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Rotor Aerodynamic Theory

1.1 Introduction

Theoretical background in energy extraction generalities and more specifically rotor
aerodynamics of horizontal axis wind turbines (HAWTs) is developed in this chapter.
Some prior knowledge of fluid dynamics in general and as applied to the analysis of
wind turbine systems is assumed, in particular basic expressions for energy in a fluid
flow, Bernoulli’s equation, definitions of lift and drag, some appreciation of stall as an
aerodynamic phenomenon and blade element momentum (BEM) theory in its conventional
form as applied to HAWTs. Nevertheless some of this basic knowledge is also reviewed,
more or less from first principles. The aim is to express particular insights that will assist
the further discussion of issues in optimisation of rotor design and also aid evaluation of
various types of innovative systems, for example those that exploit flow concentration.

Why focus much at all on theory in a book about innovative technology? Theory is often
buried in more or less opaque computer code which may generate loads and information
that engineers can use in design. However, as will be amplified in following chapters, theory
is in itself;

• Food for innovation and suggestive of methods of performance enhancement or alternative
concepts.

• A basis for understanding what is possible and providing an overview appraisal of
innovative concepts.

• A source of analytic relationships that can guide early design at a stage where many key
parameters remain to be determined and there are too many options to subject each to
detailed evaluation.

Prior to discussions of actuator disc theory and the BEM theory that has underpinned
most practical engineering calculations for rotor aerodynamic design and determination
of wind turbine loads, some discussion of aerodynamic lift is presented. This is intended
particularly to highlight a few specific insights which can guide design and evaluation of
wind energy systems. In general, a much more detailed understanding of basic aerodynamics
is required in wind turbine design. This must cover a wide range of topics, 2D and 3D flow
effects in relation to aerofoil performance, stall behaviour, aeroelastic behaviour, unsteady
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12 Innovation in Wind Turbine Design

effects including stall hysteresis and induction lag, determination of suitable aerofoil data for
wide ranges in angle of attack, and so on. References [1–10] are a sample from extensive
published work covering some of these issues.

1.2 Aerodynamic Lift

The earliest wind turbines tended to use the more obvious drag forces [11] experienced by
anyone exposed to wind on a windy day and use of the potentially more powerful lift forces
was almost accidental. Exploitation of the aerodynamic lift force is at the heart of efficient
modern wind turbines but surprisingly the explanation of lift has been quite contentious.
Before entering that territory consider first Bernoulli’s equation which is derived in many
standard sources on fluid mechanics. Ignoring gravitational, thermal and other energy sources
and considering only pressure, this equation becomes: p + 1/2ρV 2 = p0 where p is static
pressure in a fluid element moving with a velocity of magnitude V , ρ is fluid density and
p0 is the total pressure which, in the absence of energy extraction, is constant along any
streamline in the flow field.

Bernoulli’s equation is essentially an energy equation which is expressed dimensionally
in units of pressure and can be viewed as conservation of energy per unit volume of the
fluid. In that connection, pressure can be regarded as the source potential energy (per unit
volume) that drives fluid flow. This interpretation is discussed subsequently and is seen to
be crucial to a clear understanding of how a wind turbine rotor works.

Returning to the issue of aerodynamic lift, one view of the explanation of the lift force
has been that the fluid, should it have a longer path to traverse on one side of an aerofoil,
will travel faster in order to meet the fluid flowing past the other side at the trailing edge
of the aerofoil. With increase in velocity, the associated static pressure in that region will
reduce in consequence of Bernoulli’s equation. The pressure deficit on the side of the plate
with the longer flow path is then considered the source of the lift force.

There are various problems with this as an explanation of the lift force. Firstly, a thin
plate set at an angle in a uniform flow field will generate significant lift when, considering
its shape, there is negligible difference between the upper surface and lower surface paths.
Secondly, if an aerofoil with a shape with a noticeably longer flow path on one side is
considered and the assumption that the flow on each side will traverse the length of the
aerofoil in equal times (something in itself that can be challenged) is made, the difference in
static pressure calculated on the basis of the implied velocities on each side of the aerofoil
will be found quite insufficient to account for the observed lift force.

An apparently authenticated story relates to the efforts of the famous physicist Albert
Einstein in aerofoil development. Einstein’s effort, inspired by the path length related con-
cept, was a miserable failure1 and he later commented ‘That is what can happen to a man
who thinks a lot but reads little.’

1 According to Carl Seelig (Albert Einstein: A Documentary Biography by Carl Seelig, 1960, pp 251–252; Trans-
lated by Mervyn Savill, London: Staples Press, Bib ID 2263034), an accredited biographer of Einstein: ‘It is not
well known that . . . Einstein . . . undertook a new aerofoil design intended for serial production. Eberhard, the
chief test pilot, treated the fruit of the famous theoretician’s efforts with suspicion.’ ‘Ehrhardt’s letter continues
(EA 59-556, as quoted in Folly 1955): A few weeks later, the “cat’s back aerofoil” had been fitted to the normal
fuselage of a LVG biplane, and I was confronted with the task of testing it in flight. . . . I . . . expressed the fear
that the machine would react to the lack of angle of incidence in the wing by dropping its tail and would thus
presumably be obliged to take off in an extremely unstable attitude. Unfortunately the sceptic in one proved to be
right, for I hung in the air like a “pregnant duck” after take-off and could only rejoice when, after flying painfully
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Considering the basic definition of lift as the force created on an object at right angles
to the incident flow, it is evident that such a force, like all forces according to Newton’s
Second Law, will be associated with a rate of change of momentum in that direction. Thus
the magnitude of the lift force will in principle be unambiguously determined by integrating
all the components of momentum in the flow field normal to the incident flow that result
from the object causing deviation of the flow.

Whilst this explanation is pure and fundamental it does not immediately shed light on
why lift forces can be so large.

The explanation relating to Bernoulli’s equation has some relevance here. Where flow is
accelerated around a curved surface, the reduction in static pressure assists in maintaining
attachment of the flow and contributes to large suction forces. As nature proverbially abhors
a vacuum, strong suction on the boundary layer near a curved surface will induce a large
deviation in the general fluid flow some distance from the surface thereby giving a large
overall change in fluid momentum and producing a strong lift force. Aerofoil design is very
much about the extent to which such forces can be sustained as the curvature is increased
and more severe changes of flow direction are attempted in order to increase lift.

An associated consequence of the Bernoulli equation is the so-called Coanda effect.
Aerofoils with elliptical section were developed and used on the X-wing plane/helicopter
design [12]. Such aerofoils will have only moderate lifting capability attributable to their
shape alone. However the discharge of a thin jet of air tangential to the surface near the
trailing edge will attract the general flow to the jet and cause a much larger deviation in
flow direction and consequently much enhanced lift.

The ‘attraction’ of the jet to the surface arises as the jet brings increased momentum into
the boundary layer where the jet flow is next to the body surface. This overcomes the natural
tendency of the (reduced momentum) boundary layer to separate under the adverse (rising)
streamwise pressure gradient due to the aerofoil curvature. Due to the large curvatures
involved, there is a noticeable pressure change across the jet which can be calculated from
the mass flow rate in the jet and the radius of curvature of the flow. The jet tries to entrain
any fluid between itself and the wall (very efficiently because it is normally turbulent) and
this entrainment keeps it attached to the wall. Then, because the streamlines are now curved,
the wall pressure falls below the external ambient value. In fact, in the absence of external
flow incident on the aerofoil, such a jet will almost completely encircle the aerofoil.

This phenomenon is often called the Coanda effect in recognition of Henri-Marie Coanda
who discovered it apparently through rather hazardous personal experience.2 Controlling
lift on an aerofoil section by blowing a jet tangential to the surface is often referred to as
circulation control. It is a form of boundary layer control which has been considered for
regulation of loads and control or performance enhancement of wind turbine blades [13].

Lift is intimately related to vorticity [14]. Associated with this is the Magnus effect,
whereby a rotating cylinder (or sphere) can generate lift. This affects the flight of balls in
many sports, has been employed in the form of the Flettner rotor [15] to power ships and
has been exploited in at least two innovative wind turbine designs [16, 17]. Wikipedia [18]

down the airfield, I felt solid ground under my wheels again just short of the airfield at Aldershof. The second
pilot had no greater success, not until the cat’s back aerofoil was modified to give it an angle of incidence could
we venture to fly a turn, but even now the pregnant duck had merely become a lame duck’.
2 Henri Coanda was asked to devise a system to divert the hot jet discharges from an aircraft’s engines away from
the cockpit and fuselage. In blowing air to this end, the jet did exactly the opposite and attracted the hot gases to
the fuselage surface with dangerous consequences.
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is quite informative on lift, vorticity and the Magnus effect and also provides commentary
on some popular incomplete views such as have been discussed.

Finally in the context of wind turbine systems, lift may also be involved in the performance
of wind devices that have been casually categorised as ‘drag’ devices (see Section 13.2).

1.3 The Actuator Disc

The actuator disc is a valuable concept that arose early in the development of analyses of
rotors and propellers. Without any specific knowledge of or assumptions about the system
that may extract energy flowing through an arbitrary area in a uniform flow field, con-
sideration of energy and momentum conservation allow some basic information about the
consequent flow and limits on maximum possible energy extraction to be established.

