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Most of the material covered in this chapter has to do with the phenomenon
of superconductivity. As we shall see, magnetic fields play an important role in
the field of superconductivity, so it is important to understand the magnetic
properties of materials before discussing the properties of superconductors.

All magnetic effects in matter can be explained on the basis of the current
loops associated with atomic magnetic dipole moments. These atomic magnetic
moments arise both from the orbital motion of the electrons and from an
intrinsic property of the electrons known as spin. Our description of magnetism
in matter is based in part on the experimental fact that the presence of bulk
matter generally modifies the magnetic field produced by currents. For ex-
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ample, when a material is placed inside a current-carrying solenoid, the mate-
rial sets up its own magnetic field, which adds vectorially to the field that was
already present.

The phenomenon of superconductivity has always been very exciting, both
for its fundamental scientific interest and because of its many applications.1
The discovery in the 1980s of high-temperature superconductivity in certain
metallic oxides sparked even greater excitement in the scientific and business
communities. Many scientists consider this major breakthrough to be as im-
portant as the invention of the transistor. For this reason, it is important that
all students of science and engineering understand the basic electromagnetic
properties of superconductors and become aware of the scope of their current
applications.

Superconductors have many unusual electromagnetic properties, and most
applications take advantage of such properties. For example, once a current is
produced in a superconducting ring maintained at a sufficiently low tempera-
ture, that current persists with no measurable decay. The superconducting ring
exhibits no electrical resistance to direct currents, no heating, and no losses.
In addition to the property of zero resistance, certain superconductors expel
applied magnetic fields so that the field is always zero everywhere inside the
superconductor.

As we shall see, classical physics cannot explain the behavior and properties
of superconductors. In fact, the superconducting state is now known to be a
special quantum condensation of electrons. This quantum behavior has been
verified through such observations as the quantization of magnetic flux pro-
duced by a superconducting ring.

In this chapter we also give a brief historical review of superconductivity,
beginning with its discovery in 1911 and ending with recent developments in
high-temperature superconductivity. In describing some of the electromagnetic
properties displayed by superconductors, we use simple physical arguments
whenever possible. We explain the essential features of the theory of supercon-
ductivity with the realization that a detailed study is beyond the scope of this
text. Finally, we discuss many of the important applications of superconductivity
and speculate on potential applications.

12.1 MAGNETISM IN MATTER

The magnetic field produced by a current in a coil of wire gives a hint as to
what might cause certain materials to exhibit strong magnetic properties. In
general, any current loop has a magnetic field and a corresponding magnetic
moment. Similarly, the magnetic moments in a magnetized substance are as-
sociated with internal currents on the atomic level. One can view such currents
as arising from electrons orbiting around the nucleus and protons orbiting
about each other inside the nucleus. However, as we shall see, the intrinsic
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1 M. Brian Maple, a research physicist at the University of California at San Diego, was asked what
he found so fascinating about superconductivity. He responded as follows. “For me the fascination
of superconductivity is associated with the words perfect, infinite, and zero. A superconductor has
the property of being a perfect conductor, or having infinite conductivity, or zero resistance.
Whenever you see something that’s perfect, infinite, or zero, truly zero, that’s obviously a special
state of affairs.”



magnetic moment associated with the electron is the main source of magnetism
in matter.

We begin with a brief discussion of the magnetic moments due to electrons.
The mutual forces between these magnetic dipole moments and their inter-
action with an external magnetic field are of fundamental importance to an
understanding of the behavior of magnetic materials. We shall describe three
categories of materials—paramagnetic, ferromagnetic, and diamagnetic. Para-
magnetic and ferromagnetic materials are those that have atoms with per-
manent magnetic dipole moments. Diamagnetic materials are those whose
atoms have no permanent magnetic dipole moments.

Magnetic Moments of Atoms

As we learned in Section 8.2, the total magnetic moment of an atom has orbital
and spin contributions. For atoms or ions containing many electrons, the elec-
trons in closed shells pair up with their spins and orbital angular momenta
opposite each other, a situation that results in a net magnetic moment of zero.
However, atoms with an odd number of electrons must have at least one “un-
paired” electron and a spin magnetic moment of at least one Bohr magneton,
�B, where

e �
�24� � � 9.274 � 10 J/T (12.1)B 2me

The total magnetic moment of an atom is the vector sum of the orbital and
spin magnetic moments, and an unpaired outer electron can contribute both
an orbital moment and a spin moment. For example, if the unpaired electron
is in an s state, and consequently the orbital moment is zero. However,L � 0
if the unpaired electron is in a p or d state, and the electron contributesL � 0
both an orbital moment and a spin moment. The orbital moment is about the
same order of magnitude as the Bohr magneton. Table 12.1 gives a few ex-
amples of total magnetic moments for different elements. Note that helium
and neon have zero moments because their closed shells cause individual mo-
ments to cancel.

The nucleus of an atom also has a magnetic moment associated with its
constituent protons and neutrons. However, the magnetic moment of a proton
or neutron is small compared with the magnetic moment of an electron and
can usually be neglected. Because the masses of the proton and neutron are
much greater than that of the electron, their magnetic moments are smaller
than that of the electron by a factor of approximately 103.

Magnetization and Magnetic Field Strength

The magnetization of a substance is described by a quantity called the mag-
netization vector, M. The magnitude of the magnetization vector is equal to the
magnetic moment per unit volume of the substance. As you might expect, the total
magnetic field in a substance depends on both the applied (external) field and
the magnetization of the substance.

