Lecture 7:

Wind Power
Key facts about wind power

Overview

• ~0.5% of incident solar power is converted into wind and this could generate globally ~ 20 TWe
• Carbon and pollution free
• Growth of 17% a year since 2010
• 433 GW in 2015, 3.7% of global electricity demand
• Could produce 15-18% of global electricity by 2050
• Wind farms already generate a significant amount in several countries e.g 42% in Denmark

Kinetic energy of wind per unit volume

\[E = \frac{1}{2} \rho u^2 \]

Volume per second = \[uA \]

Power of wind

\[P = E \times uA = \frac{1}{2} \rho Au^3 \]

(note strong dependence on wind speed)

e.g. \(u = 10 \text{ m s}^{-1} \), blade diameter = 100 m, \(\rho = 1.2 \text{ kg m}^{-3} \), generates

\[P = \frac{1}{2} \left(1.2\right) \left(3.14 \times 50^2\right)10^3 = 4.8 \text{ MW} \]

Efficiency of wind turbine

Maximum possible efficiency = 59% (Betz Limit); Typical efficiency = 40%
Modern wind turbines

Horizontal axis wind turbine (HAWT)

Vertical axis wind turbine (VAWT)

VAWTs do not need a yaw mechanism (direction controller) and are easier to maintain than HAWTs, but HAWTs are more cost effective.

Fig. 7.3 Modern 5 MW horizontal-axis wind turbine.

Fig. 7.4 Darrieus vertical-axis wind turbine.
The wind loses kinetic energy as it does work on the turbine. It therefore slows down and the area of the stream-tube passing through the turbine increases.

By mass conservation,

\[u_0 A_0 = u_1 A_1 = u_2 A_2 \]

\[P = \frac{1}{2} \left(\frac{16}{27} \right) \rho A_1 u_0^3 \]

Hence, only a fraction \(\frac{16}{27} = 59\% \) of the incident power of the wind can be extracted - the Betz limit.

In general, we write power output as

\[P = \frac{1}{2} C_p \rho A_1 u_0^3 \]

where \(C_p = \text{power coefficient} \).
Blade design

Blades are aerofoil-shaped. Airflow faster over top because of circulation around the aerofoil and the pressure is therefore (Bernoulli’s eqn) lower giving rise to lift L

Velocity of the air makes an angle ϕ to direction of the blade. The drag D reduces the rotational force produced by the lift L to

$$L \sin \phi - D \cos \phi$$

As a result the power coefficient C_P is reduced to ~45%

Blade speed at radius r is given by

$$v = \frac{r \nu_{\text{tip}}}{R} = \frac{u_0 \lambda r}{R}$$

where $\lambda = \frac{\nu_{\text{tip}}}{u_0}$ is the tip-speed ratio

Blade twist is designed to optimise the angle of attack α at any given radius r, and the optimum width is a function of λ
2 MW turbine under construction

Credit: Steve Baxter/ Getty Images
Tip-speed ratio and power coefficient

Tip-speed ratio \(\lambda = \frac{v_{\text{tip}}}{u_0} \) is an important parameter for optimising the power coefficient, \(C_p \), and hence the power output of the turbine. In the Figure the maximum power is obtained with a tip-speed ratio of 10.

Fig. 7.7 \(C_p-\lambda \) curve for a high tip-speed ratio wind turbine.
Modern materials such as carbon fibre and carbon fibre/glass composites allow turbines to operate without significant fatigue for up to 30 years (typically 10^8 revolutions).

A material with the lowest b coefficient is not necessarily the best, since the static strength is also important.
Rated power = maximum continuous power that turbine can produce. e.g. typical turbine in 1985 had rated power 80 kW, rotor diameter 20 m, hub height 30 m, Typical modern 5 MW HAWT has rotor diameter 125 m, hub height 120 m.

Rated wind speed = speed needed to deliver maximum output power

Capacity factor = (annual energy output)/(energy output at rated power)

Global average capacity factor in 2014 was 0.21
For sites with an annual mean speed greater than 4.5 m s\(^{-1}\), the Rayleigh distribution gives a good estimate of the probability of any particular wind speed. The Rayleigh distribution for a mean wind speed of 8 m s\(^{-1}\) is shown below.
Local effects

Variation with height

Wind speed u varies strongly with height z. An empirical formula for the variation is

$$u(z) = u_s \left(\frac{z}{z_s} \right)^{\alpha_s}$$

where z_s is the height at which u is measured to be u_s and $\alpha_s =$ wind shear coefficient, obtained from some empirical correlation.

e.g.

$$\alpha_s = \frac{1}{2} \left(\frac{z_0}{10} \right)^{0.2}$$

where z_0 is a surface roughness parameter, which is a measure of the roughness of terrain.

Table 7.2 Surface roughness (z_0) values

<table>
<thead>
<tr>
<th>Terrain</th>
<th>z_0 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban areas</td>
<td>3–0.4</td>
</tr>
<tr>
<td>Farmland</td>
<td>0.3–0.002</td>
</tr>
<tr>
<td>Open sea</td>
<td>0.001–0.0001</td>
</tr>
</tbody>
</table>
Wind farms

In a wind farm it is important to arrange the layout and spacing to minimise interference effects between turbines. A spacing of 7-8 diameters downwind and 4-5 diameters crosswind is typical when space is not a premium; array loss would then be around 5-10%.

Advantages of offshore over onshore wind farms:
- Higher average wind speeds
- Higher capacity factors (39% compared with 22%)
- Less turbulence (=less fatigue)
- Less obtrusive
- Can be larger
- More sites

Disadvantages of offshore over onshore wind farms:
- Higher construction and maintenance costs
- More expensive to connect to grid

Typical power densities are \(\sim 2 \text{ MW km}^{-2} \) for wind farms on land and \(\sim 3 \text{ MW km}^{-2} \) for farms offshore.