This theory is summarised for a rotor (or other energy extraction device) in open flow
(Figure 1.1). The analysis leads to Froude’s theorem3 and the well known Betz limit. In
addition, actuator disc theory is further presented in a recently developed, more generalised
form that will also deal with a rotor in constrained flow (Figure 1.2). Constrained flow is
defined as the situation in which:

• an object is introduced into a flow field which modifies at least locally an otherwise
uniform flow field of constant velocity;

• no energy is introduced or extracted by that object (conservative system).

An energy extraction device may then be introduced into the constrained flow field in
principle anywhere but most usually in a region of flow concentration where there is a
higher local velocity and hence higher mass flow though unit area normal to the flow than
in the far upstream flow. Typical examples of constrained flow are where there is a hill, a
duct or a diffuser.

In the context of evaluating innovation, the point of considering this more general sit-
uation is twofold. Understanding the limitations on power performance of wind farms in
complex terrain (hills) is a mainstream concern. Although there are no mainstream large
scale commercial wind energy systems that exploit flow concentration systems, nevertheless
such systems have long been considered, some developed to prototype stage, and others
are under present development. So they continue to receive increasing attention among
innovative wind turbine designs.

Figure 1.1 represents a rotor in open flow. The flow field in the absence of the rotor
would be of constant velocity everywhere and parallel to the axis of the rotor.

Figure 1.2 represents a rotor in a diffuser (toroid with aerofoil cross section as indi-
cated). This is an example of constrained flow. Even in the absence of the rotor and of any
energy extraction, the flow in a region around the diffuser is altered4 by its presence and is
substantially non-uniform.

3 This is the result (for open flow) that the velocity at the rotor (energy extraction) plane is the average of the far
upstream velocity and far wake velocity.
4 It may also be noted that the ground itself, even if completely level, constrains the flow. Although the ground
effect extends in all directions to infinity its constraint effect on the streamlines does exist locally near the wind
turbine as if there is a mirror image of the turbine in the ground. It is not normally taken into account, but the effect
is quite noticeable for example on the wake which because of its swirl lies at a small angle to the free stream.
In contrast the wind shear effect associated with the ground boundary layer is not due to the normal velocity
constraint and extends everywhere independent of the presence of the turbine.
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wind direction expanding wake

rotor plane

Figure 1.1 Open flow

Figure 1.2 Constrained flow example (diffuser)

1.4 Open Flow Actuator Disc

1.4.1 Axial Induction

The axial induction at the rotor plane is defined as the fractional reduction in far upstream
wind speed local to the rotor. Thus (see Figure 1.3) the velocity through the rotor
plane is

V1 = V0(1 − a) (1.1)

Considering change in kinetic energy between far upstream and far wake, the power
(rate of change of kinetic energy) extracted P is:

P = 1

2
ρA0V

3
0 − 1

2
ρA2V

3
2 (1.2)

From continuity of flow, ρA0V0 = ρA2V2. Hence:

P = 1

2
ρA0V0

(
V 2

0 − V 2
2

)
(1.3)
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V0

A0

V2

A2

V1 = V0 (1−a) 

A1 = A0 /(1−a) 

Figure 1.3 Open flow actuator disc model

1.4.2 Momentum

The mass flow rate through rotor plane is ρA1V1. The change in fluid velocity between
upstream far wake is (V0 − V2). Hence, rotor thrust as rate of change of momentum through
the rotor plane is

T = ρA1V1 (V0 − V2) (1.4)

and power, P is

P = T V1 (1.5)

= ρA0V
2
0 (1 − a) (V0 − V2) (1.6)

From Equations 1.3 and 1.6:

V2 = V0 (1 − 2a) (1.7)

Thus the far wake induction is twice the value at the rotor plane. This result was first
derived by Froude [19]. Defining power coefficient Cp as the ratio of fraction of energy
extracted by the rotor to the amount that would pass through the rotor swept area with the
rotor absent, then:

P = 1

2
ρAV 3Cp (1.8)

Considering Equation 1.8 and substituting for V2 from equation in Equation 1.3 leads to

Cp = 4a (1 − a)2 (1.9)

Differentiating Equation 1.9 to determine a maximum leads to a = 1/3 and to the Betz limit:

Cp = 16/27 (1.10)

Investigations by Bergey [20] and van Kuik [21] indicated that Lanchester (1915), Betz
(1920) and Joukowski (1920) may all have, probably independently and certainly by
methods differing in detail, determined the maximum efficiency of an energy extraction
device in open flow. Most recently, further investigation by Okulov and van Kuik [22]
suggests that the attribution to Lanchester by Bergey is inappropriate. Thus the Betz limit
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may perhaps most properly be called the Betz-Joukowski limit although for convenience
the short reference as Betz limit is retained.

Although open flow actuator disc theory is some 90 years old, it is by no means ‘done
and dusted’. Van Kuik [23] in considering edge effects at the disc suggests that the axial
induction at the rotor may be less than predicted by the foregoing simple model and hence
the velocity at the rotor plane greater than V0+V2

2 . Others consider a similar outcome to be
due to external flows assisting transport of the wake and therefore contributing additional
energy to the system. It should be noted that the actuator disc models in their basic form
deal only with inviscid flow.

1.5 Generalised Actuator Disc Theory

Especially among innovative wind turbine systems, there has been continuing interest in
concepts to augment or concentrate flow with the idea that a smaller, lighter, perhaps faster
and certainly less expensive rotor can extract as much energy as a large rotor in open flow.
Of course these benefits must be traded against the cost of the system that augments the
flow. The usual means of augmentation is by placing the rotor in a duct or diffuser which
serves to induce extra mass flow through the rotor as compared to open flow. More exotic
concepts have also been considered using vanes [24] or a delta wing [25] to induce vortices
creating regions of intensified flow. Coming down to earth, quite literally, the least exotic
and most commonplace flow augmenter is a hill top.

In spite of the longstanding interest in flow concentration systems, in ducted rotors and
the longevity of the Betz result (Equation 1.10) for wind turbines in open flow, until recently
there was no corresponding theory to specify the ideal limiting performance of wind turbines
in ducts or diffusers, or more generally in non-uniform flow fields, although Betz was aware
that his limit could be exceeded. The power coefficient, Cp, is defined in terms of the area
of the energy extraction device and the Betz limit can be exceeded if additional mass flow
is induced through the area of the device, say by a duct or diffuser.

In the early 1980s, Oman, Gilbert and Foreman [26] conducted experimental work on
the diffuser augmented wind turbine (DAWT) concept showing that power coefficients
exceeding the Betz limit could be obtained. In 1999, Hansen [27] published computational
fluid dynamics (CFD) results confirming that the Betz limit could be exceeded. Hansen
noted that the increase in Cp was in proportion to the augmentation of mass flow achieved
by the diffuser but that this did not explicitly define a limit for Cp.

Although the open flow actuator disc theory which determines the Betz limit has evidently
been established for over 90 years and van Bussel [28] in a comprehensive review notes
that diffuser research has been in progress over 50 years, the generalisation of actuator disc
theory arises from recent analysis by Jamieson [29]. This work includes new relationships for
limiting values of Cp and a preliminary validation has shown close quantitative agreement
with Hansen’s CFD results [27].

In many previous analyses of turbines in ducts and diffusers, speed up factors are intro-
duced and definitions of Cp and Ct other than the standard ones have been employed. This
is understandable in the historical context but there is no longer need for it and some poten-
tial for confusion. The following analysis maintains standard definitions of axial induction,
power and thrust coefficients.

Axial induction, a, at the rotor plane is defined exactly as before (Equation 1.1). Thus if
the flow is augmented at the rotor plane, a is negative.
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As in open flow, the power coefficient and thrust coefficient are defined with respect to
the far upstream wind speed and referenced to the rotor swept area. They are respectively

Cp = P

1

2
ρAV 3

0

(1.11)

and

Ct = T

1

2
ρAV 2

0

(1.12)

From these basic definitions of the power co-efficient, Cp, and the thrust co-efficient, Ct ,
the power to thrust ratio can be expressed as in Equation 1.13:

P

T
= V0.

Cp

Ct

(1.13)

However considering also the basic definition of power as a product of force and velocity
as applied at the rotor plane:

P = T V0 (1 − a) (1.14)

Hence

P

T
= V0 (1 − a) (1.15)

Hence, from Equations 1.13 and 1.15,

Cp

Ct

= (1 − a) (1.16)

Equation 1.16 is completely general for any system with a rotor where the local inflow is
a fraction (1 − a) of the remote undisturbed external wind speed.

A system is defined as the region in which axial induction is influenced between the
freestream and the far wake. Energy extraction is considered to take place across a planar
area normal to the flow and at a definite location within the system.