Consider a region where there exists a magnetic field B0 produced by a
current-carrying conductor. If we now fill that region with a magnetic sub-
stance, the total magnetic field B in that region is where Bm isB � B � B ,0 m
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Table 12.1 Magnetic
Moments of Some Atoms
and Ions

Atom
(or Ion)

Magnetic Moment
(10�24 J/T)

H 9.27
He 0
Ne 0
Ce3� 19.8
Yb3� 37.1



the field produced by the magnetic substance. This contribution can be ex-
pressed in terms of the magnetization vector as hence the totalB � � M;m 0
magnetic field in the region becomes

B � B � � M (12.2)0 0

It is convenient to introduce a field quantity H, called the magnetic field
strength. This vector quantity is defined by the relationship H � (B/� )0

or� M,

B � � (H � M) (12.3)0

In SI units, the dimensions of both H and M are amperes per meter.
To better understand these expressions, consider the space enclosed by a

solenoid that carries a current I. (We call this space the core of the solenoid.)
If this space is a vacuum, then and Since inM � 0 B � B � � H. B � � nI0 0 0 0
the core, where n is the number of turns per unit length of the solenoid, then

orH � B /� � � nI/� ,0 0 0 0

H � nI (12.4)

That is, the magnetic field strength in the core of the solenoid is due to the
current in its windings.

If the solenoid core is now filled with some substance and the current I is
kept constant, H inside the substance remains unchanged and has magnitude
nI. This is because the magnetic field strength H is due solely to the current in
the solenoid. However, the total field B changes when the substance is intro-
duced. From Equation 12.3, we see that part of B arises from the term �0H
associated with the current in the solenoid; the second contribution to B is the
term �0M, due to the magnetization of the substance filling the core.

Classification of Magnetic Substances

In a large class of substances, specifically paramagnetic and diamagnetic sub-
stances, the magnetization vector M is proportional to the magnetic field
strength H. For these substances we can write

M � �H (12.5)

where � (Greek letter chi) is a dimensionless factor called the magnetic sus-
ceptibility. If the sample is paramagnetic, � is positive, in which case M is in
the same direction as H. If the substance is diamagnetic, � is negative and M
is opposite H. It is important to note that this linear relationship between M
and H does not apply to ferromagnetic substances. Table 12.2 gives the suscep-
tibilities of some substances. Substituting Equation 12.5 for M into Equation
12.3 gives

B � � (H � M) � � (H � �H) � � (1 � �)H0 0 0

or

B � � H (12.6)m

where the constant �m is called the magnetic permeability of the substance
and has the value

� � � (1 � �) (12.7)m 0
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Substances may also be classified in terms of how their magnetic permeabilities
�m compare to �0 (the permeability of free space), as follows:

Paramagnetic � � �m 0

Diamagnetic � � �m 0

Ferromagnetic � �� �m 0

Since � is very small for paramagnetic and diamagnetic substances (Table 12.2),
�m is nearly equal to �0 in these cases. For ferromagnetic substances, however,
�m is typically several thousand times larger than �0 but is not a constant.
Although Equation 12.6 provides a simple relationship between B and H, it
must be interpreted with care in the case of ferromagnetic substances. As men-
tioned earlier, M is not a linear function of H for ferromagnetic substances.
This is because the value of �m is not a characteristic of the substance but rather
depends on the previous state and treatment of the ferromagnetic material.
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Table 12.2 Magnetic Susceptibilities of Some Paramagnetic
and Diamagnetic Substances at 300 K

Paramagnetic
Substance �

Diamagnetic
Substance �

Aluminum 2.3 � 10�5 Bismuth �1.66 � 10�5

Calcium 1.9 � 10�5 Copper �9.8 � 10�6

Chromium 2.7 � 10�4 Diamond �2.2 � 10�5

Lithium 2.1 � 10�5 Gold �3.6 � 10�5

Magnesium 1.2 � 10�5 Lead �1.7 � 10�5

Niobium 2.6 � 10�4 Mercury �2.9 � 10�5

Oxygen (STP) 2.1 � 10�6 Nitrogen (STP) �5.0 � 10�9

Platinum 2.9 � 10�4 Silver �2.6 � 10�5

Tungsten 6.8 � 10�5 Silicon �4.2 � 10�6

EXAMPLE 12.1 An Iron-Filled Toroid

A toroid carrying a current of is wound with5.00 A
of wire. The core is made of iron, which has60 turns/m

a magnetic permeability of under the given con-5000�0
ditions. Find H and B inside the iron.

Solution Using Equations 12.4 and 12.6, we get

turns A·turns
H � nI � 60.0 (5.00 A) � 300� �m m

B � � H � 5000� Hm 0

Wb A·turns
�7� 5000 4� � 10 300 � 1.88 T� �� �A·m m

This value of B is 5000 times larger than the value in the
absence of iron!

Exercise Determine the magnitude and direction of the
magnetization inside the iron core.

Answer M is in the direction6M � 1.5 � 10 A/m;
of H.

