

2
 mvi 

2

10 m/s5 m/s

10 m/s.5.0 m/s
5.0 m/s,5.0 m/s

This gives

while

 5 6.3 3 104 J

 DK10S15 5
1

2
 (1000 kg)(15 m/s)2 2

1

2
 (1000 kg)(10 m/s)2

 5 3.8 3 104 J

 DK5S10 5
1

2
 (1000 kg)(10 m/s)2 2

1

2
 (1000 kg)(5.0 m/s)2

be transferred entirely into the car’s energy of motion—its kinetic energy. In this
case, the law of conservation of energy, Equation 10.6, reads

or

(10.10)

Using kinematics, we can find another expression for the work done, in terms
of the car’s initial and final speeds. Recall from Chapter 2 the kinematic equation
relating an object’s displacement and its change in velocity:

Applied to the motion of our car, is the car’s displacement and, from
Newton’s second law, the acceleration is Thus we can write

where we have replaced Fd with the work W. If we now solve for the work, we
find

If we compare this result with Equation 10.10, we see that

In general, then, an object moving at a speed has kinetic energy

(10.11)

Kinetic energy of an object of mass m moving with speed 

From Equation 10.11, the units of kinetic energy are mass times speed squared, or
But

We see that the units of kinetic energy are the same as those of work, as they must
be. Table 10.1 gives some approximate kinetic energies. Everyday kinetic ener-
gies range from a tiny fraction of a fraction of a joule to nearly a million joules for
a speeding car.

1 kg ? (m/s)2 5 1 kg ? (m/s2)
('')''*
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EXAMPLE 10.3 Speed of a bobsled after pushing
A two-man bobsled has a mass of 390 kg. Starting from rest, the
two racers push the sled for the first 50 m with a net force of
270 N. Neglecting friction, what is the sled’s speed at the end of
the 50 m?

PREPARE This is the first example where we fully use Problem-
Solving Strategy 10.1. We start by identifying the bobsled as
the system; the two racers pushing the sled are part of the envi-
ronment. The racers do work on the system by pushing it with
force Because the speed of the sled changes, we’ll need to
include kinetic energy. Neither nor changes, so we won’t
need to consider these energies. Figure 10.14 lists the known
quantities and the quantity that we want to find.(vf)

UsUg

F
r

.

SOLVE With only kinetic energy changing, the conservation of
energy equation, Equation 10.6, is

Using our expressions for kinetic energy and work, this
becomes

Because the energy equation reduces to

We can solve for the final speed to get

ASSESS We solved this problem using the concept of energy
conservation. In this case, we could also have solved it using
Newton’s second law and kinematics. However, we’ll soon see
that energy conservation can solve problems that would be very
difficult for us to solve using Newton’s laws alone.

vf 5 Å
2Fd

m
5 Å

2(270 N)(50 m)

390 kg
5 8.3 m/s
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Ki 1 W 5 Kf
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vfd
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Before: After:

Known
m 
d 

5 390 kg    
5 50 m

F 
vi 

5 270 N  
5 0 m/s

vi 5 0

Find: vf

FIGURE 10.14 The work done by the pushers increases the
sled’s kinetic energy.

Even though the increase in the car’s speed was the same in
both cases, the increase in kinetic energy is substantially larger
in the second case.

ASSESS Kinetic energy depends on the square of the speed If
we plot the kinetic energy of the car as in Figure 10.13, we see
that the energy of the car increases rapidly with speed. We can
also see graphically why the change in K for a fixed 
change in is greater at high speeds than at low speeds. In part
this is why it’s harder to accelerate your car at high speeds than
at low speeds.

v
5 m/s

v.

K (kJ)

v (m/s)
0

150

5 10 15

The change in K is 
greater at high speeds 
than at low speeds.

In both cases the car’s 
speed increases by 5 m/s.

0

DK10   15r

DK5   10r

FIGURE 10.13 The kinetic energy
increases as the square of the speed.

Rotational Kinetic Energy
We’ve just found an expression for the kinetic energy of an object moving along
a line or some other path. This energy is called translational kinetic energy.
Consider now an object rotating about a fixed axis, such as the windmill blades
in Figure 10.15. Although the blades have no overall translational motion, each

FIGURE 10.15 The large rotating blades of
a windmill have a great deal of kinetic
energy.

Rank in order, from greatest to least, the kinetic energies
of the sliding pucks.

STOP TO THINK 10.3

–2.0 m/s2.0 m/s 2.0 m/s1 kg 2 kg1 kg3.0 m/s1 kg

A. B. C. D.
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particle in the blade is moving and hence has kinetic energy. Adding up the
kinetic energy for each particle that makes up the blades, we find that the blades
have rotational kinetic energy, the kinetic energy due to rotation.

Figure 10.16 shows two of the particles making up a windmill blade that
rotates with angular velocity Recall from Section 7.2 that a particle moving
with angular velocity in a circle of radius r has a speed Thus particle 1,
which rotates in a circle of radius moves with speed Particle 2,
which rotates in a circle with a larger radius moves with a larger speed

The object’s rotational kinetic energy is the sum of the kinetic energies
of all of the particles:

You will recognize the term in parentheses as our old friend, the moment of iner-
tia I. Thus the rotational kinetic energy is

(10.12)

Rotational kinetic energy of object with 
moment of inertia I and angular velocity 

NOTE � Rotational kinetic energy is not a new form of energy. This is the
familiar kinetic energy of motion, only now expressed in a form that is espe-
cially convenient for rotational motion. Comparison with the familiar
shows again that the moment of inertia I is the rotational equivalent of mass. �

A rolling object, such as a wheel, is undergoing both rotational and transla-
tional motions. Consequently, its total kinetic energy is the sum of its rotational
and translational kinetic energies:

Recall from Section 6.3 that and of a rolling object of radius R are related by
Thus we can write the kinetic energy of a rolling object as

(10.13)

This illustrates the important fact that the kinetic energy of a rolling object is
always greater than that of a nonrotating object moving at the same speed.
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FIGURE 10.16 Rotational kinetic energy is
due to the circular motion of the particles.

Rotational recharge The International
Space Station (ISS) gets its electrical power
from solar panels. But during each 92-min
orbit, the ISS is in the earth’s shadow for
30 min. The batteries that currently provide
power during these blackouts need periodic
replacement, which is very expensive in
space. A promising new technology would
replace the batteries with a flywheel—a
cylinder rotating at very high angular speed.
Energy from the solar cells is used to speed
up the flywheel, storing energy as rotational
kinetic energy, which can then be converted
back into electrical energy when the ISS is in
shadow.

EXAMPLE 10.4 Kinetic energy of a bicycle
Bike 1 has a 10.0 kg frame and 1.00 kg wheels, while bike 2
has a 9.00 kg frame and 1.50 kg wheels. Both bikes thus have
the same 12.0 kg total mass. What is the kinetic energy of each
bike when they are ridden at Model each wheel as a
hoop of radius 35.0 cm.

PREPARE Each bike’s frame has only translational kinetic energy
where M is the mass of the frame. The kinetic

energy of each rolling wheel is given by Equation 10.13. From
Kframe 5 1

2 Mv2,

12.0 m/s?

Table 7.2, we find that I for a hoop is where m is the mass of
one wheel.

SOLVE From Equation 10.13 the kinetic energy of each rolling
wheel is

Kwheel 5
1

2
 1m 1

mR2

R2 2v2 5
1

2
 (2m)v2 5 mv2

mR2,

QUADRATIC
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10.6 Potential Energy
When two or more objects in a system interact, it is sometimes possible to store
energy in that system in a way that the energy can be easily recovered. For
instance, the earth and a ball interact by the gravitational force between them. If
the ball is lifted up into the air, energy is stored in the ball-earth system, energy
that can later be recovered as kinetic energy when the ball is released and falls.
Similarly, a spring is a system made up of countless atoms that interact via their
atomic “springs.” If we push a box against a spring, energy is stored that can be
recovered when the spring later pushes the box across the table. This sort of
stored energy is called potential energy, since it has the potential to be converted
into other forms of energy such as kinetic or thermal energy.

The forces due to gravity and springs are special in that they allow for the
storage of energy. Other interaction forces do not. When a crate is pushed across
the floor, the crate and the floor interact via the force of friction, and the work
done on the system is converted into thermal energy. But this energy is not stored
up for later recovery—it slowly diffuses into the environment and cannot be
recovered.

Interaction forces that can store useful energy are called conservative forces.
The name comes from the important fact, which we’ll soon look at in detail, that
when only conservative forces act, the mechanical energy of a system is
conserved. Gravity and elastic forces are conservative forces, and later we’ll see
that the electric force is a conservative force as well. Friction, on the other hand,
is a nonconservative force. When two objects interact via a friction force, energy
is not stored. It is usually transformed into thermal energy.

Let’s look more closely at the potential energies associated with the two con-
servative forces—gravity and springs—that we’ll study in this chapter.

Gravitational Potential Energy
To find an expression for gravitational potential energy, let’s consider the system
of the book and the earth shown in Figure 10.17a on the next page. The book is
lifted at a constant speed from its initial position at to a final height 

We can analyze this situation using the approach of Problem-Solving Strat-
egy 10.1. The lifting force of the hand is external to the system and so does work
W on the system, increasing its energy. The book is lifted at a constant speed, so
its kinetic energy doesn’t change. Because there’s no friction, the book’s thermal
energy doesn’t change either. Thus the work done goes entirely into increasing
the gravitational potential energy of the system. The law of conservation of
energy, Equation 10.6, then reads

yf .yi
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The kinetic energy of bike 2 is about 7%
higher than that of bike 1. Note that the
radius of the wheels was not needed in
this calculation.

ASSESS As the cyclists on these bikes
accelerate from rest to they
must convert some of their internal
chemical energy into the kinetic energy
of the bikes. Racing cyclists want to use
as little of their own energy as possible.
Although both bikes have the same total
mass, the one with the lighter wheels
will take less energy to get it moving.
Shaving a little extra weight off your wheels is more useful than
taking that same weight off your frame.

12 m/s,

Then the total kinetic energy of a bike is

The factor of 2 in the second term occurs because each bike has
two wheels. Thus the kinetic energies of the two bikes are

 5 1080 J

 K2 5
1

2
 (9.00 kg)(12.0 m/s)2 1 2(1.50 kg)(12.0 m/s)2

 5 1010 J

 K1 5
1

2
 (10.0 kg)(12.0 m/s)2 1 2(1.00 kg)(12.0 m/s)2

K 5 Kframe 1 2Kwheel 5
1

2
 Mv2 1 2mv2

It’s important that
racing bike wheels
are as light as
possible.