Let f (a) be the axial induction in the far wake (Figure 1.4). At any plane of area A within
the system where there is a pressure difference, �p associated with energy extraction, the
thrust, T is given as:

T = �pA = 1

2
ρV 2

0 ACt (1.17)

Hence

Ct = 2�p

ρV 2
0

(1.18)

Considering Bernoulli’s equation applied upwind of the extraction plane:

p0 + 1

2
ρV 2

0 = p1 + 1

2
ρV 2

0 (1 − a)2 (1.19)
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and on the downstream side of the extraction plane

p1 − �p + 1

2
ρV 2

0 (1 − a)2 = p0 + 1

2
ρV 2

0 {1 − f (a)}2 (1.20)

From Equations 1.18–1.20:

Ct = 1 − {1 − f (a)}2 (1.21)

that is

Ct = 2f (a) − f (a)2 (1.22)

Now consider that:

1. For energy extraction to take place the velocity in the far wake must be less than ambient,
that is f (a)> 0

2. If the flow is augmented above ambient at the rotor plane, then purely from considerations
of continuity, there must exist a reference plane of area Aref downstream of the rotor
plane where the induction is half that of the far wake, that is = f (a)

2 .

Considering conservation of mass in the flow, then:

ρAV0 (1 − a) = ρArefV0

(
1 − f (a)

2

)
(1.23)

In the absence of energy extraction, note that f (a) = 0 and let the axial induction at the
energy extraction plane be a0:

ρAV0 (1 − a0) = ρArefV0 (1.24)

Hence from Equations 1.23 and 1.24

f (a) = 2

{
a − a0

1 − a0

}
(1.25)

V0(1−a)

p0 p1 p0p1 -  p

Energy
Extraction Plane

Freestream

V0

Far wake

V0{1−f (a)}

System

2
0p0 + rV2

1 2
1  (1−a)2= p1 + rV2

1 2 {1−f (a)}2
0p0 + r V2

12
1

p1 − Δ p + rV2
1 (1−a)2 = 

Figure 1.4 General flow diagram
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Now substituting for f (a) in Equation 1.22 gives:

Ct = 4 (a − a0) (1 − a)

(1 − a0)
2 (1.26)

And hence from Equation 1.16

Cp = 4 (a − a0) (1 − a)2

(1 − a0)
2 (1.27)

Differentiating Equation 1.27 with respect to a determines a maximum at a = am of

am = 1 + 2a0

3
(1.28)

The associated maximum Cp is then:

Cpm = 16

27
(1 − a0) (1.29)

For the open flow rotor with a0 = 0, Equations 1.26–1.29 correspond, as they must, to the
established equations for open flow. The familiar results that the open flow rotor operates
optimally when am = 1/3 and has an associated maximum power coefficient Cpm = 16/27
(the Betz limit) are evident.

A more striking result falls out of the limit Equation 1.26. On substituting for am from
Equation 1.28 in Equation 1.26, it is found that

Ct = 8/9 (1.30)

Whereas am and Cpm have specific values for each system configuration, this result is
now independent of a0. Equation 1.30 is therefore a general truth for an optimum energy
extraction device in any ideal system configuration.

This result was mentioned to the author in 1995 by K. Foreman, as an observed out-
come (without theoretical explanation) of his extensive experimental work within Grumman
Aerospace in the 1980s with the DAWT concept. It was proven more recently by van Bussel
[28] and now directly as a consequence of the generalised limit: Equations 1.26 and 1.28.

Considering Equation 1.18, a corollary to Equation 1.30 is that the pressure drop across
the rotor plane for optimum energy extraction is always 4/9ρ V 2

0 .
Thus in any flow field of uniform far upstream velocity, V0, regardless of what local

flow augmentations are created (conservatively) within the system and wherever a rotor is
located , the rotor will, in optimum operation to maximise power extraction, experience the
same loading in terms of thrust, T , thrust coefficient Ct and rotor plane pressure drop �p.
This does not in the least contradict statements in many sources (e.g. Lawn [30]) that a rotor
in augmented flow must be ‘lightly loaded’. Loading it at the same level of thrust as would
be optimum in open flow, when the wind speed local to the rotor may be several times
greater than ambient, amounts to very ‘light’ loading. The level of loading is independent
of the level of flow augmentation achieved by the diffuser and will therefore appear all the
lighter, the greater the flow augmentation.

Results are summarised in Table 1.1.
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Table 1.1 Summary results comparing open and constrained flow

General operation

Betz open flow Generalised constrained flow

Upstream wind speed V0 V0

Wind speed at energy extraction plane V0 (1 − a) V0 (1 − a)

Far wake wind speed V0 (1 − 2a) V0

(
1 − 2a + a0

1 − a0

)

Performance coefficient, Cp 4a (1 − a)2 4 (a − a0) (1 − a)2

(1 − a0)
2

Thrust coefficient, CT 4a (1 − a)
4 (a − a0) (1 − a)

(1 − a0)
2

Pressure difference across rotor
1

2
ρV 2

0 CT

1

2
ρV 2

0 CT

Optimum performance

Betz open flow Generalised constrained flow

Maximum, Cp

16

27

16

27
(1 − a0)

Associated axial induction factor
1

3

1 + 2a0

3

Far wake axial induction factor
2

3

2

3

Associated thrust coefficient
8

9

8

9

Pressure difference across rotor
4

9
ρV 2

0
4

9
ρV 2

0

Consider now Figure 1.5 where instead of fixing the rotor swept area, the source flow
area is fixed. With the same source flow area, the source mass flow rate and source power is
the same in all three cases, namely, the general case with an arbitrary system, the particular
case of a diffuser concentrator and the standard case in open flow.

From Equation 1.29:

Cpm = 16

27
(1 − a0)

Energy extracted by the rotor is by definition:

E1 = 1

2
ρV 3

0 A1Cpm

From continuity of flow:

E1 = 1

2
ρV 3

0
A0

(1 − am)
Cpm

Using Equations 1.28 and 1.29

E1 = 1

2
ρV 3

0 A0
8

9
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V1 = V0 (1−a)
A1 = A0 /(1−a)

V0

A0

E0

V2 = 1/3V0

A2 = 3A0

E2 = 1/9E0

V0

A0

E0

V2 = 1/3V0

A2 = 3A0

E2 = 1/9E0

V1 = 2/3V0

A1 = 3/2A0

V0

A0

E0

V2 = 1/3V0

A2 = 3A0

E2 = 1/9E0

Optimal Energy
Extraction System

V1 = ?

A1 = ?

V1A1 = V0 A0

E1 = 8/9E0

Figure 1.5 Comparison of cases with equal source flow areas

This evidently is 8/9 of the kinetic energy in the upstream source area. Thus the equation
system (Equations 1.27–1.31) confirms a plausible result:

Regardless of whether the flow is open or constrained (say by a hill or diffuser), 8/9 of source
upstream kinetic energy is the maximum fraction extractable from an energy extraction device
located anywhere in its associated streamtube.

Moreover the optimum specific loading on the energy extraction device is always the same
and corresponds to, Ct = 8/9.

In the open flow case, the ‘system’ is always ‘ideal’ in that the flow is unconstrained and
free to flow through or around the rotor in a way that can vary with rotor loading. In all other
cases, the system comprises some physical entity additional to the rotor which constrains the
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flow. In general this system, whether hill, diffuser or other, because it is of fixed geometry,
will not be ideal in every flow state and may not be ideal in any. Hence even in terms of
purely inviscid flow modelling, such systems, regardless of the efficiency of the rotor or
energy extraction device, may not extract energy as efficiently as in open flow. Comparing
an effective diffuser system with an open flow rotor that optimally extracts the same amount
of energy, the rotor in the diffuser system can be much smaller in diameter and the critical
design issue is whether this advantage can justify the cost of the diffuser system.

In the limit state (ideal device in ideal system):

• The design of the device is completely decoupled from design of the system which system
is completely characterised by a0.

• The thrust and thrust coefficient that corresponds to optimum rotor loading are independent
of the system that includes the rotor and the thrust coefficient is always 8/9.

The conclusion from this is that for any system influencing the local flow through an
energy extraction device, the induction factor, a0, at the extraction plane with the device
absent provides a characteristic signature of the system. This statement is probably valid
for non-ideal energy extraction devices such as rotors with drag loss, tip loss and swirl loss
providing the system influencing the rotor plane induction is ideal.

1.6 The Force on a Diffuser

From Equation 1.24, the mass flow rate through the energy extraction plane (and elsewhere)
is, ρAV0 (1 − a) and from Equation 1.25, the change in fluid velocity between far upstream
and far downstream is, f (a) = 2

{
a−a0
1−a0

}
. Hence the rate of change of momentum and total

thrust force on the system is the product of these quantities.

Tnet = (ρAV1)

{
2V0 (a − a0)

(1 − a0)

}
= 1

2
ρAV 2

0

{
4 (1 − a) (a − a0)

(1 − a0)

}
(1.31)

Now thrust on the rotor is by definition:

T = 1

2
ρAV 2

0 CT

And hence from Equation 1.26:

T = 1

2
ρAV 2

0

{
4 (1 − a) (a − a0)

(1 − a0)
2

}
(1.32)

Comparing Equations 1.31 and 1.32 it is clear that the force on the diffuser is

Td = 1

2
ρAV 2

0

{−4a0 (1 − a) (a − a0)

(1 − a0)
2

}
= −a0T (1.33)

This very simple result is important. The separation of total system thrust into the part
that acts on the rotor or energy extraction device and the part that acts on the diffuser or
flow concentrator is vital for an appropriate implementation of BEM theory to deal with
modelling of system loads or optimisation of rotors in constrained flows. Note also that, as
far as inviscid flow is concerned, although thrust on the diffuser may be several times that
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on the rotor, thrust on the diffuser only appears in association with rotor loading and is zero
on the empty duct. The simple form of Equation 1.33 provides insight but applies only to
an ideal diffuser.