Source: Wikimedia Commons, Andy Dingley CC BY SA 3.0
Environmental impact of wind farms

CO₂ emissions of order 10 tonnes GWh⁻¹ (associated with construction), comparable with hydro and nuclear plants; c.f. CCGT plant ~ 450 tonnes GWh⁻¹

Public opposition to wind turbines in areas of outstanding natural beauty (environmental impact assessment required)

Bird deaths due to turbines are very small compared with those due to cars and cats, except on migratory paths

Noise can be an issue if close to built-up areas (see below)

Table 7.4 Noise levels in dB

<table>
<thead>
<tr>
<th>Noise</th>
<th>Noise level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold of pain</td>
<td>140</td>
</tr>
<tr>
<td>Pneumatic drill at 7 m</td>
<td>95</td>
</tr>
<tr>
<td>Busy general office</td>
<td>60</td>
</tr>
<tr>
<td>Wind farm at 350 m</td>
<td>35–45</td>
</tr>
<tr>
<td>Rural night-time background</td>
<td>20–40</td>
</tr>
<tr>
<td>Threshold of hearing</td>
<td>0</td>
</tr>
</tbody>
</table>

\[I(\text{dB}) = 10 \log_{10}(I/I_0), \text{ where } I_0 \text{ is the threshold of hearing (at 1000 Hz } I_0 = 10^{-12} \text{ W m}^{-2}). \]

*Source: UK Department of the Environment, 1993 in Boyle *Renewable Energy*. [1]*
Economics of wind power depends on

- **Capital cost** of construction and **Operational costs**
- **Revenue** from sale of electricity and **Interest rate on borrowed capital**
- **Discounting** – future revenue is worth less than it is now

- ‘**Learning rate**’ - % fall in capital cost due to increasing global production (19% for each doubling between 1985-2015 of onshore)

- Offshore wind costs falling and first zero-subsidy bid ≡ ~£60 MWh⁻¹ awarded to DONG Energy for operation in 2024 - will use 13-15 MW turbines

Onshore wind now competitive with fossil fuel generation; i.e. has achieved grid-parity
Wind variability and penetration

Variability of wind speed means that *back-up generators* are needed when the wind is not blowing. Typically, up to ~20% **penetration** can be accommodated.

Interconnectors can help e.g. Denmark has much higher penetration (>40%) due to strong grid connections with Germany and Norway.

Also, **demand management** where the demand is changed to match the supply through a **smart grid**; e.g. interrupting the supply where there is thermal inertia.

Increasing the capacity of variable renewables helps, but can make the marginal cost effectively zero; the shortfall in revenue is called the **missing money** problem.

Storage plants can be used, if available; e.g. pumped or battery storage.
Global wind distribution and potentials

Electricity consumption in 2014, and technical wind potentials for the eight highest-consuming countries plus the UK and Europe

<table>
<thead>
<tr>
<th>Country</th>
<th>Electricity* (TWh)</th>
<th>Technical potential (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Onshore</td>
<td>Offshore</td>
</tr>
<tr>
<td>China</td>
<td>4833</td>
<td>39,000</td>
</tr>
<tr>
<td>USA</td>
<td>3830</td>
<td>74,000</td>
</tr>
<tr>
<td>India</td>
<td>998</td>
<td>2900</td>
</tr>
<tr>
<td>Japan</td>
<td>903</td>
<td>570</td>
</tr>
<tr>
<td>Russia</td>
<td>873</td>
<td>120,000</td>
</tr>
<tr>
<td>Canada</td>
<td>538</td>
<td>78,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>524</td>
<td>250</td>
</tr>
<tr>
<td>Germany</td>
<td>516</td>
<td>3,200</td>
</tr>
<tr>
<td>South Korea</td>
<td>499</td>
<td>130</td>
</tr>
<tr>
<td>UK</td>
<td>349</td>
<td>4,400</td>
</tr>
<tr>
<td>Europe</td>
<td>~3200</td>
<td>45,000</td>
</tr>
</tbody>
</table>
Outlook for wind power

Global installed capacity increased by over 50% between 2010 and 2015 now over 3% of global electricity demand (433 GW in 2015)
Significantly higher in several countries: Denmark 42%, Ireland 23%, Portugal 23%, Spain 18%; Uruguay 15%.

IEA global forecast: 2300-2800 GW by 2050 (15-18% of global electricity demand)

Wind power is already competitive with fossil fuels in many countries
Key Points

- **Global onshore potential** = 20 TWe (c.f. global electricity demand of 2.5 TWe in 2014)

- Power of wind proportional to **cube of wind speed**

- **Power output** of wind turbine $P = \frac{1}{2} C_p \rho A \mu_0^3$

- Max. power coefficient, $C_p = \frac{16}{27} \approx 0.59$ (Betz limit). Typically, $C_p = 0.45$

- **Rated power of modern turbines** = 1.5 - 5 MW, diameters $D = 70 – 125$ m, capacity factors 0.2 – 0.4.

- **Spacing of turbines** on wind farms is typically (4-5) $D \times (7-8) D$

- **Power density** ~2 MW km$^{-2}$ onshore; ~3 MW km$^{-2}$ offshore

- Growth in installed capacity has grown at **17% per annum** since 2010

- **Installed capacity** = 433 GW in 2015 (3.7% of global electricity demand)

- **Accessible potential** by 2050 1000 – 2000 GWe of continuous output $\equiv 30 – 60$ EJ y^{-1}