EXAMPLE 10.5 Hitting the bell
At the county fair, Katie tries her hand at the ring-the-bell attrac-
tion, as shown in Figure 10.18. She swings the mallet hard
enough to give the ball an initial upward speed of Will
the ball ring the bell, 3.0 m from the bottom?

8.0 m/s.

PREPARE As discussed above and in Tactics Box 10.1, we’ll
choose the ball and the earth as the system. Figure 10.18 shows
the visual overview. If we assume that the track along which the
ball moves is frictionless, then only the mechanical energy of
the system changes. The only force on the ball after it leaves the
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The initial gravitational potential energy. . . . . .plus the energy put into the  system as work. . .

. . .equals the final gravitational potential energy.

(Ug)i 1 W 5 (Ug)f

The work done is where is the vertical distance that
the book is lifted. From the free-body diagram of Figure 10.17b, we see that

This gives so that

or

(10.15)

Since our final height was greater than our initial height, is positive and
The higher the object is lifted, the greater the gravitational

potential energy in the object /earth system.
Equation 10.15 gives the final gravitational potential energy in terms of

its initial value But what is the value of We can gain some insight by
writing Equation 10.15 in terms of energy changes. We have

or

For example, if we lift a 1.5 kg book up by 2.0 m, we increase its gravitational
potential energy by This increase is
independent of the book’s starting height: We would get the same increase
whether we lifted the book 2.0 m starting at sea level or starting at the top of
Mount Everest. If we then dropped the book 2.0 m, we would recover the same
29.4 J as kinetic energy, whether in Miami or on Everest. This illustrates an
important general fact about every form of potential energy: Only changes in
potential energy are significant.

Because of this fact, we are free to choose a reference level where we define 
to be zero. Our expression for is particularly simple if we choose this reference
level to be at We then have

(10.16)

Gravitational potential energy of an object of mass m at a height y
(assuming when the object is at 

NOTE � We’ve emphasized that gravitational potential energy is an energy of
the earth-object system. In solving problems using the law of conservation of
energy, you’ll need to include the earth as part of your system. For simplicity,
we’ll usually speak of “the gravitational potential energy of the ball,” but what
we really mean is the potential energy of the earth-ball system. �

y 5 0)Ug 5 0

Ug 5 mgy

y 5 0.
Ug

Ug

DUg 5 (1.5 kg)(9.8 m/s2)(2.0 m) 5 29.4 J.

DUg 5 mgDy

(Ug)f 2 (Ug)i 5 mgDy

(Ug)i ?(Ug)i .
(Ug)f

(Ug)f . (Ug)i .
Dy

(Ug)f 5 (Ug)i 1 mgDy

(Ug)i 1 mgDy 5 (Ug)f

W 5 mgDy,F 5 mg.

Dy 5 yf 2 yiW 5 FDy,

(10.14)

This work increases the 
system’s gravitational 
potential energy.

The book and 
the earth are 
the system. System

boundary

Earth

After

Before

The external force F 
from the hand does 
work on the system.

r

F
"

w
"

Dy

yf , (Ug)f

yi , (Ug)i

5 0
5 0

y 
Ug

(a)

(b) Because the book is being lifted at 
a constant speed, it is in dynamic 
equilibrium with Fnet 5 0. Thus
F 5 w 5 mg.

" "

F
"

F
"

FIGURE 10.17 Lifting a book increases its
gravitational potential energy.

LINEAR
p. 38
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An important conclusion from Equation 10.16 is that gravitational poten-
tial energy depends only on the height of the object above the reference
level not on the object’s horizontal position. Consider carrying a brief-
case while walking on level ground at a constant speed. As shown in the table
on page 15, the force of your hand on the briefcase is vertical and hence
perpendicular to the displacement. No work is done on the briefcase and conse-
quently its gravitational potential energy remains constant as long as its height
above the ground doesn’t change as you walk.

This idea can be applied to more complicated cases, such as the 51 kg hiker in
Figure 10.19. His gravitational potential energy depends only on his height y
above the reference level, so it’s the same value at any point
on path A where he is at a height above the reference level. If he had
instead taken path B, his gravitational potential energy at 100 m would be the
same 50 kJ. It doesn’t matter how he gets to 100 m, his potential energy at that
height will be the same. This demonstrates an important aspect of all potential
energies: The potential energy depends only on the position of the object and
not on the path the object took to get to that position. This fact will allow us to
use the law of conservation of energy to easily solve a variety of problems that
would be very difficult to solve using Newton’s laws alone, because we won’t
need to know the details of the path of the object—just its starting and ending
points.

y 5 100 m
Ug 5 mgy 5 50 kJ

y 5 0,

SOLVE Equation 10.7 tells us that 
We can use our expressions for kinetic and potential energy to
write this as

Let’s ignore the bell for the moment and figure out how far the
ball would rise if there were nothing in its way. We know that
the ball starts at and that its speed at the highest
point is zero. Thus the energy equation simplifies to

This is easily solved for the height 

This is higher than the point where the bell sits, so the ball
would actually hit it on the way up.

ASSESS Notice that the mass canceled and wasn’t needed, a fact
about free fall that you should remember from Chapter 2.

yf 5
vi 

2

2g
5

(8.0 m/s)2

2(9.8 m/s2)
5 3.3 m

yf :

mgyf 5
1

2
 mvi 

2

vfyi 5 0 m

1

2
 mvi 

2 1 mgyi 5
1

2
 mvf 

2 1 mgyf

(Ug)f .Ki 1 (Ug)i 5 Kf 1

bottom lever is gravity, but gravity is an internal force due to
our choice of the ball plus the earth as the system. This means
that the gravitational interaction is included as gravitational
potential energy rather than as external work. Since no external
forces do work on the earth-ball system, the system is isolated.
We can then use the law of conservation of mechanical energy,
Equation 10.7.

3.0 m

After:
yf
vf 5 0 m/s

Before:
vi 5 8.0 m/s
yi 5 0 m

Find: yf

We’ll calculate how high the 
ball would go if the bell 
weren’t there. Then we’ll 
see if that height is enough 
to have reached the bell.

FIGURE 10.18 Before-and-after visual overview of the ring-
the-bell attraction.

Path
B

His potential energy is the 
same at any point where 
his elevation is 100 m.

The reference level  y 5 0 m 
is where Ug 5 0 J. 

Ug 5 100 kJ

100 m

200 m

0 m
Ug 5 50 kJPa

th
 A

The hiker’s potential 
energy at the top is 100 kJ 
regardless of whether he 
took path A or path B.

FIGURE 10.19 The hiker’s gravitational
potential energy depends only on his
height above the reference level.y 5 0

EXAMPLE 10.6 Speed at the bottom of a water slide
Still at the county fair, Katie tries the water slide, whose shape
is shown in Figure 10.20. The starting point is 9.0 m above
the ground. She pushes off with an initial speed of If
the slide is frictionless, how fast will Katie be traveling at the
bottom?

2.0 m/s.

PREPARE Figure 10.20 on the next page shows a visual
overview of the slide. Because there is no friction, Tactics
Box 10.1 suggests that we take as our system Katie (the mov-
ing object) and the earth. With this choice of system, the only
energies in the system are kinetic and gravitational potential
energy. Note that the slope of the slide is not constant, so Katie’s

Continued
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Rank in order, from
largest to smallest, the gravitational potential
energies of identical balls 1 to 4.

STOP TO THINK 10.4

1

2

3

4

v 5 0

Elastic Potential Energy
Energy can also be stored in a compressed or extended spring as elastic (or spring)
potential energy We can find out how much energy is stored in a spring by
using an external force to slowly compress the spring. This external force does
work on the spring, transferring energy to the spring. Since only the elastic potential
energy of the spring is changing, the law of conservation of energy reads

(10.17)

That is, we can find out how much elastic potential energy is stored in the spring
by calculating the amount of work needed to compress the spring.

Figure 10.21 shows a spring being compressed by a hand. In Section 8.4 we
found that the force that the spring will exert on the hand is equal to where x
is the displacement of the end of the spring from its equilibrium position at 
and k is the spring constant. By Newton’s third law, this means that the force that
the hand exerts on the spring is equal to 

As we compress the end of the spring from its equilibrium position to a final
displacement x, the force we apply increases from zero to This is not a con-
stant force, so we can’t use Equation 10.8, to find the work done,
because this equation is valid only for a constant force. However, it seems reason-
able that we could calculate the work by using the average force in Equa-
tion 10.8. Because the force varies from to the average force used
to compress the spring is

Favg 5
1

2
 (Ff 1 Fi) 5

1

2
 (kx 1 0) 5

1

2
 kx

Ff 5 kx,Fi 5 0

W 5 Fd,
kx.

1kx.

x 5 0
2kx,

W 5 DUs

Us .

5 0x 

x

x

F
"

Spring in equilibrium

As x increases, 
so does F.

FIGURE 10.21 The force required to
compress a spring is not constant.

or

Taking we have

which we can solve to get

ASSESS It is important to realize that the shape of the slide does
not matter because gravitational potential energy depends only
on the height above a reference level. In sliding down any
(frictionless) slide of the same height, your speed at the bot-
tom would be the same.

 5 "(2.0 m/s)2 1 2(9.8 m/s2)(9.0 m) 5 13 m/s

 vf 5 "vi 

2 1 2gyi

1

2
 mvi 

2 1 mgyi 5
1

2
 mvf 

2

yf 5 0 m

1

2
 mvi 

2 1 mgyi 5
1

2
 mvf 

2 1 mgyf

acceleration will not be constant either. Thus we can’t use con-
stant-acceleration kinematics to find her speed. But we can use
the law of conservation of energy to easily solve for her speed.
Because there is no friction, the mechanical energy is conserved.

SOLVE Conservation of mechanical energy gives

Ki 1 (Ug)i 5 Kf 1 (Ug)f

y

0

After:
yf 5 0 m
vf

Before:
yi 5 9.0 m
vi 5 2.0 m/s

Find: vf

FIGURE 10.20 Before-and-after visual overview of Katie on
the water slide.
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On each stride, the tendon 
stretches, storing about 35 J 
of energy.