Ferromagnetism

Spontaneous magnetization occurs in some substances whose atomic constitu-
ents have permanent magnetic dipole moments. The magnetic moments ex-
hibit long-range order, which can take on various forms, as shown in Figure



12.1. The magnetic moments of a ferromagnet tend to be aligned as in Figure
12.1a, and hence a ferromagnetic substance has a net magnetization. This per-
manent alignment is due to a strong coupling between neighboring moments,
which can be understood only in quantum mechanical terms. In an antiferro-
magnetic substance (Fig. 12.1b), the magnetic moments all have the same mag-
nitude. However, because the magnetic moments in the sublattices are oppo-
sitely directed, the net magnetization of an antiferromagnet is zero. In a
ferrimagnetic substance (Fig. 12.1c), the magnetic moments of the atoms in
the two sublattices are oppositely directed, but their magnitudes are not the
same. Hence a ferrimagnetic substance has a net magnetization.

Iron, cobalt, and nickel are ferromagnetic at sufficiently low temperatures.
Rare earths such as gadolinium and terbium are ferromagnetic below room
temperature, while other rare earths are ferromagnetic at very low tempera-
tures. At extremely high temperatures, all transition and rare-earth metals be-
come paramagnetic.

All ferromagnetic materials contain microscopic regions called domains,
within which all magnetic moments are aligned. Each of these domains has a
volume of about to and contains to atoms. The bound-�12 �8 3 17 2110 10 m 10 10
aries between domains having different orientations are called domain walls.
In an unmagnetized sample, the domains are randomly oriented such that the
net magnetic moment is zero, as shown in Figure 12.2a. When the sample is
placed in an external magnetic field, the domains tend to align with the field,
which results in a magnetized sample, as in Figure 12.2b. Observations show
that domains initially oriented along the external field grow in size at the ex-
pense of the less favorably oriented domains. When the external field is re-
moved, the sample may retain a net magnetization in the direction of the orig-
inal field.2 At ordinary temperatures, thermal agitation is not sufficiently high
to disrupt this preferred orientation of magnetic moments.
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(a) Ferromagnetic (b) Antiferromagnetic (c) Ferrimagnetic

Figure 12.1 Magnetic ordering in three types of solids. (a) In a ferromagnetic sub-
stance, all spins are aligned. (b) In an antiferromagnetic substance, spins in two sublat-
tices have the same magnitude but are opposite in direction. (c) In a ferrimagnetic
substance, spins in the two sublattices have different magnitudes and opposite directions.

2 It is possible to observe the domain walls directly and follow their motion under a microscope. In
this technique, a liquid suspension of powdered ferromagnetic substance is applied to the sample.
The fine particles tend to accumulate at the domain walls and shift with them.

(b)

B0

(a)

Figure 12.2 (a) Random ori-
entation of atomic magnetic di-
poles in an unmagnetized sub-
stance. (b) When an external
magnetic field B0 is applied, the
magnetic dipoles tend to align
with the field, giving the sample
a net magnetization M.



A typical experimental arrangement used to measure the magnetic proper-
ties of a ferromagnetic material consists of a toroid-shaped sample wound with
N turns of wire, as in Figure 12.3. This configuration is sometimes referred to
as a Rowland ring. A secondary coil connected to a galvanometer is used to
measure the magnetic flux. The magnetic field B within the core of the toroid
is measured by increasing the current in the toroid coil from zero to I. As the
current changes, the magnetic flux through the secondary coil changes by BA,
where A is the cross-sectional area of the toroid. Because of this changing flux,
an emf is induced in the secondary coil that is proportional to the rate of
change in magnetic flux. If the galvanometer in the secondary circuit is prop-
erly calibrated, one can obtain a value for B corresponding to any value of the
current in the toroidal coil. The magnetic field B is measured first in the empty
coil and then with the same coil filled with the magnetic substance. The mag-
netic properties of the substance are then obtained from a comparison of the
two measurements.

Now consider a toroid whose core consists of unmagnetized iron. If the
current in the windings is increased from zero to some value I, the field intensity
H increases linearly with I according to the expression Furthermore,H � nI.
the total field B also increases with increasing current, as shown in Figure 12.4.
At point O, the domains are randomly oriented, corresponding to AsB � 0.m
the external field increases, the domains become more aligned until all are
nearly aligned at point a. At this point, the iron core is approaching saturation.
(The condition of saturation corresponds to the case where all domains are
aligned in the same direction.) Next, suppose the current is reduced to zero,
thereby eliminating the external field. The B-versus-H curve, called a magne-
tization curve, now follows the path ab shown in Figure 12.4. Note that at point
b, the field B is not zero, although the external field is equal to zero. This is
explained by the fact that the iron core is now magnetized due to the alignment
of a large number of domains (that is, ). At this point, the iron is saidB � Bm
to have a remanent magnetization and could be considered to be a “perma-
nent” magnet. If the external field is reversed in direction and increased in
strength by reversal of the current, the domains reorient until the sample is
again unmagnetized at point c, where A further increase in the reverseB � 0.
current causes the iron to be magnetized in the opposite direction, approach-
ing saturation at point d. A similar sequence of events occurs as the current is
reduced to zero and then increased in the original (positive) direction. In this
case, the magnetization curve follows the path def. If the current is increased
sufficiently, the magnetization curve returns to point a, where the sample again
has its maximum magnetization.