Considering the diffuser as an axisymmetric aerofoil body, suction on the leading edge
may in general produce a thrust component that is directed into wind. The net force on the
diffuser is then the sum of suction forces and pressure drag forces. When the diffuser is not
ideal, the ratio of net force on diffuser to force on the rotor is increased and exceeds the
prediction of Equation 1.33.

1.7 Generalised Actuator Disc Theory and Realistic Diffuser Design

The analysis presented here of ducts or diffusers in inviscid flow is only the starting point.
The generalised actuator disc theory:

1. is a limiting theory only (as is the Betz theory in open flow) that considers only
inviscid flow;

2. shows clearly why flow concentration devices increase available energy at best linearly
as increase of mass flow and not as the cube of the augmented velocity;

3. describes ideal systems whereas real diffusers may be far from the limiting performance
suggested. In general their fixed geometry will only best suit one state of loading. The
Kutta condition associated with the finite thickness of the aerofoil duct sections will in
general (even at the level of potential flow) lead to reduced performance of diffusers;

4. as an inviscid model, does not capture effects of flows external to the diffuser and rotor
which can be used to augment performance through viscous interactions. Some diffusers
are very much designed to exploit such effects as in the FloDesign wind turbine [31].

These comments serve to underline that while generalised actuator disc theory affords some
valuable new insights and provides energy limits for ideal systems, there is quite a gap
between such ideal limiting theory and real world design of flow augmenters.

1.8 Why a Rotor?

The actuator disc idea considers an arbitrary energy extraction system which need not be a
rotor. Yet all present mainstream wind energy conversion systems rely on the rotor concept.
Why? A wind energy system is not only, as is axiomatic, an energy conversion system
turning fluid mechanical energy in the wind into electrical energy, but is also an energy
concentration system.

For example a typical modern 1.5 MW wind turbine may have parameters as in Table 1.2.
In a case when the wind turbine is producing its rated output (1500 kW in the electrical
cables), it has received wind energy over the swept area at a power density ∼1 kW/m2 and
is transporting output after losses at a power density of over 1 GW/m2. As the power passes
through the system, it is concentrated first in the composite of the blades, then in the steel of
the shaft, subsequently in the field of the generator and finally in the copper of the electrical
cables.

It is vital to effect this massive concentration with as little cost as possible and the first
major gain is made in the rotor itself. The rotor typically has a solidity ∼5% and hence less
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Table 1.2 Power concentrations in a 1.5 MW wind turbine

D Area Effi- Power Power den- Concentra- Cumulative con-
(m) (m2) ciency (kW) sity (kW/m2) tion factor centration factor

Wind over
swept area

70.5 3903.6 1.00 3636 0.932 1.0 1

Rotor blades
input

70.5 204.0 0.44 3636 18 19.1 19

Low speed
shaft input

0.564 0.2498 1.00 1611 6 449 361.7 6 923

Gearbox
input

0.564 0.2498 0.98 1611 6 449 1.0 6 923

Generator
input

0.120 0.0113 0.95 1579 139 610 21.6 149 870

Electrical
cables

– 0.0010 1.00 1500 1 500 000 10.7 1 610 244

blade frontal area than the swept area by a factor ∼20. This is evident in the highlighted
concentration factor (19.1, in Table 1.2).

This is the key factor in favour of the rotor concept. The rotor can confront all the
extractable energy in the swept area with blades that may occupy only about 5% of the
swept area. This is in direct contrast to a translating aerofoil or say an oscillatory wave
energy device where, although the source energy density is usually much greater than for
wind, a metre length of wave energy converter must confront each metre of wave front
from which energy is to be extracted.

Thus an efficient rotor is typically concentrating the extractable energy in the rotor disc
by a factor of about 20 and so reducing the size and cost of the primary collectors (blades)
compared with alternative systems such as an oscillating aerofoil that do not have this benefit.
The answer to ‘why a rotor?’ is therefore not only the legitimate common observation that
mechanical energy in rotational form best suits conventional electricity generating systems
but also that, in sweeping an area of the source energy flux that is much greater than the
physical surface area of the rotor blades, the rotor effects a significant primary increase in
energy density.

This is the main reason why the rotor concept is very hard to beat and why many of the
alternatives such as oscillating or translating aerofoils that are perfectly feasible technically
may struggle to be cost competitive.

1.9 Basic Operation of a Rotor

The actuator disc model requires continuity of the fluid axial velocity through the rotor plane.
This is essential as the wind turbine removes energy from the air flow passing through it
but does not remove any of the air itself! Hence there is no change in axial velocity on
either side of the disc and hence no kinetic energy is extracted from the fluid at the rotor
plane. Yet a wind turbine rotor is generally described as a device for extracting kinetic
energy from natural wind flow. In a global sense this is true; locally at the rotor plane it
is not. Considering the overall energy balance between far upstream and far downstream in
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the ideal inviscid model (as in Equation 1.2), kinetic energy has been extracted from the
flow. This is because of the assumption that in the far wake the flow that passed through
the rotor has returned to atmospheric static pressure. The energy change associated with the
reduced axial velocity in the far wake is then seen as a net change in kinetic energy.

If locally the wind turbine rotor is not extracting kinetic energy and yet the system
is producing power and therefore extracting energy from the fluid, what is the energy
source? The answer is potential energy . A wind turbine rotor produces power from the
torque generated by the rotor blades. This torque arises from forces on blade elements
which in turn are the consequence of pressure differences on each side of the aerofoils.
The wind turbine works by offering an appropriate resistance to the fluid flow slowing the
fluid approaching the rotor. The reduction in fluid velocity occurs conservatively ahead of
the rotor plane. Hence considering Bernoulli’s equation, a rise in static pressure occurs to
provide conservation of energy per unit volume. The pressure difference across the rotor
plane in conjunction with the through flow velocity is then the determinant of the energy
extraction and, as was discussed previously, pressure is effectively potential energy per unit
volume of fluid.

Thus the basic equation for power at the rotor plane is:

P = �pA1V1 (1.34)

This defines power extracted from the air flow and is an upper bound which is reduced
by inefficiencies in the rotor and drive train. Consider now the operation of a rotor in
constrained flow. The internet is littered with web sites where claims are made to the effect
that some innovative system around a wind turbine increases the air velocity locally by a
factor k and therefore the power as k3.

In any area of flow augmentation prior to energy extraction, the flow concentrator does
not introduce extra energy into the flow field. Therefore increased local velocity and the
associated increased in local kinetic energy is created conservatively. Hence, according to
Bernoulli’s theorem, increased kinetic energy is obtained at the expense of static pressure
(atmospheric potential energy). It is perfectly true that the kinetic energy locally is increased
by a factor k3. This must be the case by definition. However, as has been strongly empha-
sised, there is no extraction of kinetic energy at the rotor plane. It is the pressure difference
at the rotor plane that drives energy extraction and both the inlet and exit pressure of an
energy extraction device in a region of concentrated flow are at sub-atmospheric pressure.
This means that much less energy can be extracted than might be supposed.

Perhaps the simplest way to appreciate this is as follows. Consider a fixed area, A0,
represented by the dotted lines of Figure 1.6, where a rotor may be placed but for the
present in the absence of energy extraction. If the velocity is increased over the prevailing
upstream value, V0, by a factor say 3 in a flow augmentation device, the streamtube passing
through it, by conservation of mass flow, will have an upstream source area that is 3 times
greater than the extraction area, A0. It then clear that no more than 3 times the energy and
certainly not 33 times can be extracted from this streamtube.

In Equation 1.34, V1 = V0(1 − a) as defined in Equation 1.1. If the rotor is in a concen-
trator, a will be negative of a magnitude related to the flow augmentation factor, k (which
it should be noted will change with rotor loading). Noting the results of Table 1.1, it can be
seen that, for maximum energy extraction, in open flow or constrained flow, Equation 1.34
is unchanged. Hence the increase in power is only linearly as the increase in local velocity
in the region of flow concentration.



Rotor Aerodynamic Theory 27

V0 , A0

V0 , 3A0

Streamtube – open flow

Streamtube – augmented flow

V0 , A0

3V0 , A0

Figure 1.6 Source area and energy gain with flow augmentation

The generalised actuator disc theory implies that all rotors whether large or small, whether
in open flow or in well optimised diffusers or other concentrators will operate optimally in
an optimal system with a similar pressure difference across the rotor plane. This pressure
difference under such ideal circumstances is 4/9ρV 2

0 (see Table 1.1). However in constrained
flow fields, system inefficiencies (which importantly can arise from purely geometric aspects
in addition to frictional losses) will in general further reduce the optimal pressure difference
for maximum energy extraction.