Calf muscle

Achilles tendon

Spring in your step As you run, you
lose some of your mechanical energy each
time your foot strikes the ground; this energy
is transformed into unrecoverable thermal
energy. Luckily, about 35% of the decrease of
your mechanical energy when your foot lands
is stored as elastic potential energy in the
stretchable Achilles tendon of the lower leg.
On each plant of the foot the tendon is
stretched, storing some energy. The tendon
springs back as you push off the ground
again, helping to propel you forward. This
recovered energy reduces the amount of
internal chemical energy you use, increasing
your efficiency.

EXAMPLE 10.7 Speed of a spring-launched ball
A spring-loaded toy gun is used to launch a 10 g plastic ball.
The spring, which has a spring constant of is com-
pressed by 10 cm as the ball is pushed into the barrel. When the
trigger is pulled, the spring is released and shoots the ball back
out. What is the ball’s speed as it leaves the barrel? Assume that
friction is negligible.

PREPARE Assume the spring obeys Hooke’s law and
is massless so that it has no kinetic energy of its own. Using Tac-
tics Box 10.1 we choose the system to be the spring and the ball.
There’s no friction, hence the system’s mechanical energy

is conserved.K 1 Us

F 5 2kx,

10 N/m,

Figure 10.22 shows a before-and-after visual overview. The
compressed spring will push on the ball until the spring has
returned to its equilibrium length. We have chosen the origin of
the coordinate system at the equilibrium position of the free end
of the spring, making and 

SOLVE The energy conservation equation is 
We can use the elastic potential energy of the

spring, Equation 10.18, to write this as

We know that and so this simplifies to

It is now straightforward to solve for the ball’s speed:

ASSESS This is not a problem that we could have easily solved
with Newton’s laws. The acceleration is not constant, and we
have not learned how to handle the kinematics of nonconstant
acceleration. But with conservation of energy—it’s easy!

vf 5 Å
kxi 

2

m
5 Å

(10 N/m)(20.10 m)2

0.010 kg
5 3.2 m/s

1

2
 mvf 

2 5
1

2
 kxi 

2

vi 5 0 m/s,xf 5 0 m

1

2
 mvi 

2 1
1

2
 kxi 

2 5
1

2
 mvf 

2 1
1

2
 kxf 

2

Kf 1 (Us)f.
Ki 1 (Us)i 5

xf 5 0 cm.xi 5 210 cm

After:

Find: vf

Before:

vf

vi 5 0 m/s

x 5 0

xf 5 0 cm

x
xi 5 210 cm

FIGURE 10.22 The before-and-after visual overview of a ball
being shot out of a spring-loaded toy gun.

Thus the work done by the hand is

This work is stored as potential energy in the spring, so we can use Equa-
tion 10.17 to find that the elastic potential energy increases by

Just as in the case of gravitational potential energy, we have found an expression
for the change in not itself. Again, we are free to set at any conve-
nient spring extension. An obvious choice is to set at the point where the
spring is in equilibrium, neither compressed nor stretched; that is, at With
this choice we have

(10.18)

Elastic potential energy of a spring displaced a distance x from equilibrium
(assuming when the end of the spring is at 

NOTE � Since depends on the square of the displacement x, is the same
whether x is positive (the spring is compressed as in Figure 10.21) or negative
(the spring is stretched). �

UsUs

x 5 0)Us 5 0

Us 5
1

2
 kx2

x 5 0.
Us 5 0

Us 5 0UsUs ,

DUs 5
1

2
 kx2

W 5 Favg 

 
d 5 Favg 

 
x 5 112 kx 2  x 5

1

2
 kx2

QUADRATIC
p. 50
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10.7 Thermal Energy
We noted earlier that thermal energy is related to the microscopic motion of the
molecules of an object. As Figure 10.23 shows, the molecules in a hot object jig-
gle around their average positions more than the molecules in a cold object. This
has two consequences. First, each atom is on average moving faster in the hot
object. This means that each atom has a higher kinetic energy. Second, each atom
in the hot object tends to stray further from its equilibrium position, leading to a
greater stretching or compressing of the spring-like molecular bonds. This means
that each atom has on average a higher potential energy. The potential energy
stored in any one bond and the kinetic energy of any one atom are both exceed-
ingly small, but there are incredibly many bonds and atoms. The sum of all these
microscopic potential and kinetic energies is what we call thermal energy.

Is this microscopic energy worth worrying about? To see, consider a 500 g
iron ball moving at the respectable speed of 

Its kinetic energy is 
How fast do the atoms jiggle about their equilibrium positions? This speed

depends on the temperature, but at room temperature it’s very high—roughly
So each atom is on average traveling in a straight line at but jig-

gling about this average motion at a speed of This a factor of 25 times
faster. And since kinetic energy is proportional to the square of the speed, the
kinetic energy due to the microscopic motion is about 625 times greater than that
due to the overall motion. And it turns out that the microscopic potential energy is
just as large. Thus the ball that has an ordinary kinetic energy of 100 J has an
internal thermal energy of

Transforming Mechanical Energy into Thermal Energy
Consider a snowboarder sliding on level snow. After a while, he will glide to a
stop because of the friction force of the snow on his board. We can analyze this
using the law of conservation of energy. Following Tactics Box 10.1 we’ll take
the system to be the boarder plus the snow. Then there are no forces external to
the system that do work on it and, since he’s moving horizontally, his potential
energy doesn’t change. Then the law of conservation of energy is

or He’s slowing to a stop, so and 
is positive. The system’s thermal energy increases as kinetic energy is trans-
formed into thermal energy.

This increase in thermal energy is a general feature of any system where fric-
tion between sliding objects is present: When two objects slide against each
other with friction present, mechanical energy is always transformed into
thermal energy. An atomic-level explanation is shown in Figure 10.24.

The presence of friction has two important consequences for our conservation
of energy Problem-Solving Strategy 10.1:

1. As stated in Tactics Box 10.1, we must include in the system not only the
moving object but also the surface against which it slides. This is because
the thermal energy generated by friction resides in both object and surface
(as in Figure 10.24), and it is usually impossible to tell what fraction resides

DEthKi . KfDEth 5 Ki 2 Kf .Ki 5 Kf 1 DEth ,

2 3 625 3 100 J 5 125,000 J!

500 m/s!
20 m/s,500 m/s.

K 5 1
2 mvball 

2 5 100 J.
(<45 mph).vball 5 20 m/s(<1 lb)

A spring-loaded gun shoots a plastic ball with a speed of
If the spring is compressed twice as far, the ball’s speed will be

A. B. C. D. 16 m/s.8 m/s.4 m/s.2 m/s.

4 m/s.
STOP TO THINK 10.5

Hot object: Fast-moving molecules have lots of 
kinetic and elastic potential energy.

Cold object: Slow-moving molecules have little 
kinetic and elastic potential energy.

FIGURE 10.23 A molecular view of thermal
energy.

Atoms at the interface push 
and pull on each other as the 
upper objects slides past.

The spring-like molecular bonds 
stretch and store elastic potential 
energy.

When the bonds break, the elastic 
potential energy is converted into 
kinetic and potential energy of the 
atoms, that is, into thermal energy.

vr

FIGURE 10.24 How friction causes an
increase in thermal energy.
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TRY IT  YOURSELF

Agitating atoms Vigorously rub a some-
what soft object such as a blackboard eraser
on your desktop for about 10 seconds. If you
then pass your fingers over the spot where
you rubbed, you’ll feel a distinct warm area.
Congratulations: you’ve just set some
100,000,000,000,000,000,000,000 atoms
into motion!

in each. By choosing both object and surface to be in the system, we know
that all the thermal energy ends up in the system.

2. In addition to the mechanical energy we now must include in
the conservation of energy equation.

DEthK 1 U

EXAMPLE 10.8 Thermal energy created sledding
down a hill
George jumps onto his sled and starts from rest at the top of a
5.0-m-high hill. His speed at the bottom is The mass of
George and the sled is 55 kg. How much thermal energy was
produced in this process?

PREPARE Figure 10.25 shows the before-and-after visual
overview. The statement of the problem implies that thermal
energy will be generated, so following Tactics Box 10.1, we’ll
take the system to include both George and the sled and the
slope. Because his height is changing, his gravitational poten-
tial energy is changing and we’ll need to include the earth in the
system as well. No forces act from outside this system, so the
work W is zero.

8.0 m/s.

SOLVE Here the law of conservation of energy reads

In terms of positions and speeds,

Because and this simplifies to

from which we have

ASSESS The change in is positive, as it must be. This extra
thermal energy resides in the sled and all along the slope where
George slid. You should be able to show that about 35% of
George’s original gravitational potential energy was trans-
formed into thermal energy as he slid down the hill.

Eth

 5 940 J

 5 (55 kg)(9.8 m/s2)(5.0 m) 2
1

2
 (55 kg)(8.0 m/s)2

 DEth 5 mgyi 2
1

2
 mvf 

2

mgyi 5
1

2
 mvf 

2 1 DEth

yf 5 0 m,vi 5 0 m/s

1

2
 mvi 

2 1 mgyi 5
1

2
 mvf 

2 1 mgyf 1 DEth

Ki 1 (Ug)i 5 Kf 1 (Ug)f 1 DEth

FIGURE 10.25 Visual overview of George sliding down the hill.

10.8 Further Examples of 
Conservation of Energy

In this section, we’ll tie together what we’ve learned about using the law of con-
servation of energy to solve dynamics problems. In each, we use the key idea of
setting the “before” energy equal to the “after” energy.

5.2–5.7, 7.11–7.13 
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EXAMPLE 10.9 Where will the sled stop?
A sledder, starting from rest, slides down a 10-m-high hill. At
the bottom of the hill is a long horizontal patch of rough
snow. The hill is nearly frictionless, but the coefficient of fric-
tion between the sled and the rough snow at the bottom is

How far will the sled slide along the rough patch?

PREPARE A picture of the sledder is shown in Figure 10.26.
We’ll break this problem into Part A, his motion down the hill;
and Part B, his motion along the ice. We know how to use con-
servation of energy to find his speed at the bottom of the hill.
Along the rough patch, however, we’ll use kinematics and
Newton’s laws, as studied in Chapters 2 and 5, to find how far
he slides.

mk 5 0.30.

EXAMPLE 10.10 Who wins the great downhill race?
Figure 10.27 shows a contest in which a sphere, a cylinder, and
a circular hoop, each with mass M and radius R, are placed at
height h on a slope of angle All three are simultaneously
released from rest and roll down the ramp without slipping.
Which one will win the race to the bottom of the hill?

u.

PREPARE With no sliding friction, the total mechanical energy
is conserved. However, the kinetic energy of each object must
include a contribution from its rotational kinetic energy.