The effect just described, called magnetic hysteresis, shows that the mag-
netization of a ferromagnetic substance depends on the history of the substance
as well as the strength of the applied field. (The word hysteresis literally means
“to lag behind.”) One often says that a ferromagnetic substance has a “memory”
since it remains magnetized after the external field is removed. The closed loop
in Figure 12.4 is referred to as a hysteresis loop. Its shape and size depend on
the properties of the ferromagnetic substance and on the strength of the max-
imum applied field. The hysteresis loop for “hard” ferromagnetic materials
(those used in permanent magnets) is characteristically wide as in Figure 12.5a,
corresponding to a large remanent magnetization. Such materials cannot be
easily demagnetized by an external field. This is in contrast with “soft” ferro-
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Figure 12.3 A toroidal wind-
ing arrangement used to mea-
sure the magnetic properties of
a substance. The material under
study fills the core of the toroid,
and the circuit containing the
galvanometer measures the
magnetic flux.

B

H

a

b

c

d

e

fO

Figure 12.4 A hysteresis curve
for a ferromagnetic material.



magnetic materials, such as iron, which have very narrow hysteresis loops and
small remanent magnetizations (Fig. 12.5b). Such materials are easily magne-
tized and demagnetized. An ideal soft ferromagnet would exhibit no hysteresis
and hence would have no remanent magnetization. One can demagnetize a
ferromagnetic substance by carrying the substance through successive hysteresis
loops and gradually decreasing the applied field, as in Figure 12.6.

The magnetization curve is useful for another reason. The area enclosed by the
magnetization curve represents the work required to take the material through the hysteresis
cycle. The source of the external field—that is, the emf in the circuit of the
toroidal coil—supplies the energy acquired by the sample in the magnetization
process. When the magnetization cycle is repeated, dissipative processes within
the material due to realignment of the domains result in a transformation of
magnetic energy into internal thermal energy, which raises the temperature of
the substance. For this reason, devices subjected to alternating fields (such as
transformers) use cores made of soft ferromagnetic substances, which have
narrow hysteresis loops and correspondingly small energy losses per cycle.

Paramagnetism

A paramagnetic substance has a positive but small susceptibility (0 � � �� 1),
which is due to the presence of atoms (or ions) with permanent magnetic
dipole moments. These dipoles interact only weakly with each other and are
randomly oriented in the absence of an external magnetic field. When the
substance is placed in an external magnetic field, its atomic dipoles tend to line
up with the field. However, this alignment process must compete with thermal
motion, which tends to randomize the dipole orientations.

Experimentally, one finds that the magnetization of a paramagnetic sub-
stance is proportional to the applied field and inversely proportional to the
absolute temperature under a wide range of conditions. That is,

B
M � C (12.8)

T

This is known as Curie's law after its discoverer, Pierre Curie (1859–1906),
and the constant C is called Curie's constant (Problem 13). This shows that
the magnetization increases with increasing applied field and with decreasing
temperature. When the magnetization is zero, corresponding to a ran-B � 0,
dom orientation of dipoles. At very high fields or very low temperatures, the
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Figure 12.5 Hysteresis curves for (a) a hard ferromagnetic material and (b) a soft
ferromagnetic material.

H

B

Figure 12.6 Demagnetizing a
ferromagnetic material by car-
rying it through successive hys-
teresis loops.

Curie's law



magnetization approaches its maximum (saturation) value, corresponding to
a complete alignment of its dipoles, and Equation 12.8 is no longer valid.

Interestingly, when the temperature of a ferromagnetic substance reaches
or exceeds a critical temperature, called the Curie temperature, the substance
loses its spontaneous magnetization and becomes paramagnetic (Fig. 12.7).
Below the Curie temperature, the magnetic moments are aligned and the sub-
stance is ferromagnetic. Above the Curie temperature, the thermal energy is
large enough to cause a random orientation of dipoles; hence the substance
becomes paramagnetic. For example, the Curie temperature for iron is

Table 12.3 lists Curie temperatures and saturation magnetization values1043 K.
for several ferromagnetic substances.

Diamagnetism

A diamagnetic substance is one whose atoms have no permanent magnetic
dipole moment. When an external magnetic field is applied to a diamagnetic
substance such as bismuth or silver, a weak magnetic dipole moment is induced
in the direction opposite the applied field (Lenz’s law). Although the effect of
diamagnetism is present in all matter, it is weak compared to paramagnetism
or ferromagnetism.

We can obtain some understanding of diamagnetism by considering two
electrons of an atom orbiting the nucleus in opposite directions but with the
same speed. The electrons remain in these circular orbits because of the at-
tractive electrostatic force (the centripetal force) of the positively charged nu-
cleus. Because the magnetic moments of the two electrons are equal in mag-
nitude and opposite in direction, they cancel each other, and the dipole
moment of the atom is zero. When an external magnetic field is applied, the
electrons experience an additional force This added force modifiesqv � B.
the central force and thereby increases the orbital speed of the electron whose
magnetic moment is antiparallel to the field and decreases the speed of the
electron whose magnetic moment is parallel to the field. As a result, the mag-
netic moments of the electrons no longer cancel, and the substance acquires
a net dipole moment that opposes the applied field. It is important to note that
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Paramagnetic

Ferromagnetic

M

T
Tc

Ms

0

Figure 12.7 A plot of the mag-
netization versus absolute tem-
perature for a ferromagnetic
substance. The magnetic mo-
ments are aligned (ordered) be-
low the Curie temperature Tc ,
where the substance is ferromag-
netic. The substance becomes
paramagnetic, that is, disor-
dered above Tc .