1.10 Blade Element Momentum Theory

BEM theory is the most widely used theory in practical design methods and computer
codes for predicting loads and performance of wind turbines. In any balanced overview
of wind turbine modelling techniques reflecting current research directions, much attention
would be devoted to vortex theories and CFD. These and numerical methods in general are
not discussed. They may offer more accurate analysis of specific configurations but they
do not yield analytical relationships that can provide physical insight to guide parametric
evaluations and concept design.

In BEM, the swept area of the rotor is considered as a set of annular areas (Figure 1.7)
swept by each blade element. The blade is divided spanwise into a set of elements which
are assumed to be independent of each other so that balance of rate of change of fluid
momentum with blade element forces can be separately established for each annular area.
The basic theory is due to Glauert [32] with the modern forms for numerical implementation
in BEM codes having developed following the adaptation of Glauert’s theory by Wilson,
Lissaman and Walker [33]. BEM theory is summarised here in order to preserve a self
contained account of some new equations that are developed from it.

1.10.1 Momentum Equations

Considering thrust as rate of change of linear momentum of the flow passing through an
annulus at radius r of width dr and denoting a tip effect factor (to be discussed) as F ;

Thrust dT = 4πρrV 2a(1 − a)Fdr (1.35)
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wind direction

Figure 1.7 Actuator annulus

and similarly considering torque and rate of change of angular momentum:

Torque dQ = 4πρr3V a′ω(1 − a)Fdr (1.36)

1.10.2 Blade Element Equations

Considering blade element forces on a blade elements at radius r of width dr;

Thrust dT = 1

2
ρW 2Bc(Cl cos ϕ + CD sin ϕ)dr (1.37)

Torque dQ = 1

2
ρW 2Bc(CL sin ϕ − CD cos ϕ)rdr (1.38)

Equations 1.35–1.38 allow dT and dQ to be eliminated yielding two equations in the three
unknowns, a, a′ and ϕ. A third equation is given by considering the flow geometry local
to each blade element at radius, r, that is at radius fraction, x = r/R.

From the flow geometry (Figure 1.8):

tan ϕ = V (1 − a)

ωr(1 + a′)
= (1 − a)

λx(1 + a′)
(1.39)

Equating Equation 1.35 with Equation 1.37 and Equation 1.36 with Equation 1.38 to solve
for the induced velocities a and a′ (also making use of Equation 1.39) gives

a

1 − a
= σ(CL + CD tan ϕ)

4F tan ϕ sin ϕ
(1.40)

a′

1 + a′ = σ(CL tan ϕ − CD)

4F sin ϕ
(1.41)

where σ , the local solidity, is defined as σ = Bc
2πr

.
Usually an iterative procedure is used to solve Equations 1.39–1.41 for each local blade

element of width �r . Hence using Equations 1.37 and 1.38 the thrust and torque can be
found on the whole rotor by integration.
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Lift ∝ CL 

Drag ∝ CD

(1−a)
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Figure 1.8 Local flow geometry at a blade element

The BEM analysis of Equations 1.35–1.38 has followed the widely used formulation
of Wilson, Lissaman and Walker [33], who suggested that drag should be neglected in
determining the induction factors, a and a′. According to the PhD thesis of Walker [34]:

. . . it has been the assumption that the drag terms should be omitted in calculations of a and
a′ . . . on the basis that the retarded air due to drag is confined to thin helical sheets in the wake
and (will) have negligible effect on these factors.

Although drag must be accounted in determining the torque and power developed by a rotor,
opinion is divided5 about whether the drag terms should be included in evaluation of the
induction factors. Neglecting drag will generally lead to simpler Equations 1.40 and 1.41
and also simplify the following analyses.

From Equation 1.40,

a

1 − a
=

(
Bc

2πr

)
CL cos ϕ + CD sin ϕ

4F sin2 ϕ
(1.42)

= B

8π

(
cCL

R

) (
R

r

)
(cos ϕ + CD/CL sin ϕ)

F sin2 ϕ
(1.43)

The term (cCL/R) represents a non-dimensional lift distribution where the chord distribu-
tion c ≡ c(λ, x) is in general a function of radius fraction, x = r/R, and design tip speed
ratio, λ.

5 GL Garrad Hassan use the formulation including drag as presented in Equations 1.40 and 1.41 in their commercial
BEM code, Bladed.
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Let 	(λ, x) = c(λ,x)CL

R
, and let k = CL

CD
:

Then

a

1 − a
= 	B

8πxF

[
1 + (1/k) tan ϕ

]
sin ϕ tan ϕ

(1.44)

and

sin ϕ = (1 − a)√
(1 − a)2 + λ2 x2(1 + a′)2

(1.45)

Hence, after some manipulation:

	(λ, x) = 8πa(1 − a)

Bλ (1 + a′)
√

(1 − a)2 + λ2 x2(1 + a′)2

F[
1 + (1−a)

k λ x(1+a′)

] (1.46)

The tangential induction factor, a′, can be solved as in Equation 1.47 in terms of a using
Equations 1.39–1.41 to eliminate ϕ.

a′ =
{
λ2k2x2 + 2λkx − 4ak [λx − k (1 − a)] + 1

}0.5 − (λkx + 1)

2 λ k x
(1.47)

Note that the elimination of ϕ in Equations 1.46 and 1.47 is only apparent as the lift to drag
ratio, k, depends in general on the angle of attack, α, and α = ϕ (x) − θ (x) − ψ where
θ (x)is the blade twist distribution and ψ is the pitch angle of the blade.

In the limit of zero drag when k → ∞:

a′ =
(
4a − 4a2 + λ2x2

)0.5 − λx

2λx
(1.48)

Equation 1.48 also appears in Manwell [35].
With further approximation:

a′ = a (1 − a)

λ2x2
(1.49)

1.11 Optimum Rotor Theory

Optimum states are simpler to describe than general conditions. An analogy is that only
three coordinates will define the summit of a hill whilst infinitely many may be required to
characterise the whole surface.

In the optimum state, for typical rotors designed for electricity production with design tip
speed ratios above 6, the tangential induction factor, a′, should be small over the significant
parts of span (x > 0.2). It may be neglected with little loss of accuracy in 	(λ, x) or
calculated from Equations 1.47, 1.48 or 1.49.

The actuator disc result of Betz [36] establishes an optimum rotor thrust loading corre-
sponding to a value of the thrust coefficient, Ct = 8/9. This implies an optimum lift force
on each blade element which in effect specifies the product, cCL, in Equation 1.37. Refer-
ring to Equation 1.38, it is plausible that with cCL fixed, performance is maximised if CD

is minimum and hence k is maximum. Thus in the optimum operational state of a wind
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turbine rotor, each blade element operates at maximum lift to drag ratio and the only aerofoil
data required to define this state therefore is the maximum lift to drag ratio, k and the lift
coefficient, CL, associated with this maximum lift to drag ratio for each element over the
span of a blade. Optimum performance at maximum lift to drag ratio is not exactly true (see
later discussion around Equation 1.63) but is a satisfactory approximation for mainstream
designs with design tip speed ratio above 6.

For a lift to drag ratio, k = 100, design tip speed ratio, λ = 9 and considering an optimum
rotor with a = 0.3333.. at mid span where x = 0.5, Equations 1.47 and 1.48 give values
for a′ of 0.01010 and 0.01097 a difference in the optimum rotor state of around 10% albeit
in a rather small quantity compared to the axial induction, a.

The square bracketed term in the denominator of Equation 1.46 which contains the lift to
drag ratio k is effectively unity over the significant region of span for typical modern large
rotors with design tip speed ratio > 6 and k ≥ 100.

The lift produced by an aerofoil section can be associated with a bound circulation which
is virtual over the span of the blade but becomes a real vortex at the end of blade where
there is no material to support a pressure difference. The strength of this vortex depends on
blade number and blade solidity and it is through models of this ‘tip effect’ that the effect of
blade number on rotor performance is expressed in BEM theory. Various tip effect models
have been developed (see Section 1.13.2). The most commonly used model in BEM theory
is due to Prandtl [32] and that model is adopted in the following analyses.

Adopting the Prandtl tip factor, F = 2
π

cos−1(e−πs/d) where d = 2πR(1−a)
Bλ

and
s = (1 − x)R:

F = 2

π
cos−1

[
exp

{
− (1 − x)Bλ

2(1 − a)

}]
(1.50)

With the assumptions that a = 1/3 in optimum operation, that a is constant over the span
and knowing the value of lift coefficient at maximum lift to drag ratio for the aerofoil
section selected at each radial station, Equation 1.46 then defines the chord distribution of
an optimum rotor as a function of radius fraction, x and design tip speed ratio, λ. If the
approximations of neglecting a′, neglecting the very minor effect of drag and neglecting tip
effect are combined with the further approximation of neglecting (1 − a)2 in comparison to
λ2x2, Equation 1.46 then reduces to:

	(λ, x) = 8πa (1 − a)

Bλ2x
= 16π

9Bλ2x
(1.51)

Equations similar to Equation 1.51 have appeared in various forms, in Gasch and Twele
[37], Burton and Sharpe [38], and are easily understood intuitively. Lift per blade element
is proportional to dynamic pressure and chord width. Dynamic pressure on a blade element
is proportional to the square of the inflow velocity which is predominantly the in-plane
velocity when λ > 6. Thus to maintain total rotor lift at the appropriate fixed optimum
value, 	(λ, x) must approximately vary inversely as Bλ2x.