SOLVE Conservation of energy tells us that the gravitational
potential energy at the top will be transformed
into an equal amount of kinetic energy at the bottom. Thus

where we used Equation 10.13 for the total (translational plus
rotational) kinetic energy. The speed at the bottom is then

v 5

ã
2Mgh

M 1
I

R2

(Ug)i 5 Mgh 5 Kf 5
1

2
 1M 1

I

R2 2v2

Kf

(Ug)i 5 Mgh

Sphere

Cylinder

All mass M

Radius R

h

Hoop

FIGURE 10.27 Which will win the downhill race?

SOLVE We’ll solve Part A first and find the sled’s speed at the
bottom. The hill is frictionless, so mechanical energy is con-
served and we have

mgyi 1
1

2
 mvi 

2 5 mgyf 1
1

2
 mvf 

2

vf

Since and this reduces to

so that

On the rough patch in Part B, where the only horizontal force is
the kinetic friction force pointing to the left, the sled’s accel-
eration is

The negative acceleration indicates that the sled is slowing
down, as expected.

We now use kinematics to find how far the sled slides. We
know the acceleration a, as well as the initial and final veloci-
ties along the horizontal patch, and we want to know the final
position This suggests using the kinematic equation

to find the final position. For the motion of Part B, the final
velocity the initial velocity is 
and the initial position is We can then solve for
the final position in the kinematic equation to get

ASSESS When friction is present, mechanical energy is not con-
served: Some of the mechanical energy of the system is
inevitably transformed into thermal energy. Thus we cannot use
the law of conservation of mechanical energy for such prob-
lems. Instead, we’ll need to use Newton’s laws and kinematics
to find how far objects slide. As in this example, however, there
will often be a part of the problem with no friction that we can
solve using the law of conservation of mechanical energy.

x2 5 2 

v1 

2

2a
5 2 

(14.0 m/s)2

25.88 m/s2 5 33 m

xi 5 x1 5 0 m.
v1 5 14.0 m/s,vf 5 v2 5 0 m/s,

vf 

2 5 vi 

2 1 2a(xf 2 xi)

x2 .

 5 2mk g 5 2(0.30)(9.8 m/s2) 5 22.94 m/s2

 a 5 2 

fk

m
5 2 

mk n

m
5 2 

mkmg

m

fk

vf 5 "2gyi 5 "2(9.8 m/s2)(10 m) 5 14.0 m/s

mgyi 5
1

2
 mvf 

2

yf 5 0 m,vi 5 0 m/s

y

0

Known
y0 
v0 

5 10 m
5 0 m/s

y1 5 0 m

Find: v1

Part A

Frictionless

Known
x1 
v1 

5 0 m mk 
v2 

5 0.30
5 0 m/s

Find: x2

x

Part B

y0, v0

y1, v1 x1, v1 x2, v2

The final velocity for part A is 
the initial velocity for part B.

This was found in part A.

x 5 0

FIGURE 10.26 Visual overview of a sledder sliding downhill.
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10.9 Energy in Collisions
In Chapter 9 we studied collisions between two objects. We found that if no exter-
nal forces are acting on the objects, the total momentum of the objects will be con-
served. Now we wish to study what happens to energy in collisions. The
energetics of collisions are important in many applications in biokinetics, such as
designing safer automobiles and bicycle helmets.

Let’s first re-examine a perfectly inelastic collision. We studied just such a col-
lision in Example 9.8. Recall that in such a collision the two objects stick together
and then move with a common final velocity. What happens to the energy?

hoop or the cylinder, it will win the race, followed by the cylin-
der and the hoop.

ASSESS All the objects have the same kinetic energy at the bot-
tom, because they all started with the same energy, Mgh, at the
top. But the object with the smallest I will have the smallest
rotational kinetic energy at the bottom, and hence the largest
translational kinetic energy and the largest An ordinary slid-
ing object (no rotation) reaches the bottom with speed 

This is significantly faster than any of the
rolling objects. The sliding object is faster because all its
kinetic energy is translational—and it’s the translational motion
that gets you down the hill.

!2gh 5 1.41!gh.
v 5

v.

Table 7.2 gives the moment of inertia for each of the three
shapes. We have

Shape Moment of Inertia I

Sphere

Cylinder

Hoop

The sphere has the largest speed at the bottom, a full 19% faster
than the hoop. Because the sphere always travels faster than the

v 5 "ghMR2

v 5 Å
4

3
 gh 5 1.15 "gh

1

2
 MR2

v 5 Å
10

7
gh 5 1.19 "gh

2

5
 MR2

v 5 "2Mgh/ (M 1 I/R2)

EXAMPLE 10.11 Energy transformations 
in a perfectly inelastic collision
Figure 10.28 shows two air track gliders that are pushed toward
each other, collide, and stick together. In Example 9.8, we used
conservation of momentum to find the final velocity shown in
Figure 10.28 from given initial velocities. Compare the initial
and final mechanical energies of the system.

SOLVE The initial kinetic energy is

Because the gliders stick together and move as a single object
with mass the final kinetic energy is

From the conservation of energy equation above, we find that
the thermal energy increases by

This amount of the initial kinetic energy is transformed into
thermal energy during the impact of the collision.

ASSESS About 96% of the initial kinetic energy is trans-
formed into thermal energy. This is typical of many real-world
collisions.

DEth 5 Ki 2 Kf 5 1.91 J 2 0.075 J 5 1.84 J

 5
1

2
 (0.600 kg)(20.500 m/s)2 5 0.0750 J

 Kf 5
1

2
 (m1 1 m2) (vx)f 

2

m1 1 m2 ,

 5 1.91 J

 5
1

2
 (0.200 kg)(3.00 m/s)2 1

1

2
 (0.400 kg)(22.25 m/s)2

 Ki 5
1

2
 m1 (v1x)i 

2 1
1

2
 m2 (v2x)i 

2

(v1x )i 5 3.00 m/s

(vx )f  5 20.500 m/s

(v2x)i 5 –2.25 m/s

m1 1 m2

Before:

After:

x

1 2

m1
200 g

m2
400 g

FIGURE 10.28 Initial and final velocities in a completely
inelastic collision.

PREPARE We’ll choose our system to be the two gliders.
Because the tracks are horizontal, there is no change in potential
energy. Thus the law of conservation of energy, Equation 10.6,
reads The total energy before the collision
must equal the total energy after, but the total mechanical ener-
gies need not be equal.

Ki 5 Kf 1 DEth .
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Elastic Collisions
Figure 9.1 showed a collision of a tennis ball with a racket. The ball is com-
pressed and the racket strings stretch as the two collide, then the ball expands and
the strings relax as the two are pushed apart. In the language of energy, the kinetic
energy of the objects is transformed into the elastic potential energy of the ball
and strings, then back into kinetic energy as the two objects spring apart. If all of
the kinetic energy is stored as elastic potential energy, and then all of the elastic
potential energy is transformed back into the post-collision kinetic energy of the
objects, then mechanical energy is conserved. A collision for which mechanical
energy is conserved is called a perfectly elastic collision.

Needless to say, most real collisions fall somewhere between perfectly elastic
and perfectly inelastic. A rubber ball bouncing on the floor might “lose” 20% of its
kinetic energy on each bounce and return to only 80% of the height of the previous
bounce. But collisions between two very hard objects, such as two pool balls or
two steel balls, come close to being perfectly elastic. And collisions between
microscopic particles, such as atoms or electrons, can be perfectly elastic.

Figure 10.29 shows a head-on, perfectly elastic collision of a ball of mass 
having initial velocity with a ball of mass that is initially at rest. The
balls’ velocities after the collision are and These are velocities, not
speeds, and have signs. Ball 1, in particular, might bounce backward and have a
negative value for 

The collision must obey two conservation laws: conservation of momentum
(obeyed in any collision) and conservation of mechanical energy (because the
collision is perfectly elastic). Although the energy is transformed into potential
energy during the collision, the mechanical energy before and after the collision
is purely kinetic energy. Thus

momentum conservation:

energy conservation:

Momentum conservation alone is not sufficient to analyze the collision
because there are two unknowns: the two final velocities. That is why we did not
consider perfectly elastic collisions in Chapter 9. Energy conservation gives us
another condition. The complete solution of these two equations involves
straightforward but rather lengthy algebra. We’ll just give the solution here,
which is:

(10.19)

Perfectly elastic collision with object 2 initially at rest

Equations 10.19 allow us to compute the final velocity of each object. Let’s look
at a common and important example: a perfectly elastic collision between two
objects of equal mass.

(v1x)f 5
m1 2 m2

m1 1 m2
 (v1x)i    (v2x)f 5

2m1

m1 1 m2
 (v1x)i

1

2
 m1 (v1x)i 

2 5
1

2
 m1 (v1x)f 

2 1
1

2
 m2 (v2x)f 

2

m1 (v1x)i 5 m1 (v1x)f 1 m2 (v2x)f

(v1x)f .

(v2x)f .(v1x)f

m2(v1x)i ,
m1 ,

In a collision between a cue ball and a
stationary ball, the mechanical energy of
the balls is almost perfectly conserved.

1 KiBefore: 2

1During: 2

1After: 2 Kf 5 Ki

Energy is stored in 
compressed
molecular bonds, 
then released as the 
bonds re-expand.

v1i
r

v1f
r v2f

r

FIGURE 10.29 A perfectly elastic collision.

EXAMPLE 10.12 Velocities in an air hockey collision
On an air hockey table, a moving puck, traveling at 
makes a head-on collision with a stationary puck. What are the
final velocities of each of the pucks?

2.3 m/s,
PREPARE The before-and-after visual overview is shown
Figure 10.30. We’ve sketched in final velocities in the picture,
but we don’t really know yet which way the pucks will move.
Because one puck was initially at rest, we can use Equa-
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Other cases where the colliding objects are of unequal mass will be treated in the
end-of-chapter problems.

Forces in Collisions
The collision between two pool balls occurs very quickly, and the forces are typi-
cally very large and difficult to calculate. Fortunately, by using the concepts of
momentum and energy conservation we can often calculate the final velocities of
the balls without having to know the forces between them. There are collisions,
however, where knowing the forces involved is of critical importance. The fol-
lowing example shows how a helmet helps protect the head from the large forces
involved in a bicycle accident.

FIGURE 10.30 A moving puck collides with a stationary puck.

SOLVE We use Equation 10.19 with to get

The incoming puck stops dead, and the initially stationary puck
goes off with the same velocity that the incoming one had.