Table 12.3 Curie Temperatures and
Saturation Magnetizations for
Several Ferromagnetic
Substances

Substance Tc (K) Ms (106 A/m)

Iron 1043 1.75
Cobalt 1404 1.45
Nickel 631 0.512
Gadolinium 289 2.00
Terbium 230 1.44
Dysprosium 85 2.01
Holmium 20 2.55

Source of data: D. W. Gray, ed., American Institute of Physics
Handbook, New York, McGraw-Hill, 1963.



this is a classical explanation. Quantum mechanics is needed for a complete
explanation of diamagnetism.
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EXAMPLE 12.2 Saturation Magnetization
of Iron

Estimate the maximum magnetization in a long cylinder
of iron, assuming there is one unpaired electron spin per
atom.

Solution The maximum magnetization, called the satu-
ration magnetization, is attained when all the magnetic
moments in the sample are aligned. If the sample contains
n atoms per unit volume, then the saturation magnetiza-
tion Ms has the value

M � n�s

where � is the magnetic moment per atom. Since the mo-
lecular weight of iron is and its density is56 g/mol

the value of n is Assum-3 28 37.9 g/cm , 8.5 � 10 atoms/m .
ing each atom contributes one Bohr magneton (due to
one unpaired spin) to the magnetic moment, we get

2atoms A·m
28 �24M � 8.5 � 10 9.27 � 10s � �� �3m atom

5� 7.9 � 10 A/m

This is about one-half the experimentally determined sat-
uration magnetization for annealed iron, which indicates
that there are actually two unpaired electron spins per
atom.

12.2 A BRIEF HISTORY OF SUPERCONDUCTIVITY

The era of low-temperature physics began in 1908 when the Dutch physicist
Heike Kamerlingh Onnes first liquefied helium, which boils at at standard4.2 K
pressure. Three years later, in 1911, Kamerlingh Onnes and one of his assistants
discovered the phenomenon of superconductivity while studying the resistivity
of metals at low temperatures.3 They first studied platinum and found that its
resistivity, when extrapolated to depended on purity. They then decided0 K,
to study mercury because very pure samples could easily be prepared by distil-
lation. Much to their surprise, the resistance of the mercury sample dropped
sharply at to an unmeasurably small value. It was quite natural that4.15 K
Kamerlingh Onnes would choose the name superconductivity for this new
phenomenon of perfect conductivity. Figure 12.8 shows the experimental re-
sults for mercury and platinum. Note that platinum does not exhibit supercon-
ducting behavior, as indicated by its finite resistivity as T approaches In0 K.
1913 Kamerlingh Onnes was awarded the Nobel prize in physics for the study
of matter at low temperatures and the liquefaction of helium.

We now know that the resistivity of a superconductor is truly zero. Soon
after the discovery by Kamerlingh Onnes, many other elemental metals were
found to exhibit zero resistance when their temperatures were lowered below
a certain characteristic temperature of the material, called the critical temper-
ature, Tc .

The magnetic properties of superconductors are as dramatic and as difficult
to understand as their complete lack of resistance. In 1933 W. Hans Meissner
and Robert Ochsenfeld studied the magnetic behavior of superconductors and
found that when certain ones are cooled below their critical temperatures in
the presence of a magnetic field, the magnetic flux is expelled from the interior of the

3 H. Kamerlingh Onnes, Leiden Comm., 120b, 122b, 124c, 1911.



superconductor.4 Furthermore, these materials lost their superconducting behav-
ior above a certain temperature-dependent critical magnetic field, Bc(T ). In
1935 Fritz and Heinz London developed a phenomenological theory of super-
conductivity,5 but the actual nature and origin of the superconducting state
were first explained by John Bardeen, Leon N. Cooper, and J. Robert Schrieffer
in 1957.6 A central feature of this theory, commonly referred to as the BCS
theory, is the formation of bound two-electron states called Cooper pairs. In
1962 Brian D. Josephson predicted a tunneling current between two supercon-
ductors separated by a thin ( ) insulating barrier, where the current is�2 mm
carried by these paired electrons.7 Shortly thereafter, Josephson’s predictions
were verified, and today there exists a whole field of device physics based on
the Josephson effect. Early in 1986 J. Georg Bednorz and Karl Alex Müller
reported evidence for superconductivity in an oxide of lanthanum, barium,
and copper at a temperature of about 8 This was a major breakthrough30 K.
in superconductivity because the highest known value of Tc at that time was
about in a compound of niobium and germanium. This remarkable dis-23 K
covery, which marked the beginning of a new era of high-temperature super-
conductivity, received worldwide attention in both the scientific community
and the business world. Recently, researchers have reported critical tempera-
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Figure 12.8 Plots of resistance versus temperature for (a) mercury (the original data
published by Kamerlingh Onnes) and (b) platinum. Note that the resistance of mercury
follows the path of a normal metal above the critical temperature, Tc , and then suddenly
drops to zero at the critical temperature, which is for mercury. In contrast, the4.15 K
data for platinum show a finite resistance R0 even at very low temperatures.

4 W. H. Meissner and R. Ochsenfeld, Naturwisschaften 21:787, 1933.
5 F. London and H. London, Proc. Roy. Soc. (London) A149:71, 1935.
6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108:1175, 1957.
7 B. D. Josephson, Phys. Letters 1:251, 1962.
8 J. G. Bednorz and K. A. Müller, Z. Phys. B64:189, 1986.



tures as high as in more complex metallic oxides, but the mechanisms150 K
responsible for superconductivity in these materials remain unclear.