Equation 1.46 (or its simplified forms such as Equation 1.51) allows the optimum chord
distribution of a blade to be developed given a selection of aerofoil types that will then
define at each radial station, x, the maximum lift to drag ratio, k, the associated design
lift coefficient, CL and the corresponding angle of incidence, α0. An optimum blade twist
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distribution is then determined referring to Equation 1.39 and setting a = 1/3 as:

θ (x) = tan−1
{

2

3λx (1 + a′)

}
− α0 (x) ∼= 2

3λx
− α0 (x) (1.52)

As far as optimal blade shape is concerned, the simplified Equation 1.51 predicts the chord
distribution very well over the extent of span that most matters. It would be usual in real
designs to round the tip in a way that may be guided by practical experience or CFD
analyses and, for practical reasons associated with manufacture and/or transportation, to
limit the chord to much less than ideal values inboard of say 20–25% span. With the chord
being so limited, and the sections normally transitioning to a cylindrical blade root end,
there is then no point to continue the twist distribution near the blade root to the very high
angles that would be predicted by Equation 1.52. In that case, the approximate form of
Equation 1.52 is a good estimate over the aerodynamically active part of the rotor.

As was discussed, the optimum lift force on each blade element specifies the product,
cCL, in Equation 1.37. This means that the chord width can be optimised structurally if
aerofoils are available or can be designed with suitable values of design lift coefficient CL.
Thus, as is discussed further in Chapter 2, for the same blade design tip speed ratio, aerofoils
with high or low design CL can enable slender or wide optimum blades.

There is however constraint on having rapid changes in the spanwise variation of CL.
A basic principle is that it is generally undesirable to have rapid changes in section lift
(specifically lift and not lift coefficient) along the span of the blade. The trailing vortices
which generate induced drag (or the induction factor for a rotor) are proportional to the
spanwise gradient of lift (actually circulation but effectively the same). A sudden change in
blade chord is undesirable structurally and aerodynamically; this implies that CL should not
change abruptly since the relative inflow velocity varies only gradually with radial position.
It is therefore usually assumed that a constant6 CL is desirable over most of span with a
smooth reduction to zero at the tip.

Having characterised the optimum lift distribution as in Equation 1.46, expressions gen-
erally useful for parametric studies are now derived for the power coefficient, thrust coef-
ficient and out-of-plane bending moment coefficient (to be defined). The torque coefficient,
Cq = Q

0.5ρV 2πR3 , where Q is the rotor torque, is sometimes useful in evaluating the self-

starting capability of wind turbines and is trivially related to the power coefficient as

Cq = Cp

λ
.

Examination of the simple actuator disc Equations 1.9 and 1.16 and also results from
BEM calculations will show that the thrust coefficient Ct is rising quite rapidly with respect
to both axial induction and tip speed ratio around the point of maximum Cp. Thus a practical
trade-off in the the design of optimised rotors is to reduce design tip speed ratio and operate
a little below the strictly maximum Cp thereby gaining a useful reduction in loads.

6 The optimum spanwise distribution of circulation or lift on a fixed wing is a smooth elliptic variation (which was
provided uniquely at all angles of attack by the Spitfire wing), but there may not be any simple theory to define
the optimum shape for a rotor.
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1.11.1 The Power Coefficient, Cp

Returning to Equation 1.38:

dQ = 1

2
ρW 2Bcr (CL sin ϕ − CD cos ϕ) dr (1.53)

Hence elemental power is:

dP = 1

2
ρW 2Bc r (CL sin ϕ − CD cos ϕ) ωdr (1.54)

= 1

2
ρ

(
W

V

)2

R2V 3	(λ, x) B
(

sin ϕ − cos ϕ

k

)
λx dx. (1.55)

and the rotor power coefficient is:

Cp = B

π

1∫
0

	(λ, x)

(
W

V

)2 (
sin ϕ − cos ϕ

k

)
λx dx. (1.56)

Substituting for W/V , sin ϕ and cos ϕ from Figure 1.8 and for 	(λ, x) from Equation 1.46:

Cp = B

π

1∫
0

8πa (1 − a) .F

Bλ (1 + a′)

λ

{
(1 − a) − λx

(
1 + a′)
k

}
xdx

{
1 + (1 − a)

kλx (1 + a′)

} . (1.57)

Considering a rotor without tip effect, neglecting a′ and neglecting also (1−a)

kλx(1+a′) :

Cp = 8a (1 − a)

1∫
0

{
(1 − a) − lx

k

}
xdx (1.58)

and hence:

Cp = 4a (1 − a)2
[

1 − 2λ

3k (1 − a)

]
(1.59)

Equation 1.59, as it must, tends to the actuator disc result of Betz as k → ∞. With k finite, it
is similar to a limiting case derived by De Vries [39] which arose from a quite different begin-
ning in the context of BEM theory for vertical axis wind turbines. De Vries’ equation is:

Cp = 4a (1 − a)2 − BcCDλ3

2R
(1.60)

Noting that BcCDλ3

2R
= B

(
cCL

R

)
λ3

2k
and also considering Equation 1.51, the Equations 1.59

and 1.60 have a similar form.
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Returning to Equation 1.57, the general expression for Cp can be expressed as:

Cp(λ) =
∫ 1

0

8a (1 − a) F
[
k (1 − a) − λx

(
1 + a′)] λx2

[kλx (1 + a′) + (1 − a))]
dx (1.61)

Equation 1.61 is a rigorous BEM relationship defining Cp first published, Jamieson [40],
without derivation. As was mentioned in connection with Equation 1.47, the lift to drag
ratio, k, is a function of angle of attack α (x) = ϕ (x) − θ (x) − ψ and the flow angle ϕ (x)

is therefore implicitly present in Equation 1.61.
However, in the optimum rotor state, for typical design tip speed ratios above say about

6 and with typical aerofoil selections for large HAWTs, it is a very good approximation to
assume that all the blade elements operate at their maximum lift to drag ratio, k ≡ k (x) and,
using Equation 1.47 or 1.48 to determine a′, Equation 1.61 can then be directly integrated.
Hence maximum Cp may be expressed as a function of tip speed ratio and lift to drag ratio
as in Figure 1.9. Although for convenience in the calculations presented in Figure 1.9, the
lift to drag ratio is treated as constant over the blade span, there is no requirement for this
to be the case. If k is defined as a function of x, Equation 1.61 can be used for a rotor
with differing aerofoil characteristics over the span, as is usually the case on account of
thickness to chord ratio decreasing from root to tip.

A chart such as Figure 1.9 has been published previously [41], but the results were
determined by numerical solution of the BEM equations and not from an explicit formula.
After such an exercise, Wilson et al. [33] fitted data with the formula (Equation 1.62)
which was claimed valid for 4 ≤ λ ≤ 25, and k = Cl/Cd ≥ 25 but restricted to three blades
maximum.

Cp.max =
(

16

27

)
λ

⎡
⎢⎢⎢⎣λ +

1.32 +
(

λ − 8

20

)2

B2/3

⎤
⎥⎥⎥⎦

−1

− (0.57) λ2

Cl

Cd

(
λ + 1

2B

) (1.62)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
p

L/D and B infinite

L/D infinite, B=3

L/D=100, B=3

L/D=75, B=3

L/D=50, B=3

L/D=25, B=3

L/D=10, B=3

l

Figure 1.9 Cp max v tip speed ratio for various lift to drag ratios
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Some general similarity between this empirical relation Equation 1.62 and Equation 1.59
may be noted with the additional complexity in Equation 1.62 taking account of tip effects
over the range of applicability.

It will be evident (Figure 1.9) that for any given blade number, B and maximum lift
to drag ratio, k, there is a unique optimum value of tip speed ratio, λ to maximise Cp.
Figure 1.10 shows Cp max as a function of design tip speed ratio for a range of lift to drag
ratios and blade numbers. As is confirmed in Figure 1.10 (and also Figure 1.9), a typical
state of the art blade for a large wind turbine designed for a tip speed ratio of around 9
and with average equivalent maximum lift to drag ratio around 100 will achieve Cp max
of approximately 0.5. While Figure 1.9 shows appropriate trends, without a full solution of
the BEM equations, Equation 1.61 using the assumption of k constant at a maximum value
for the chosen aerofoils will only predict Cp curves accurately in the region of Cp max.

Figure 1.10 clarifies an important point that to maximise the benefit from aerofoils that
may achieve higher lift to drag ratios, it is important to design for new (higher) optimum tip
speed ratios. Figure 1.10 also provides a clear and immediate indication of how optimum
one, two, three or multi bladed rotors will compare in power performance for any given
choice of aerofoils whilst Figure 1.9 clarifies the penalties that may apply in operating at
non-optimum combinations of lift to drag ratio and design tip speed ratio.