ASSESS You can see that momentum and energy are conserved:
the incoming puck’s momentum and energy are completely
transferred to the outgoing puck. If you’ve ever played pool,
you’ve probably seen this sort of collision when you hit a ball
head-on with the cue ball: the cue ball stops and the other ball
picks up the cue ball’s velocity.

 (v2x)f 5
2m

m 1 m
 (v1x)i 5 (v1x)i 5 2.3 m/s

 (v1x)f 5
m 2 m

m 1 m
 (v1x)i 5 0 m/s

m1 5 m2 5 m

Before:  (v1x)i 5 2.3 m/s    (v2x)i 5 0 m/s

After:                                          Find:  (v1x)f and (v2x)f

v1i
r

v1f
r

v2f
r

v2i 5 0r r

tion 10.19 to find the final velocities of the pucks. The pucks
are identical, so we have m1 5 m2 5 m.

EXAMPLE 10.13 Protecting your head
A bike helmet is basically a
shell of hard, crushable foam
3.0 cm thick. In testing, the
helmet is strapped onto a
5.0 kg headform that is drop-
ped from a height of 2.0 m
onto a hard anvil. What force
is encountered by the head in
such a fall?

PREPARE A visual overview
of the test is shown in Fig-
ure 10.31. We can use the
law of conservation of en-
ergy, Equation 10.6, to estimate the force on the headform.
We’ll choose the headform and the earth to be the system; the
foam in the helmet will be part of the environment. We make
this choice so that the force on the headform due to the foam is
an external force that does work W on the headform.

SOLVE The headform starts at initial height above
the anvil and ends at rest with the foam fully crushed. Then the
law of conservation of energy is

Ki 1 (Ug)i 1 W 5 Kf 1 (Ug)f

yi 5 2.0 m

Before:
yi 5 2.0 m, vi 5 0 m/s

After:
yf 5 0 m, vf 5 0 m/s

Find:  F

The headform is dropped 
from a height of 2 m.

The helmet has just touched 
the anvil. The foam is now 
pushing up on the headform.

The headform is subject to 
a large force from the foam. 
This force does negative 
work on the headform, 
slowing it down.

dy 5 0

yi, vi

yf , vf

F

d 5 0.030 m

r

F
r

r

FIGURE 10.31 The foam in the helmet does negative work on
the headform.

The foam inside a bike helmet
is designed to crush upon
impact.

Continued
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10.10 Power
We’ve now studied how energy can be transformed from one kind to another and
how it can be transferred between the environment and the system as work. In
many situations we would like to know how quickly the energy is transformed or
transferred. Is a transfer of energy very rapid, or does it take place over a long
time? In passing a truck, your car needs to transform a certain amount of the
chemical energy in its fuel into kinetic energy. It makes a big difference whether
your engine can do this in 20 s or 60 s!

The question “How quickly?” implies that we are talking about a rate. For
example, the velocity of an object—how fast it is going—is the rate of change
of position. So when we raise the issue of how fast the energy is transformed,
we are talking about the rate of transformation of energy. Suppose in a time
interval an amount of energy is transformed from one form to another.
The rate at which this energy is transformed is called the power P, and it is
defined as

(10.20)

Power when amount of energy is transformed in time interval 

The unit of power is the watt, which is defined as 
Power also measures the rate at which energy is transferred into or out of a

system as work W. If work W is done in time interval the rate of energy
transfer is

(10.21)

Power when amount of work W is done in time interval Dt

P 5
W

Dt

Dt,

1 watt 5 1 W 5 1 J/s.

DtDE

P 5
DE

Dt

DEDt

Both these cars take about the same
energy to reach 60 mph, but the race car
gets there in a much shorter time, so its
power is much greater.

This is the force that acts on the head to bring it to a halt in only
3 cm. More important from the perspective of possible brain
injury is the head’s acceleration

where g is the acceleration due to gravity.

ASSESS The accepted threshold for serious brain injury is
around 300g, so this helmet would protect the rider in all but the
most serious accidents. Without the helmet, the rider’s head
would come to a stop in a much smaller distance and thus be
subjected to a much larger acceleration.

It’s also interesting to ask where the original energy of the
headform went. The work on it was negative, indicating a trans-
fer of energy from the headform to the environment—the foam.
As the foam crushes, there is a great deal of internal friction and
rubbing between parts of the foam. This causes the foam to get
warmer, increasing its thermal energy. This increase must be
exactly equal to the energy lost by the headform.

a 5
F

m
5

3300 N

5.0 kg
5 660 m/s2 5 67g

In words, this states that the initial energy of the system, plus
the energy transferred to the system as work, equals the final
energy of the system. 

Since the headform starts and ends at rest, both and are
zero. Taking our reference height at the anvil, is
zero as well. Since conservation of energy gives
simply or

As the foam is crushed, it pushes up on the headform with force
doing work on it. This force is directed opposite to the dis-

placement of the headform, so the work done is negative—
kinetic energy is being removed from the headform, slowing it
down. The work done is if we assume the force is rela-
tively constant, so we have

or

F 5
mgyi

d
5

(5.0 kg)(9.8 m/s)(2.0 m)

0.030 m
5 3300 N

mgyi 5 2(2Fd)

2Fd,

d
r

F
r

,

mgyi 5 2W

mgyi 1 W 5 0,
(Ug)i 5 mgyi ,

(Ug)fy 5 0
KfKi
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A force that is doing work (i.e., transferring energy) at a rate of has an “out-
put power” of 3 W. A system gaining energy at the rate of is said to “con-
sume” 3 W of power. Common prefixes used with power are mW (milliwatts),
kW (kilowatts), and MW (megawatts).

We can express Equation 10.21 in a different form. If in the time interval an
object undergoes a displacement the work done by a force acting on the
object is Then Equation 10.21 can be written

The rate at which energy is transferred to an object as work—the power—is the
product of the force that does the work, and the velocity of the object:

(10.22)

Rate of energy transfer due to a force F
acting on an object moving at velocity v

P 5 Fv

P 5
W

Dt
5

FDx

Dt
5 F 

Dx

Dt
5 Fv

W 5 FDx.
Dx,

Dt

3 J/s
3 J/s

The English unit of power is the horse-
power. The conversion factor to watts is

Many common appliances, such as motors,
are rated in hp.

1 horsepower 5 1 hp 5 746 W

EXAMPLE 10.14 Power to pass a truck
You are behind a 1500 kg truck traveling at 60 mph 
To pass it, you speed up to 75 mph in 6.0 s. What
power is required to do this?

PREPARE Your car is undergoing an energy transformation from
the chemical energy of your fuel to the kinetic energy of the car.
We can calculate the amount of energy transformed by finding
the change in the kinetic energy.

SOLVE We have

so that

 5 8.67 3 105 J 2 5.47 3 105 J 5 3.20 3 105 J

 DK 5 Kf 2 Ki

 Kf 5
1

2
 mvf 

2 5
1

2
 (1500 kg)(34 m/s)2 5 8.67 3 105 J

 Ki 5
1

2
 mvi 

2 5
1

2
 (1500 kg)(27 m/s)2 5 5.47 3 105 J

DK

(34 m/s)
(27 m/s).

To transform this amount of energy in 6 s, the power required is

This is about 71 hp. This power is in addition to the power
needed to overcome drag and friction and cruise at 60 mph, so
the total power required from the engine will be even greater
than this.

ASSESS You use a large amount of energy to perform a simple
driving maneuver such as this. is enough energy
to lift an 80 kg person 410 m in the air—the height of a tall sky-
scraper. And 53 kW would lift him there in only 6 s!

3.20 3 105 J

P 5
DK

Dt
5

3.20 3 105 J

6.0 s
5 53,000 W 5 53 kW

Four students run up the stairs in the time shown. Rank in
order, from largest to smallest, their power outputs to PD .PA

STOP TO THINK 10.6

10 m

Dt 5 10 s

80 kg 80 kg

Dt 5 8 s

64 kg 80 kg

D.C.B.A.

Dt 5 8 s

20 m

Dt 5 25 s

LINEAR
p. 38



332 C H A P T E R 10 . Energy and Work

S U M M A R Y

The goal of Chapter 10 has been to learn about energy and how to solve problems using the law of
conservation of energy.

GENERAL PRINCIPLES

General Energy Model
Within a system, energy can be
transformed between various forms.

Energy can be transferred into or 
out of a system in two basic ways:

• Work: The transfer of energy 
by mechanical forces.

• Heat: The nonmechanical 
transfer of energy from a 
hotter to a colder object.

Law of Conservation of Energy
Isolated system: No energy is transferred into or out
of the system. Each form of energy within the
system can change, but the total change in energy is
zero. Energy of the system is conserved:

Nonisolated system: Energy can be exchanged with
the environment as work or heat. The energy of the
system changes by the amount of work done or heat
transferred:

Systems with mechanical and thermal energy
only: The initial mechanical energy, plus the work
done, equals the final mechanical energy plus
additional thermal energy:

In terms of energy changes, this can be written

DK 1 DUg 1 DUs 1 DEth 5 W

Ki 1 Ui 1 W 5 Kf 1 Uf 1 DEth

IMPORTANT CONCEPTS

Mechanical energy is the sum of a system’s
kinetic and potential energies:

Kinetic energy is an energy of motion

Potential energy is energy stored in a system of
interacting objects

• Gravitational potential energy:

• Elastic potential energy: Us 5
1

2
kx2

Ug 5 mgy

Mechanical energy 5 K 1 U 5 K 1 Ug 1 Us

APPLICATIONS

Perfectly elastic collisions
Both mechanical energy and 
momentum are conserved.

(v2x)f 5  

2m1

m1 1 m2
 (v1x)i

(v1x)f 5  

m1 2 m2

m1 1 m2
 (v1x)i

Solving Energy Conservation Problems
PREPARE Choose your system (Tactics Box 10.1). Decide what forms of
energy are changing. If there is friction, then thermal energy will be
created. Check for external forces that will do work on your system.

SOLVE Use Equation 10.6 to relate the initial energy of your system, plus
the work done, to the final energy of the system:

ASSESS Kinetic energy is always positive. The change in thermal energy
should be positive.

Ki 1 Ui 1 W 5 Kf 1 Uf 1 DEth

Power is the rate at which energy is transformed . . .

. . . or at which work is done.

Thermal energy is the sum of the microscopic kinetic and potential
energy of all the molecules in an object. The hotter an object, the more
thermal energy it has. When kinetic (sliding) friction is present,
mechanical energy will be transformed into thermal energy.

Work is the process by which energy is
transferred to or from a system by the application 
of mechanical forces.