Until the discovery of high-temperature superconductors, the use of super-
conductors required coolant baths of liquefied helium (rare and expensive) or
liquid hydrogen (very explosive). On the other hand, superconductors with

require only liquid nitrogen, which boils at and is comparativelyT � 77 K 77 Kc
inexpensive, abundant, and relatively inert. If superconductors with Tc’s above
room temperature are ever found, technology will be drastically altered.

12.3 SOME PROPERTIES OF TYPE I
SUPERCONDUCTORS

Critical Temperature and Critical Magnetic Field

Table 12.4 lists the critical temperatures of some superconducting elements,
classified as type I superconductors. Note the absence of copper, silver, and
gold, which are excellent electrical conductors at ordinary temperatures but
do not exhibit superconductivity.

In the presence of an applied magnetic field B, the value of Tc decreases
with increasing magnetic field, as indicated in Figure 12.9 for several type I
superconductors. When the magnetic field exceeds the critical field, Bc , the
superconducting state is destroyed and the material behaves as a normal con-
ductor with finite resistance.

The magnitude of the critical magnetic field varies with temperature ac-
cording to the approximate expression

2T
B (T ) � B (0) 1 � (12.9)c c � � � �Tc
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Table 12.4 Critical Temperatures and
Critical Magnetic Fields

of Some(at T � 0 K)
Elemental Superconductors

Superconductor Tc (K) Bc(0) (T)

Al 1.196 0.0105
Ga 1.083 0.0058
Hg 4.153 0.0411
In 3.408 0.0281
Nb 9.26 0.1991
Pb 7.193 0.0803
Sn 3.722 0.0305
Ta 4.47 0.0829
Ti 0.39 0.010
V 5.30 0.1023
W 0.015 0.000115
Zn 0.85 0.0054



As you can see from this equation and Figure 12.9, the value of Bc is a maximum
at The value of Bc(0) is found by determining Bc at some finite temperature0 K.
and extrapolating back to a temperature that cannot be achieved in the0 K,
laboratory. The value of the critical field limits the maximum current that can
be sustained in a type I superconductor.

Note that Bc(0) is the maximum magnetic field that is required to destroy
superconductivity in a given material. If the applied field exceeds Bc(0), the
metal never becomes superconducting at any temperature. Values for the crit-
ical field for type I superconductors are quite low, as Table 12.4 shows. For this
reason, type I superconductors are not used to construct high-field magnets,
called superconducting magnets, because the magnetic fields generated by
modest currents destroy, or “quench,” the superconducting state.

Magnetic Properties of Type I Superconductors

One can use simple arguments based on the laws of electricity and magnetism
to show that the magnetic field inside a superconductor cannot change with
time. According to Ohm’s law, the electric field inside a conductor is propor-
tional to the resistance of the conductor. Thus, since for a supercon-R � 0
ductor, the electric field in its interior must be zero. Now recall that Faraday’s law of
induction can be expressed as

d�BE ·ds � � (12.10)� dt

That is, the line integral of the electric field around any closed loop is equal
to the negative rate of change in the magnetic flux �B through the loop. Since
E is zero everywhere inside the superconductor, the integral over any closed
path inside the superconductor is zero. Hence which tells us thatd� /dt � 0,B
the magnetic flux in the superconductor cannot change. From this we can conclude
that must remain constant inside the superconductor.B ( � � /A)B

Prior to 1933 it was assumed that superconductivity was a manifestation of
perfect conductivity. If a perfect conductor is cooled below its critical temper-
ature in the presence of an applied magnetic field, the field should be trapped
in the interior of the conductor even after the field is removed. The final state
of a perfect conductor in an applied magnetic field should depend upon which
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several type I superconductors. Ex-
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give the critical fields listed in Ta-
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and temperatures below its critical
temperature and behaves as a nor-
mal conductor above that curve.



occurs first, the application of the field or the cooling below the critical tem-
perature. If the field is applied after cooling below Tc , the field should be
expelled from the superconductor. On the other hand, if the field is applied
before cooling, the field should not be expelled from the superconductor after
cooling below Tc .

When experiments were conducted in the 1930s to examine the magnetic
behavior of superconductors, the results were quite different. In 1933 Meissner
and Ochsenfeld4 discovered that, when a metal became superconducting in
the presence of a weak magnetic field, the field was expelled so that B equaled
0 everywhere in the interior of the superconductor. Thus the same final state,

was achieved whether the field was applied before or after the materialB � 0,
was cooled below its critical temperature. Figure 12.10 illustrates this effect for
a material in the shape of a long cylinder. Note that the field penetrates the
cylinder when its temperature is greater than Tc (Fig. 12.10a). As the temper-
ature is lowered below Tc , however, the field lines are spontaneously expelled
from the interior of the superconductor (Fig. 12.10b). Thus a type I supercon-
ductor is more than a perfect conductor (resistivity ); it is also a perfect� � 0
diamagnet The phenomenon of the expulsion of magnetic fields from(B � 0).
the interior of a superconductor is known as the Meissner effect. The property
that in the interior of a type I superconductor is as fundamental as theB � 0
property of zero resistance and shows the important role that magnetism plays
in superconductivity. If the applied field is sufficiently large the su-(B � B ),c
perconducting state is destroyed and the field penetrates the sample.