Equation 1.61 shows that Cp is a complex function of the axial induction, a. The result that
a = 1/3 results in maximum rotor Cp was based on simple actuator disc theory (Equation
1.9) and this clearly cannot be exactly true for Equation 1.61. It may also be noted from that
from Equation 1.53, it is only plausible and not rigorous that maximising k = CL/Cd will
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maximise the torque on each blade element as the elemental torque clearly also depends
on flow angle, ϕ and how it may vary with k in the course of a full solution of the BEM
equations. Considering Equation 1.55, a power coefficient can be defined local to each blade
element as:

Cp (r, a, k) = dP (r, a, k)

0.5ρV 3 (2πrdr)
(1.63)

A strict optimisation according to the BEM theory presented will maximise Cp (r, a, k)

separately on each blade element. This results in a varying spanwise and k near to maximum
but not absolutely maximum on each aerofoil section. For typical large electricity producing
wind turbines with design λ ≥ 6 and k ≥ 100, in an ideal optimum blade design, a is little
different from 1/3 over most of the span and k is very close to the maximum for each
aerofoil section. These effects are rather more significant however, for a rotor based on
aerofoils with low lift to drag ratio, for example sailcloth blades or plate blades. The non-
uniformity of an optimum distribution of axial induction is not of practical importance for
optimum rotor design because of the limitations of BEM theory in its present form. Other
issues appear in more accurate optimisation methods (see Section 1.13.3). However, based
on the BEM equation system in a standard form, the non-uniformity of axial induction
(i.e. not exactly constant at a value of 1/3 over the whole span) of an optimum rotor is a
consistent outcome and is mentioned for that reason.

1.11.2 Thrust Coefficient

In a similar way to the derivation of maximum Cp from Equation 1.35 to Equation 1.61,
the associated thrust coefficient can be determined as;

CT =
1∫

0

8a (1 − a) Fxdx (1.64)

In the limit of no tip loss (F = 1), the familiar actuator disc formula, CT = 4a (1 − a), is
recovered with CT = 8/9 for an optimum rotor. Equation 1.64 has a much simpler form
than Equation 1.61. The thrust coefficient is a system property dependent on rotor loading
but independent of the efficiency of the rotor in power conversion. It is therefore unaffected
by lift to drag ratio or the tangential induction factor and dependent only on the state of
rotor loading characterised by the axial induction over the rotor plane which is naturally
influenced by the tip effect.

1.11.3 Out-of-Plane Bending Moment Coefficient

The steady state out-of-plane bending moment of an optimised blade in operation at its
design tip speed ratio below rated wind speed and the introduction of pitch action may be
derived from any standard BEM code and has a characteristic shape as in Figure 1.11. For
typical large scale electricity generating wind turbines, that is well optimised rotor designs
with design tip speed ratios above 6, the shape is largely independent of design specifics
and can usually be very well approximated by a cubic curve. Such representations have
been convenient in studies developing blade designs embodying passive aeroelastic control
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(e.g. with flap-twist coupling as in Maheri [42]) where a simplified representation of blade
loading is useful. BEM theory provides a simple derivation of the result as follows.

Defining a dimensionless bending moment coefficient at arbitrary radial distance, r , as
CM (r) = M(r)

(0.5ρV 2πR3)
and following similar methods of analysis as for Cp in Equations

1.35–1.61 lead to:

CM (r) = 8a (1 − a)

B

1∫
x

F (y){
(1 + a′) λy + (1−a)

k

} .

{
λy + (1 − a)

k

}
(y − x) ydy (1.65)

Neglecting a′ in comparison to unity gives:

CM (x) = 8a (1 − a)

B

1∫
x

F (y) (y − x)y.dy (1.66)

Considering the case with no tip effect where F (y) = 1:

CM (x) = 4a (1 − a)

{
1

3B

(
2 − 3x + x3)} (1.67)

And for an optimum rotor, taking a = 1/3:

CM (x) = 16

27B

{
(x − 1)2 (x + 2)

2

}
(1.68)

For a typical conventional three bladed wind turbine, Equation 1.68 has the appropriate
cubic shape but, because the bending moment is most heavily weighted by the loading
which is farthest outboard, the tip effect is very significant in relief of blade root bending
moment.
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Wilson (see Spera [41], Chapter 5, p. 261) and Milborrow [43] (a paper offering a vari-
ety of useful simplified parametric equations for blade loads) have previously derived an
equation similar to 1.68. Wilson [44] noted that this relationship predicted values signif-
icantly greater than measured blade bending moment data from the Mod-2 HAWT. He
further observed that the Mod-2 blade design was far from an optimised configuration and
described Equation 1.68 as ‘an upper bound’ which it is for an optimum rotor without tip
loss. However, noting the more general form of Equation 1.67, the bending moment coef-
ficient is unsurprisingly related to the thrust coefficient which is not maximised at a = 1/3
even in the ideal inviscid model without considering higher loadings that may result in the
turbulent wake state. Thus sub-optimal rotors may have bending moment characteristics that
exceed (or are within) the predictions of Equation 1.68.

A direct application of Equation 1.68 will overestimate the moment at shaft centreline
of an optimum three bladed rotor with a design tip speed ratio of λ = 7 by about 13%.
Equation 1.66 is therefore not immediately appropriate for use in parametric studies without
some adjustment to account for the tip effect.

Equation 1.69 is a useful approximation to Equation 1.62 which can represent the blade
root moment quite accurately when (as is the case for mainstream electricity generating
wind turbines) the product of blade number and design tip speed ratio, Bλ> 10.

CM (x) = 16

27B
G(Bλ) f (x) (1.69)

Where:

G(Bλ) = 5.5744 × 10−7B3λ3 − 8.2871 × 10−5B2λ2

+ 4.4085 × 10−3Bλ + 2.3245 × 10−1 (1.70)

and

f (x) = (x − 1)2 (x + 2)

2
(1.71)

In retaining the simple cubic function, f (x), and providing an accurate match to the blade
root bending moment, Equation 1.69 is somewhat conservative in blade out-of-plane bending
moment estimates on the outboard blade. Accuracy in estimation of blade root bending
moment is probably of greatest interest in parametric studies and, for a three bladed wind
turbine with λ = 7, Equation 1.69 gives CM (0) as 0.8809 whilst integration of Equation
1.65 using the Prandtl tip loss factor gives a corresponding value of 0.8827.

1.12 Generalised BEM

The generalised actuator disc results of Sections 1.5 and 1.6 can be used to derive a gen-
eralised BEM that will assist in the optimisation of rotors in ducts or diffusers. In order to
revise the BEM equations for generalised flow conditions, consider first the elemental thrust
and axial momentum balance:

The mass flow rate through the rotor plane is, ṁ = ρ (2πrdr) {V (1 − a)F}.
The total change in flow velocity between far upstream and far wake (see Table 1.1) is:

dV = V

{
1 −

(
1 − 2a + a0

1 − a0

)}
= 2V (a − a0)

(1 − a0)
(1.72)
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However, considering the thrust force on the rotor alone (see Equation 1.32):

dT = 4πρrV 2 (a − a0) (1 − a)

(1 − a0)
2 Fdr (1.73)

Equation 1.38 is unchanged and hence:

dQ = 4πρr3V a′ω(1 − a)Fdr (1.74)

Equations 1.37, 1.38 and 1.41 are also unchanged. The tangential induction factor, a′ may
be approximated by neglecting drag and generalised as:

a′ (1 + a′) = (1 − a) (a − a0)

(1 − a0) λ2x2
= Ct (1 − a0)

4λ2x2
(1.75)

The further development of the generalised BEM model is simplest if a0 is assumed to
be a suitably averaged constant value over the rotor disc and that is tacitly assumed in the
following analyses. However there is no requirement for this and a variation of a0 ≡ a0 (r, θ)

may be defined over the rotor disc.
An analogue to Equation 1.46 may be developed or the equation system in the generalised

flow case may be solved by iterative numerical methods in the same way as in standard
BEM.

The associated non-dimensional lift distribution is:

	(λ, x) = 2πCt

Bλ (1 + a′)
√

(1 − a)2 + λ2x2(1 + a′)2

F[
1 + (1 − a)

kλx (1 + a′)

] (1.76)

For an optimum rotor, a = a.m = 1+2a0
3 and Ct = 8

9 .
If the maximum lift to drag ratio of a chosen aerofoil section occurs at an angle of

incidence α = α0, then the optimum twist distribution is given as:

ψ (x) = tan−1
{

2 (1 − a0)

3λx (1 + a′)

}
− α0 (1.77)

The optimum twist distribution will evidently vary with a0 and hence may vary significantly
according to the nature of the system affecting the rotor plane induction. Suppose there is
substantial flow augmentation at the rotor plane. As Ct = 8/9 universally, the rotor is
optimally loaded at exactly the same value of thrust coefficient and thrust as in open flow
with no augmentation system present. This implies that the blade elements must be pitched
much further into the flow direction so that a reduction in the lift component producing
thrust exactly compensates for the potential increase in thrust due to the augmented local
flow velocity. However in this situation there is then a much larger lift contribution to rotor
torque than in open flow. This corresponds to the increased power performance coefficient
which may exceed the Betz limit in proportion to the flow augmentation achieved.