If a particle moves through a displacement 
while acted upon by a constant force , the force
does work

W 5 Fid 5 Fd cos u

F
r

d
r

E
chem

E
th

K U

Environment

System

Work,
heat

Energy is 
transformed 
within the 
system.

Energy is transferred to 
or from the system from 
or to the environment.

DK 1 DUg 1 DUs 1 DEth 1 DEchem 1 . . . 5 0
The change in the system’s energy is zero.

DK 1 DUg 1 DUs 1 DEth 1 DEchem 1 . . . 5 W 1 Q
The system’s energy changes by the 
amount of work done and heat transferred.

K 5    mv2 1    Iv21_
2

1_
2

Translational Rotational

u 

d

F

F
'

Fi 5 F cos u

Only the component of 
the force parallel to the 

r

r

Amount of energy transformed
Time required to transform it

P 5  DE___
Dt

Amount of work done
Time required to do work

P 5  W___
Dt

(v1x )i

(v1x )f (v2x )f

1 KiBefore:

After:

2

1 2 Kf 5 Ki

Object 2 initially at rest
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Conceptual Questions

1. The brake shoes of your car are made of a material that can
tolerate very high temperatures without being damaged. Why
is this so?

2. When you pound a nail with a hammer, the nail gets quite
warm. Describe the energy transformations that lead to the
addition of thermal energy in the nail.

For Questions 3 through 8, give a specific example of a system
with the energy transformation shown. In these questions, W is the
work done on the system by the environment, and K and U are the
kinetic and potential energies of the system, respectively.

3. with 
4. with 
5. with 
6. with 
7. with 
8. with 
9. A ball of putty is dropped from a height of 2 m onto a hard

floor, where it sticks. What object or objects need to be
included within the system if the system is to be isolated dur-
ing this process?

10. A 0.5 kg mass on a 1-m-long string swings in a circle on a hor-
izontal, frictionless table at a steady speed of 2 m/s. How
much work does the tension in the string do on the mass dur-
ing one revolution? Explain.

11. Particle A has less mass than particle B. Both are pushed for-
ward across a frictionless surface by equal forces for 1 s. Both
start from rest. 
a. Compare the amount of work done on each particle. That

is, is the work done on A greater than, less than, or equal to
the work done on B? Explain.

b. Compare the impulses delivered to particles A and B.
Explain.

c. Compare the final speeds of particles A and B. Explain
12. The meaning of the word “work” is quite different in physics

from its everyday usage. Give an example of an action a per-
son could do that “feels like work” but that does not involve
any work as we’ve defined it in this chapter.

13. To change a tire, you need to use a jack to raise one corner of
your car. While doing so, you happen to notice that pushing
the jack handle down 20 cm raises the car only 0.2 cm. Use
energy concepts to explain why the handle must be moved so
far to raise the car by such a small amount.

Questions 14 through 17 refer to a weightlifter raising a barbell
from the floor to above his head. Describe the energy transforma-
tions that occur if the system is chosen as specified in the question.
Use the notation of Section 10.2 for the various forms of energy
and energy transfer.
14. The system is the barbell alone.

DK 5 0.U S W
W 5 0.U S K
DU 5 0.K S W
W 5 0.K S U
DK 5 0.W S U
DU 5 0.W S K

15. The system is the weightlifter alone.
16. The system is the barbell plus the earth.
17. The system is the barbell plus the earth plus the weightlifter.

In Questions 18 through 20, imagine yourself doing a chin-up. You
start from rest with your arms extended above your head, and end
at rest with your elbows bent and your hands still gripping the bar.
Describe the energy transformations that occur if the system is cho-
sen as specified in the question. Use the notation of Section 10.2
for the various forms of energy and energy transfer.
18. The system is you alone.
19. The system is you plus the chin-up bar.
20. The system is you plus the chin-up bar plus the earth.
21. One kilogram of matter contains approximately of

nuclear energy. Why don’t we need to include this energy
when we study ordinary energy transformations?

22. A roller coaster car rolls down a frictionless track, reaching
speed vf at the bottom.
a. If you want the car to go twice as fast at the bottom, by

what factor must you increase the height of the track?
b. Does your answer to part a depend on whether the track is

straight or not? Explain.
23. A spring gun shoots out a plastic ball at speed The spring is

then compressed twice the distance it was on the first shot.
a. By what factor is the spring’s potential energy increased?
b. By what factor is the ball’s speed increased? Explain.

24. Sandy and Chris stand on the edge of a cliff and throw identi-
cal mass rocks at the same speed. Sandy throws her rock hori-
zontally while Chris throws his upward at an angle of 45° to
the horizontal. Are the rocks moving at the same speed when
they hit the ground, or is one moving faster than the other? If
one is moving faster, which one? Explain.

25. If you allow a can of chicken broth to join the rolling-object
race discussed in Example 10.10, it wins handily. A can of
tomato paste, on the other hand, ties with the cylinder. Why?
Hint: Try to picture how the stuff inside each can moves as
the can rolls.

26. A solid cylinder and a cylin-
drical shell have the same
mass, same radius, and turn
on frictionless, horizontal
axles. (The cylindrical shell
has light-weight spokes con-
necting the shell to the axle.)
A rope is wrapped around
each cylinder and tied to a
block. The blocks have the same mass and are held the
same height above the ground as shown in Figure Q10.26.
Both blocks are released simultaneously. The ropes do not
slip. Which block hits the ground first? Or is it a tie?
Explain.

vi.

1017 J

1 2

FIGURE Q10.26

from earlier chapters; are of biological or medical
interest. 
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27. You are much more likely to be injured if you fall on a con-
crete sidewalk than if you fall on a grassy field. Use energy
and work concepts to explain why this is so.

Multiple-Choice Questions

28. || If you walk up a flight of stairs at constant speed, gaining ver-
tical height h, the work done on you (the system, of mass m) is
A. by the normal force of the stairs.
B. by the normal force of the stairs.
C. by the gravitational force of the earth.
D. by the gravitational force of the earth.

29. | You and a friend each carry a 15 kg suitcase up two flights of
stairs, walking at a constant speed. Take each suitcase to be the
system. Suppose you carry your suitcase up the stairs in 30 s
while your friend takes 60 s. Which of the following is true?
A. You did more work, but both of you expended the same

power.
B. You did more work and expended more power.
C. Both of you did the same work, but you expended more

power.
D. Both of you did the same work, but you expended less power.

2mgh,
1mgh,
2mgh,
1mgh,

30. | A woman uses a pulley and a rope to raise a 20 kg weight to
a height of 2 m. If it takes 4 s to do this, about how much
power is she supplying?
A. 100 W B. 200 W C. 300 W D. 400 W

31. | A hockey puck sliding along frictionless ice with speed to
the right collides with a horizontal spring and compresses it
by 2.0 cm before coming to a momentary stop. What will be
the spring’s maximum compression if the same puck hits it at
a speed of 
A. 2.0 cm B. 2.8 cm C. 4.0 cm
D. 5.6 cm E. 8.0 cm

32. || A block slides down a smooth ramp and moves onto a level,
rough surface at a speed of 2.0 m/s. It comes to rest after trav-
eling 1.0 m. At what distance from the base of the ramp was
the block moving at 1.0 m/s?
A. 0.12 m B. 0.25 m C. 0.50 m D. 0.75 m

33. || A wrecking ball is suspended from a 5.0-m-long cable that
makes a 30° angle with the vertical. The ball is released and
swings down. What is the ball’s speed at the lowest point?
A. 7.7 m/s B. 4.4 m/s C. 3.6 m/s D. 3.1 m/s

2v?

v

P R O B L E M S

Section 10.4 Work

1. | During an etiquette class, you walk slowly and steadily at
for 2.5 m with a 0.75 kg book balanced on top of

your head. How much work does your head do on the book?
2. | A 2.0 kg book is lying on a 0.75-m-high table. You pick it

up and place it on a bookshelf 2.3 m above the floor.
a. How much work does gravity do on the book?
b. How much work does your hand do on the book?

3. || The two ropes seen in Figure P10.3 are used to lower a
255 kg piano exactly 5 m from a second-story window to the
ground. How much work is done by each of the three forces?

0.20 m/s

4. ||| The two ropes shown in the bird’s-eye view of Figure P10.4
are used to drag a crate exactly 3 m across the floor. How
much work is done by each of the ropes on the crate?

5. ||| a. At the airport, you ride a “moving sidewalk” that carries
you horizontally for 25 m at Assuming that you
were moving at before stepping onto the mov-
ing sidewalk and continue at afterward, how
much work does the moving sidewalk do on you? Your
mass is 60 kg.

b. An escalator carries you from one level to the next in the
airport terminal. The upper level is 4.5 m above the
lower level, and the length of the escalator is 7.0 m.

0.70 m/s
0.70 m/s

0.70 m/s.

How much work does the up escalator do on you when
you ride it from the lower level to the upper level?

c. How much work does the down escalator do on you
when you ride it from the upper level to the lower level?

6. | A boy flies a kite with the string at a angle to the hori-
zontal. The tension in the string is 4.5 N. How much work
does the string do on the boy if the boy
a. stands still?
b. walks a horizontal distance of 11 m away from the kite?
c. walks a horizontal distance of 11 m toward the kite?

Section 10.5 Kinetic Energy

7. | Which has the larger kinetic energy, a 10 g bullet fired at
or a 10 kg bowling ball sliding at 

8. | At what speed does a 1000 kg compact car have the same
kinetic energy as a 20,000 kg truck going 

9. || An oxygen atom is four times as massive as a helium atom.
In an experiment, a helium atom and an oxygen atom have the
same kinetic energy. What is the ratio of their speeds?

10. ||| Sam’s job at the amusement park is to slow down and bring
to a stop the boats in the log ride. If a boat and its riders have a
mass of 1200 kg and the boat drifts in at how much
work does Sam do to stop it?

11. || A 20 g plastic ball is moving to the left at How
much work must be done on the ball to cause it to move to the
right at 

12. | The turntable in a microwave oven has a moment of inertia
of and is rotating once every 4.0 s. What is its
kinetic energy?

13. | An energy storage system based on a flywheel (a rotating
disk) can store a maximum of 4.0 MJ when the flywheel is
rotating at 20,000 revolutions per minute. What is the moment
of inertia of the flywheel?

0.040 kg ? m2

30 m/s?

30 m/s.

1.2 m/s,

vHe/vO

25 km/hr?