Because a superconductor is a perfect diamagnet, it repels a permanent
magnet. In fact, one can perform a dazzling demonstration of the Meissner
effect by floating a small permanent magnet above a superconductor and
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(a) (b)

T < Tc

i

T > Tc

Figure 12.10 A type I superconductor in the form of a long cylinder in the presence
of an external magnetic field. (a) At temperatures above Tc , the field lines penetrate
the sample because it is in its normal state. (b) When the rod is cooled to andT � Tc
becomes superconducting, magnetic flux is excluded from its interior by the induction
of surface currents.



achieving magnetic levitation. Figure 12.11 is a dramatic photograph of mag-
netic levitation. The details of this demonstration are provided in Questions 16
through 19.

You should recall from your study of electricity that a good conductor
expels static electric fields by moving charges to its surface. In effect, the
surface charges produce an electric field that exactly cancels the externally
applied field inside the conductor. In a similar manner, a superconductor
expels magnetic fields by forming surface currents. To illustrate this point,
consider again the superconductor in Figure 12.10. Let us assume that the
sample is initially at a temperature as in Figure 12.10a, so that theT � T ,c
field penetrates the cylinder. As the cylinder is cooled to a temperature

the field is expelled as in Figure 12.10b. In this case, surface currentsT � T ,c
are induced on the superconductor, producing a magnetic field that exactly
cancels the externally applied field inside the superconductor. As you might
expect, the surface currents disappear when the external magnetic field is
removed.
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Figure 12.11 A small permanent magnet levitated above a pellet of the
superconductor cooled to the temperature of liquid nitrogen, . (Cour-YBa Cu O 77 K2 3 7��

tesy of IBM Research)

EXAMPLE 12.3 Critical Current in a Pb Wire

A lead wire has a radius of and is at a temperature3.00 mm
of Find (a) the critical magnetic field in lead at4.20 K.
this temperature and (b) the maximum current the wire
can carry at this temperature and still remain supercon-
ducting.

Solution (a) We can use Equation 12.9 to find the crit-
ical field at any temperature if Bc(0) and Tc are known.
From Table 12.4 we see that the critical magnetic field of
lead at is and its critical temperature is0 K 0.0803 T

Hence Equation 12.9 gives7.193 K.
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24.20
B (4.2 K) � (0.0803 T) 1 � � 0.0529 Tc � � � �7.193

(b) According to Ampère’s law, if a wire carries a steady
current I, the magnetic field generated at an exterior
point a distance r from the wire is

� I0B �
2�r

When the current in the wire equals a certain critical cur-

rent Ic , the magnetic field at the wire surface equals the
critical magnetic field Bc . (Note that inside, becauseB � 0
all the current is on the wire surface.) Using the preceding
expression and taking r equal to the radius of the wire, we
find

�32�rB (3.00 � 10 m)(0.0529 T)
I � � 2� � 794 A

�7 2� 4� � 10 N/A0

Penetration Depth

As we have seen, magnetic fields are expelled from the interior of a type I
superconductor by the formation of surface currents. In reality, these currents
are not formed in an infinitesimally thin layer on the surface. Instead, they
penetrate the surface to a small extent. Within this thin layer, which is about

thick, the magnetic field B decreases exponentially from its external100 nm
value to zero, according to the expression

�x/�B(x) � B e (12.11)0

where it is assumed that the external magnetic field is parallel to the surface
of the sample. In this equation, B0 is the value of the magnetic field at the
surface, x is the distance from the surface to some interior point, and � is a
parameter called the penetration depth. The variation of magnetic field with
distance inside a type I superconductor is plotted in Figure 12.12. The super-
conductor occupies the region on the positive side of the x axis. As you can
see, the magnetic field becomes very small at depths a few times � below the
surface. Values for � are typically in the range 10 to 100 nm.

Penetration depth varies with temperature according to the empirical ex-
pression

�2 1/2T
�(T ) � � 1 � (12.12)0 � � � �Tc

where �0 is the penetration depth at From this expression we see that �0 K.
becomes infinite as T approaches Tc . Furthermore, as T approaches Tc , while
the sample is in the superconducting state, an applied magnetic field penetrates
more and more deeply into the sample. Ultimately, the field penetrates the
entire sample (� becomes infinite), and the sample becomes normal.

Magnetization

When a bulk sample is placed in an external magnetic field the sampleB ,0
acquires a magnetization M (see Section 12.1). The magnetic field B inside the
sample is related to and M through the relationship WhenB B � B � � M.0 0 0
the sample is in the superconducting state, therefore it follows that theB � 0;
magnetization is

B0

3λ

B

2λλ0

x

Surface

Figure 12.12 The magnetic
field B inside a superconductor
versus distance x from the sur-
face of the superconductor. The
field outside the superconduc-
tor (for ) is and the su-x � 0 B ,0
perconductor is to the right of
the dashed line.



B0M � � � �H (12.13)
�0

where � (��1) is the magnetic susceptibility. That is, whenever a material is
in a superconducting state, its magnetization opposes the external magnetic
field and the magnetic susceptibility has its maximum negative value. Again we
see that a type I superconductor is a perfect diamagnetic substance.
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Figure 12.13a is a plot of magnetic field inside a type I superconductor versus
external field (parallel to a long cylinder) at (Long cylinders are usedT � T .c
to minimize end effects.) The magnetization versus external field at some con-
stant temperature is plotted in Figure 12.13b. Note that when theB � B ,0 c
magnetization is approximately zero.