The usual actuator disc theory whether standard or generalised considers only inviscid
flow. In order to be more realistic and useful for design calculations, empirical modelling
is introduced to represent the thrust coefficient in the turbulent wake state. Experimental
validation for systems with concentrators is not yet available, and so the results derived
represent no more than a consistent extension from the standard open flow model to the
generalised actuator disc theory.



40 Innovation in Wind Turbine Design

If a is the induction at the rotor plane in open flow, then the transformation, a → a−a0
1−a0

,
determines the value of axial induction at a plane (not the rotor plane) in constrained flow
where the induction is half of that in the far wake. However, as is explained in Jamieson
[29], the value of thrust coefficient, Ct , is independent of location in the system. Therefore
this transformation may be employed to determine an expression for thrust coefficient that
is applicable at the rotor plane.

In open flow, various formulations are employed to modify the thrust coefficient equation
of the inviscid flow actuator disc as the rotor approaches the turbulent wake state. GL Garrad
Hassan’s commercial BEM software package, Bladed , defines thrust coefficient, Ct , as:

Ct = 4a (1 − a) f or 0 ≤ a ≤ 0.3539 (1.78)

Ct = 0.6 + 0.61a + 0.79a2 f or 0.3539 < a ≤ 1 (1.79)

In generalised flow states, applying again the transformation of Equation 1.69 results in the
equations:

Ct = 4 (a − a0) (1 − a)

(1 − a0)
2 f or 0 ≤ a ≤ a0 + 0.3539 (1 − a0) (1.80)

Ct = 0.6 + 0.61

{
a − a0

1 − a0

}
+ 0.79

{
a − a0

1 − a0

}2

for a0 + 0.3539 (1 − a0) < a ≤ 1 (1.81)

Equation 1.78 does not accurately accord with BEM theory as reflected in Equation 1.64
where the tip effect modifies the thrust coefficient. Thus the method of application is to
factor the Ct in the BEM solutions as a ratio of Equations 1.79 or 1.81 to the corresponding
actuator disc Equations 1.78 and 1.80.

In open (unconstrained) flow the thrust coefficient is essentially unique and optimum at
8/9 at least in the ideal inviscid flow case. However, as is elaborated in Jamieson [29], in
constrained flow, the thrust coefficient is a system property. Irrespective of rotor efficiency,
Ct in an ideal system is optimally 8/9 and maximises Cp at that value. If the system is not
ideal in the optimal rotor loading state (which for a diffuser would mean that the diffuser is
not fully optimised for the flow field that will develop in operation at a rotor thrust coefficient
of 8/9), then the Ct that maximises Cp will be less than 8/9 and the associated maximum
Cp will be less than it would be in an ideal system. On the other hand any external mass
flow (i.e. flow not passing through the rotor) that influences the overall energy exchange,
for example by assisting wake transport, may increase the optimum Ct at the rotor plane
to above 8/9. Results of Phillips et al. [45] suggest that in a well designed diffuser, an
optimum Ct of around unity may be achieved.

Great care is required in applying generalised BEM to real systems but the new theory
offers a rationalised approach and parametric insight for the optimisation of rotor design
in flow concentrators that has not been previously available. The general approach as in
Jamieson [46] will be to replace a0 with η (a) a0 where η (a)is a system efficiency function
to be defined from empirical information, CFD analyses or otherwise. Also the estimation
of a0 is not straightforward as is also discussed in Jamieson [46].

Nevertheless the introduction of the variable a0 characterising flow augmentation in con-
junction with the indicated generalisation of the thrust coefficient indicates an extension of
BEM theory which is simple to implement and can address the design of rotors in flow
concentrators.

It is also important to be aware of systems where ducted rotors may be used and the
generalised BEM theory developed here will not be applicable as in the case of a tidal
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turbine where distances from the free water surface and sea bed are not large compared to
the rotor dimensions. In such a case Bernoulli’s equation with only pressure and velocity
terms (the usual basis of wind turbine actuator disc models) is insufficient and an adequate
model [47] must account for buoyancy terms as the pressure drop behind the turbine will
induce a local drop in sea surface level.

The analytical relationships developed in the foregoing discussion of BEM theory can
be bypassed in the use of the usual numerical methods for BEM solutions. However iden-
tification of explicit formulae is considered to be of great value in design development,
facilitating preliminary parametric studies that provide insight into how some of the key
variables in rotor design may influence performance. This will be revisited later in the
context of specific case studies.

1.13 Limitations of Actuator Disc and BEM Theory

1.13.1 Actuator Disc Limitations

In spite of the great practical value of his actuator disc concept, Froude was aware of
unresolved issues specially in regard to what happens at the edge of the disc. Van Kuik [23]
suggests that both experimental evidence and limitations in modelling effects at the edge of
the actuator disc (in open flow) indicate that higher velocities than predicted by Froude’s
theorem (that the rotor plane velocity is the average of upstream and far wake velocities)
occur at the rotor plane. This, he argues, is equivalent to having edge forces which induce
extra flow through the disc (implying a slight flow augmentation with a0 < 0, in terms of
the generalised actuator disc model of Section 1.5). This is considered to apply even in the
ideal inviscid case and is not due to wake entrainment by external flows which may also
enhance the performance of a rotor in real wind conditions.

1.13.2 Wake Rotation and Tip Effect

The so-called tip effect essentially differentiates rotors of similar solidity, aerofoil selection
and design speed in terms of blade number. In the limit of an infinite number of infinitely
slender blades travelling at infinite rotation speed, all the power is produced without a torque
reaction or wake rotation.

Assuming a uniform wind field upstream of the rotor with no intrinsic rotating structures
or initial angular momentum, the creation of angular momentum in the wake of the rotor is
predicted for all real rotors with a finite number of blades and finite speed which implies
in turn a non-zero torque reaction.

This is not in question but De Vries [39] and later Sharpe [48] have made the case
for the view that wake angular momentum is associated with a reduction in wake core
static pressure that arises conservatively from the blade circulation. This contradicts the
conventional BEM modelling of Wilson, Lissaman and Walker as presented in this text.
Recent CFD modelling, Madsen et al. [49], has supported the De Vries interpretation. This
is significant for the physical interpretations underlying BEM theory and for the accuracy of
detailed design calculations on rotor aerodynamics. It little affects the top level parametric
analyses and formulae developed in Section 1.10 as applied to rotors with design tip speed
ratios above about 6. It will matter especially in detailed aerodynamic design of rotors
around the hub and tip areas especially and have substantial implications for rotors with
very low design tip speed ratio.
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There are a number of tip effect models (see Shen et al. [50] for example). The Prandtl
model has been employed as the simplest available, purely for convenience, having in mind
that differentiating these models or getting into accurate correspondence with real tip flows
moves into territory where the simple BEM theory is generally inadequate. It should also
be noted that there are also a number of different approaches in the application of the tip
factors that differ in detail from Equations 1.35 and 1.36 including an elegant model due to
Anderson [51] which accounts for cyclic variation in the induction factors.

1.13.3 Optimum Rotor Theory

It has been mentioned that the optimum rotors produced by BEM theory differ a little
from those developed with the ideal actuator disc assumption that the axial induction is 1/3
everywhere over the rotor span. These differences are considered unimportant because BEM
theory is not accurate enough for them to be really meaningful. Recent work of Madsen [52]
on optimum rotor design following from the previous work [49] also suggests that classical
BEM solutions for optimum rotors will not be very accurately optimal. This is important
both at a fundamental level and for practical detailed design of optimum rotors but does not
particularly undermine the value of equations such as 1.51 for guiding parametric design
investigations.

1.13.4 Skewed Flow

A major weakness of BEM theory is in modelling wind turbines in yawed flow. When the
flow is oblique to the rotor plane, there are cyclic variations in angle of attack which can
be important especially when flow angles approach stall. The strip theory assumption that
the rotor can be analysed as annular elements that are independent of each other is less
justifiable. Dynamic stall behaviour and stall hysteresis can have greater effect on rotor
performance. Also in yawed flow there are additional issues about the wake. Does it remain
symmetric about the rotor axis or is it skewed in the wind direction? Experimental evidence
and CFD analyses indicate the latter and skewed wake correction as for example based
on Glauert [53] have been applied in using BEM to model yawed flow. BEM theory can
adopt simplifying assumptions (such as taking account of the angle of the wind vector
in the inflow calculations), can incorporate dynamic stall models and yield useful results.
However, in yawed flow, there is much less certainty in basic calculations (even such as
the determination of average rotor power) than in cases where the wind direction is normal
to the rotor plane. In general more sophisticated aerodynamic modelling using vortex wake
models [9, 54], or CFD is desirable.

1.13.5 Summary

The limitations of BEM have been highlighted. CFD and vortex theory based analyses
may be more accurate in many circumstances. Nevertheless, although huge advances have
been made in recent years and progress will continue, current CFD techniques do not yet
solve the Navier Stokes equations with the same objectivity as mother nature. Turbulence,
transition and boundary layer modelling remain problematic. Some vortex wake models
assume Froude’s theorem and some CFD analyses are calibrated to reproduce actuator disc
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results. It is through a mixture of techniques and convergence of insights coupled with
experimental feedback that progress is made.
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