10 m/s?500 m/s

30°
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5 m

5 m

30°

20°

FIGURE P10.21

Section 10.6 Potential Energy

14. | The lowest point in Death Valley is 85.0 m below sea level.
The summit of nearby Mt. Whitney has an elevation of 4420
m. What is the change in gravitational potential energy of an
energetic 65.0 kg hiker who makes it from the floor of Death
Valley to the top of Mt. Whitney?

15. | a. What is the kinetic energy of a 1500 kg car traveling at a
speed of 

b. From what height should the car be dropped to have this
same amount of kinetic energy just before impact?

c. Does your answer to part b depend on the car’s mass?
16. || A boy reaches out of a window and tosses a ball straight up

with a speed of The ball is 20 m above the ground as
he releases it. Use conservation of energy to find
a. The ball’s maximum height above the ground.
b. The ball’s speed as it passes the window on its way down.
c. The speed of impact on the ground.

17. || a. With what minimum speed must you toss a 100 g ball
straight up to just barely hit the 10-m-high ceiling of the
gymnasium if you release the ball 1.5 m above the
floor? Solve this problem using energy.

b. With what speed does the ball hit the floor?
18. || What minimum speed does a 100 g puck need to make it to

the top of a frictionless ramp that is 3.0 m long and inclined
at

19. || A car is parked at the top of a 50-m-high hill. It slips out of
gear and rolls down the hill. How fast will it be going at the
bottom? (Ignore friction.)

20. || A pendulum is made by tying a 500 g ball to a 75-cm-long
string. The pendulum is pulled to one side, then released.
a. What is the ball’s speed at the lowest point of its trajectory?
b. To what angle does the pendulum swing on the other side?

21. ||| A 1500 kg car is approaching the hill shown in Figure
P10.21 at when it suddenly runs out of gas.
a. Can the car make it to the top of the hill by coasting?
b. If your answer to (a) is yes, what is the car’s speed after

coasting down the other side?

10 m/s

30°

20°?

10 m/s.

(<65 mph)?30 m/s

22. | How much energy can be stored in a spring with a spring
constant of if its maximum possible stretch is 20 cm?

23. | How far must you stretch a spring with to
store 200 J of energy?

24. | A student places her 500 g physics book on a frictionless
table. She pushes the book against a spring, compressing the
spring by 4.00 cm, then releases the book. What is the book’s
speed as it slides away? The spring constant is

25. | A 10 kg runaway grocery cart runs into a spring with spring
constant and compresses it by 60 cm. What was the
speed of the cart just before it hit the spring?

26. | As a 15,000 kg jet lands on an aircraft carrier, its tail hook
snags a cable to slow it down. The cable is attached to a spring
with spring constant If the spring stretches 30 m
to stop the plane, what was the plane’s landing speed?

27. ||||| The elastic energy stored in your tendons can contribute up
to 35% of your energy needs when running. Sports scientists

60,000 N/m.

250 N/m

1250 N/m.

k 5 1000 N/m
500 N/m

have studied the change in length of the knee extensor tendon
in sprinters and nonathletes. They find (on average) that the
sprinters’ tendons stretch 41 mm, while nonathletes’ stretch
only 33 mm. The spring constant for the tendon is the same
for both groups, What is the difference in maxi-
mum stored energy between the sprinters and the nonathletes?

28. || You’re driving at when the road suddenly
descends 15 m into a valley. You take your foot off the accel-
erator and coast down the hill. Just as you reach the bottom
you see the police officer hiding behind the speed limit sign
that reads Are you going to get a speeding
ticket?

29. || Your friend’s Frisbee has become stuck 16 m above the
ground in a tree. You want to dislodge the Frisbee by throwing
a rock at it. The Frisbee is stuck pretty tight, so you figure the
rock needs to be traveling at least when it hits the
Frisbee. If you release the rock 2.0 m above the ground, with
what minimum speed must you throw it?

Section 10.7 Thermal Energy

30. | A 1500 kg car traveling at skids to a halt.
a. What energy transfers and transformations occur during

the skid?
b. What is the change in the thermal energy of the car and the

road surface?
31. || A 20 kg child slides down a 3.0-m-high playground slide.

She starts from rest, and her speed at the bottom is 
a. What energy transfers and transformations occur during

the slide?
b. What is the change in the thermal energy of the slide and

the seat of her pants?
32. ||| A fireman of mass 80 kg slides down a pole. When he

reaches the bottom, 4.2 m below his starting point, his speed
is By how much has thermal energy increased during
his slide?

Section 10.9 Energy in Collisions

33. | A 50 g marble moving at strikes a 20 g marble at
rest. What is the speed of each marble immediately after the
collision? Assume the collision is perfectly elastic.

34. | Ball 1, with a mass of 100 g and traveling at col-
lides head-on with ball 2, which has a mass of 300 g and is
initially at rest. What are the final velocities of each ball if the
collision is (a) perfectly elastic? (b) perfectly inelastic?

35. || A proton is traveling to the right at It has a
head-on, perfectly elastic collision with a stationary carbon
atom. The mass of the carbon atom is 12 times the mass of the
proton. What are the speed and direction of each after the
collision?

36. | Two balls undergo a perfectly elastic head-on collision, with
one ball initially at rest. If the incoming ball has a speed of

what are the final speed and direction of each ball if
a. the incoming ball is much more massive than the station-

ary ball?
b. the stationary ball is  much more massive than the incom-

ing ball?
37. |||| Derive Equations 10.19 for the final speeds of two objects

undergoing a perfectly elastic collision, with one object ini-
tially stationary.

200 m/s,

2.0 3 107 m/s.

10 m/s,

2.0 m/s

2.2 m/s.

2.0 m/s.

20 m/s

5.0 m/s

“70 km/hr.”

35 km/hr

33 N/mm.
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Section 10.10 Power

38. | a. How much work does an elevator motor do to lift a
1000 kg elevator a height of 100 m?

b. How much power must the motor supply to do this in
50 s at constant speed?

39. || a. How much work must you do to push a 10 kg block of
steel across a steel table at a steady speed of for
3.0 s? The coefficient of kinetic friction for steel on steel
is 0.60.

b. What is your power output while doing so?
40. | Which consumes more energy, a 1.2 kW hair dryer used for

10 min or a 10 W night light left on for 24 hr?
41. ||| A 1000 kg sports car accelerates from 0 to in 10 s.

What is the average power of the engine?
42. ||| In just 0.30 s, you compress a spring (spring constant

which is initially at its equilibrium length, by
4.0 cm. What is your average power output?

43. |||| In the winter sport of curling, players give a 20 kg stone a
push across a sheet of ice. A curler accelerates a stone to a
speed of over a time of 2.0 s.
a. How much force does the curler exert on the stone?
b. What average power does the curler use to bring the stone

up to speed?
44. |||| A 710 kg car drives at a constant speed of It is sub-

ject to a drag force of 500 N. What power is required from the
car’s engine to drive the car
a. on level ground?
b. up a hill with a slope of 

45. || An elevator weighing 2500 N ascends at a constant speed of
How much power must the motor supply to do this?

General Problems

46. ||| A 2.3 kg box, starting from rest, is pushed up a ramp by a
10 N force parallel to the ramp. The ramp is 2.0 m long and
tilted at 17°. The speed of the box at the top of the ramp is

Consider the system to be the 
a. How much work W does the force do on the system?
b. What is the change in the kinetic energy of the system?
c. What is the change in the gravitational potential

energy of the system?
d. What is the change in the thermal energy of the system?

47. || A 55 kg skateboarder
wants to just make it to the
upper edge of a “half-pipe”
with a radius of 3.0 m, as
shown in Figure P10.47.
What speed does he need
at the bottom if he is to coast all the way up?
a. First do the calculation treating the skateboarder and board

as a point particle, with the entire mass nearly in contact
with the half-pipe.

b. More realistically, the mass of the skateboarder in a deep
crouch might be thought of as concentrated 0.75 m from
the half-pipe. Assuming he remains in that position all the
way up, what is needed to reach the upper edge ?

48. || Fleas have remarkable jumping ability. If a 0.50 mg flea
jumps straight up, it will reach a height of 40 cm if there is no air
resistance. In reality, air resistance limits the height to 20 cm.
a. What is the flea’s kinetic energy as it leaves the ground?

vi

vi

DEth

DUg

DK

box 1 ramp 1 earth.0.80 m/s.

8.0 m/s.

2.0°?

23 m/s.

3.0 m/s

5000 N/m),

30 m/s

1.0 m/s

b. At its highest point, what fraction of the initial kinetic
energy has been converted to potential energy?

49. ||| A marble slides without friction in a vertical plane around
the inside of a smooth, 20-cm-diameter horizontal pipe. The
marble’s speed at the bottom is this is fast enough so
that the marble makes a complete loop, never losing contact
with the pipe. What is its speed at the top?

50. ||| A 20 kg child is on a swing that hangs from 3.0-m-long
chains, as shown in Figure P10.50. What is her speed at the
bottom of the arc if she swings out to a angle before
reversing direction?

45°
vi

3.0 m/s;

51. | Suppose you lift a 20 kg box by a height of 1.0 m.
a. How much work do you do in lifting the box?
Instead of lifting the box straight up, suppose you push it up a
1.0-m-high ramp that makes a degree angle with the hori-
zontal, as shown in Figure P10.51. Being clever, you choose a
ramp with no friction.
b. How much force F is required to push the box straight up

the slope at a constant speed?
c. How long is the ramp?
d. Use your force and distance results to calculate the work

you do in pushing the box up the ramp. How does this
compare to your answer to part a?

52. || A cannon tilted up at a angle fires a cannon ball at
from atop a 10-m-high fortress wall. What is the ball’s

impact speed on the ground below? Ignore air resistance.
53. ||| The sledder shown in Figure P10.53 starts from the top of a

frictionless hill and slides down into the valley. What initial
speed does the sledder need to just make it over the next hill?vi

80 m/s
30°

30°

3.0 mvi

FIGURE P10.47

54. ||| A 100 g granite cube slides down a frictionless incline.
At the bottom, just after it exits onto a horizontal table, the
granite collides with a 200 g steel cube at rest. How high
above the table should the granite cube be released to give the
steel cube a speed of 

55. || A 50 g ice cube can slide without friction up and down a
slope. The ice cube is pressed against a spring at the bot-

tom of the slope, compressing the spring 10 cm. The spring
constant is When the ice cube is released, what dis-
tance will it travel up the slope before reversing direction?

56. ||||| In a physics lab experiment, a spring clamped to the table
shoots a 20 g ball horizontally. When the spring is compressed
20 cm, the ball travels horizontally 5.0 m and lands on the
floor 1.5 m below the point at which it left the spring. What is
the spring constant?

25 N/m.

30°

150 cm/s?

40°



Problems 337

57. | The desperate contestants on a TV survival show are very
hungry. The only food they can see is some fruit hanging on a
branch high in a tree. Fortunately, they have a spring they can
use to launch a rock. The spring constant is and
they can compress the spring a maximum of 30 cm. All the
rocks on the island seem to have a mass of 400 g.
a. With what speed does the rock leave the spring?
b. If the fruit hangs 15 m above the ground, will they feast or

go hungry?
58. | The maximum energy a bone can absorb without breaking

is surprisingly small. For a healthy human of mass 60 kg,
experimental data show that the leg bones can absorb about
200 J.
a. From what maximum height could a person jump and land

rigidly upright on both feet without breaking his legs?
Assume that all the energy is absorbed in the leg bones in a
rigid landing.

b. People jump from much greater heights than this; explain
how this is possible.

Hint: Think about how people land when they jump from
greater heights.

59. || In an amusement park water slide, people slide down an
essentially frictionless tube. They drop 3.0 m and exit the slide,
moving horizontally, 1.2 m above a swimming pool. What hor-
izontal distance do they travel from the exit point before hitting
the water? Does the mass of the person make any difference?

60. || The 5.0-m-long rope in
Figure P10.60 hangs verti-
cally from a tree right at the
edge of a ravine. A woman
wants to use the rope to
swing to the other side of the
ravine. She runs as fast as
she can, grabs the rope, and
swings out over the ravine.
a. As she swings, what

energy conversion is taking place?
b. When she’s directly over the far edge of the ravine, how

much higher is she than when she started?
c. Given your answers to parts a and b, how fast must she be

running when she grabs the rope in order to swing all the
way across the ravine?

61. ||| You have been asked to design a “ballistic spring system”
to measure the speed of bullets. A bullet of mass m is fired
into a block of mass M. The block, with the embedded bullet,
then slides across a frictionless table and collides with a hori-
zontal spring whose spring constant is k. The opposite end of
the spring is anchored to a wall. The spring’s maximum com-
pression d is measured.
a. Find an expression for the bullet’s initial speed in terms

of m, M, k, and d.
Hint: This is a two-part problem. The bullet’s collision with
the block is an inelastic collision. What quantity is conserved
in an inelastic collision? Subsequently the block hits a spring
on a frictionless surface. What quantity is conserved in this
collision?
b. What was the speed of a 5.0 g bullet if the block’s mass is

2.0 kg and if the spring, with was com-
pressed by 10 cm?

c. What fraction of the bullet’s initial kinetic energy is
“lost”? Where did it go?

k 5 50 N/m,

vB

1000 N/m,

62. || A new event, shown in
Figure P10.62, has been
proposed for the Winter
Olympics. An athlete will
sprint 100 m, starting
from rest, then leap onto a
20 kg bobsled. The person
and bobsled will then slide down a 50-m-long ice-covered
ramp, sloped at 20°, and into a spring with a carefully cali-
brated spring constant of The athlete who com-
presses the spring the farthest wins the gold medal. Lisa,
whose mass is 40 kg, has been training for this event. She can
reach a maximum speed of in the 100 m dash.
a. How far will Lisa compress the spring?
b. The Olympic committee has very exact specifications

about the shape and angle of the ramp. Is this necessary? If
the committee asks your opinion, what factors about the
ramp will you tell them are important?

63. ||| A 20 g ball is fired horizontally with initial speed toward
a 100 g ball that is hanging motionless from a 1.0-m-long
string. The balls undergo a head-on, perfectly elastic collision,
after which the 100 g ball swings out to a maximum angle

What was 
64. | A 70 kg human sprinter can accelerate from rest to 10 m/s

in 3.0 s. During the same interval, a 30 kg greyhound can
accelerate from rest to 20 m/s. Compute (a) the change in
kinetic energy and (b) the average power output for each.

65. || A 50 g ball of clay traveling at speed hits and sticks to a
1.0 kg block sitting at rest on a frictionless surface.
a. What is the speed of the block after the collision?
b. Show that the mechanical energy is not conserved in this

collision. What percentage of the ball’s initial kinetic
energy is “lost”? Where did this kinetic energy go?

66. || A package of mass m is released from rest at a warehouse
loading dock and slides down a 3.0-m-high frictionless chute
to a waiting truck. Unfortunately, the truck driver went on a
break without having removed the previous package, of mass
2m, from the bottom of the chute as shown in Figure P10.66.
a. Suppose the packages stick together. What is their com-

mon speed after the collision?
b. Suppose the collision between the packages is perfectly

elastic. To what height does the package of mass m
rebound?

vi

vi ?umax 5 50°.

vi

12 m/s

2000 N/m.

5.0 m

3.0 m

FIGURE P10.60

20°

FIGURE P10.62

3.0 m

m

2m

FIGURE P10.66

67. |||| A 50 kg sprinter, starting from rest, runs 50 m in 7.0 s at
constant acceleration.
a. What is the magnitude of the horizontal force acting on the

sprinter?
b. What is the sprinter’s average power output during the first

2.0 s of his run?
c. What is the sprinter’s average power output during the

final 2.0 s?
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68. ||| Bob can throw a 500 g rock with a speed of He
moves his hand forward 1.0 m while doing so.
a. How much force, assumed to be constant, does Bob apply

to the rock?
b. How much work does Bob do on the rock?

69. ||||| A 2.0 hp electric motor on a water well pumps water from
10 m below the surface. The density of water is 1.0 kg per L.
How many liters of water can the motor pump in 1 hr?

70. | The human heart has to pump the average adult’s 6.0 L of
blood through the body every minute. The heart must do work
to overcome frictional forces that resist the blood flow. The
average blood pressure is 
a. Compute the work done moving the 6.0 L of blood com-

pletely through the body, assuming the blood pressure
always takes its average value.

b. What power output must the heart have to do this task once
a minute?

Hint: When the heart contracts, it applies force to the blood.
Pressure is just so we can write

But is just the blood vol-
ume passing through the heart.

Passage Problems

Tennis Ball Testing

A tennis ball bouncing on a hard surface compresses and then
rebounds. The details of the rebound are specified in tennis regula-
tions. Tennis balls, to be acceptable for tournament play, must have
a mass of 57.5 g. When dropped from a height of 2.5 m onto a con-
crete surface, a ball must rebound to a height of 1.4 m. During
impact, the ball compresses by approximately 6 mm.
71. | How fast is the ball moving when it hits the concrete sur-

face? (Ignore air resistance.)
A. B. C. D.

72. | If the ball accelerates uniformly when it hits the floor, what is
its approximate acceleration as it comes to rest before
rebounding?

A. B. C. D. 4000 m/s23000 m/s22000 m/s21000 m/s2

50 m/s25 m/s7 m/s5 m/s

(area)(distance)(area)(distance).
work 5 (pressure)force/area,

1.3 3 104 N/m2.

30 m/s. 73. | The ball’s kinetic energy just after the bounce is less than
just before the bounce. In what form does this lost energy
end up?
A. Elastic potential energy
B. Gravitational potential energy
C. Thermal energy
D. Rotational kinetic energy

74. | By what percent does the kinetic energy decrease?
A. 35% B. 45% C. 55% D. 65%

75. | When a tennis ball bounces from a racket, the ball loses
approximately 30% of its kinetic energy to thermal energy. A
ball that hits a racket at a speed of will rebound with
approximately what speed?
A. B. C. D.

Work and Power in Cycling

When you ride a bicycle at constant speed, almost all of the energy
you expend goes into the work you do against the drag force of the
air. In this problem, assume that all of the energy expended goes
into working against drag. As we saw in Section 5.7, the drag force
on an object is approximately proportional to the square of its speed
with respect to the air. For this problem, assume that exactly
and that the air is motionless with respect to the ground unless
noted otherwise. Suppose a cyclist and her bicycle have a com-
bined mass of 60 kg and she is cycling along at a speed of
76. | If the drag force on the cyclist is 10 N, how much energy

does she use in cycling 1 km?
A. 6 kJ B. 10 kJ C. 50 kJ D. 100 kJ

77. | Under these conditions, how much power does she expend
as she cycles?
A. 10 W B. 50 W C. 100 W D. 200 W

78. | If she doubles her speed to how much energy does
she use in cycling 1 km?
A. 20 kJ B. 40 kJ C. 400 kJ D. 400 kJ

79. | How much power does she expend when cycling at that
speed?
A. 100 W B. 200 W C. 400 W D. 1000 W

80. | Upon reducing her speed back down to she hits a
headwind of How much power is she expending now?
A. 100 W B. 200 W C. 500 W D. 1000 W

5 m/s.
5 m/s,

10 m/s,

5 m/s.

F ~ v2

3.0 m/s4.5 m/s7.0 m/s8.5 m/s

10 m/s

STOP TO THINK ANSWERS

Stop to Think 10.1: D. Since the child slides at a constant speed,
his kinetic energy doesn’t change. But his gravitational potential
energy at the top of the slide decreases as he descends, and is trans-
formed into thermal energy in the slide and his bottom.

Stop to Think 10.2: C. The 10 N force at does
no work at all. so the 8 N force does less work than
the 6 N force.

Stop to Think 10.3: Using the
given masses and velocities, we find 

Stop to Think 10.4: Gravita-
tional potential energy depends only on height, not speed.

(Ug)3 + (Ug)2 5 (Ug)4 + (Ug)1 .

KD 5 4.0 J.KC 5 2.0 J,
KB 5 4.5 J,KA 5 2.0 J,

K 5 (1/2)mv2.B + D + A 5 C.

cos 60° 5 1
2 ,

90°W 5 Fd cos u.

Stop to Think 10.5: C. depends on so doubling the com-
pression increases by a factor of 4. All the potential energy is
converted to kinetic energy, so K increases by a factor of 4. But K
depends on so increases by only a factor of 

Stop to Think 10.6: The power here is the
rate at which each runner’s internal chemical energy is converted
into gravitational potential energy. The change in gravitational
potential energy is so the power is For runner A,
the ratio equal For
C, it’s the same. For B, it’s while for D the ratio is
64 kg ? m/s.

100 kg ? m/s,
(80 kg)(10 m)/(10 s) 5 80 kg ? m/s.mDy/Dt

mgDy/Dt.mgDy,

PB + PA 5 PC + PD .

"4 5 2.vv2,

Us

x2,Us