With the discovery of the Meissner effect, Fritz and Heinz London were able
to develop phenomenological equations for type I superconductors based on
equilibrium thermodynamics. They could explain the critical magnetic field in
terms of the energy increase of the superconducting state, an increase resulting
from the exclusion of flux from the interior of the superconductor. According
to equilibrium thermodynamics, a system prefers to be in the state having the
lowest free energy. Hence, the superconducting state must have a lower free
energy than the normal state. If Es represents the energy of the superconduct-
ing state per unit volume and En the energy of the normal state per unit volume,
then below Tc and the material becomes superconducting. The exclu-E � Es n
sion of a field B causes the total energy of the superconducting state to increase
by an amount equal to B2/2�0 per unit volume. The critical field value is de-
fined by the equation

2BcE � � E (12.14)s n2�0

Because the London theory also gives the temperature dependence of Es , an
exact expression for Bc(T ) could be obtained. Note that the field exclusion
energy /2�0 is just the area under the curve in Figure 12.13b.2Bc

0
0

(b)

Bc B0

(a)

– µ0M

0 Bc B0

0

B

Figure 12.13 The magnetic field–dependent properties of a type I superconductor.
(a) A plot of internal field versus applied field, where for (b) A plot ofB � 0 B � B .0 c
magnetization versus applied field. Note that forM � 0 B � B .0 c



12.4 TYPE II SUPERCONDUCTORS

By the 1950s researchers knew there was another class of superconductors,
which they called type II superconductors. These materials are characterized
by two critical magnetic fields, designated and in Figure 12.14. WhenB Bc1 c2
the external magnetic field is less than the lower critical field the materialB ,c1
is entirely superconducting and there is no flux penetration, just as with type
I superconductors. When the external field exceeds the upper critical field

the flux penetrates completely and the superconducting state is destroyed,B ,c2
just as for type I materials. For fields lying between and however, theB B ,c1 c2
material is in a mixed state, referred to as the vortex state. (This name is given
because of swirls of currents that are associated with this state.) While in the
vortex state, the material can have zero resistance and has partial flux penetra-
tion. Vortex regions are essentially filaments of normal material that run
through the sample when the external field exceeds the lower critical field, as
illustrated in Figure 12.15. As the strength of the external field increases, the
number of filaments increases until the field reaches the upper critical value,
and the sample becomes normal.

One can view the vortex state as a cylindrical swirl of supercurrents surround-
ing a cylindrical normal-metal core that allows some flux to penetrate the in-
terior of the type II superconductor. Associated with each vortex filament is a
magnetic field that is greatest at the core center and falls off exponentially
outside the core with the characteristic penetration depth �. The supercurrents
are the “source” of B for each vortex. In type II superconductors, the radius of
the normal-metal core is smaller than the penetration depth.

Table 12.5 gives critical temperatures and values for several type II su-Bc2
perconductors. The values of are very large in comparison with those of BcBc2
for type I superconductors. For this reason, type II superconductors are well
suited for the construction of high-field superconducting magnets. For exam-
ple, using the alloy NbTi, superconducting solenoids may be wound to produce
magnetic fields in the range 5 to Furthermore, they require no power to10 T.
maintain the field. Iron-core electromagnets rarely exceed and consume2 T
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Table 12.5 Critical Temperatures and
Upper Critical Magnetic
Fields (at of SomeT � 0 K)
Type II Superconductors

Superconductor Tc (K) Bc2(0) (T)

Nb3Al 18.7 32.4
Nb3Sn 18.0 24.5
Nb3Ge 23 38
NbN 15.7 15.3
NbTi 9.3 15
Nb3(AlGe) 21 44
V3Si 16.9 23.5
V3Ga 14.8 20.8
PbMoS 14.4 60

0
0 T

Tc

Bc Bc 2

NormalVortex

Bc 1

Superconducting

B

Figure 12.14 Critical mag-
netic fields as a function of tem-
perature for a type II supercon-
ductor. Below the materialB ,c1
behaves as a type I superconduc-
tor. Above the material be-B ,c2
haves as a normal conductor. Be-
tween these two fields, the
superconductor is in the vortex
(mixed) state.

Superconducting

Normal
region

Figure 12.15 A schematic di-
agram of a type II superconduc-
tor in the vortex state. The sam-
ple contains filaments of normal
(unshaded) regions through
which magnetic field lines can
pass. The field lines are ex-
cluded from the superconduct-
ing (shaded) regions.



power to maintain the field. Notice also that type II superconductors are com-
pounds formed from elements of the transition and actinide series. Plots of

variations with temperature appear in Figure 12.16a. The three-dimensionalBc2
plot in Figure 12.16b shows the variation of critical temperature with both Bc2
and critical current density, Jc .

Figure 12.17a shows internal magnetic field versus external field for a type
II superconductor, while Figure 12.17b shows the corresponding magnetization
versus external field.

494 CHAPTER 12 SUPERCONDUCTIVITY

35162 Serway SAUNC

1 short
standard
1 long

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

B
c2

 in
 T

es
la

T(K)

V4.5Ga
V3Ga

V3Si

Nb3Al

Nb3Sn

Nb79(Al73Ge27)21

(a)

104

107

103

10
20

30
40

50
60

5
10

15
20

25

Niobium-titanium alloy
Nb3Sn
Nb3Ge (sputtered film)

PbMo6S8 Bc2(T)T(K)

Jc(A/cm2)

(b)

Figure 12.16 (a) Upper critical field, as a function of temperature for several typeB ,c2
II superconductors. (From S. Foner, et al., Physics Letters 31A:349, 1970) (b) A three-
dimensional plot showing the variation of critical current density, Jc , with temperature,
and the variation of the upper critical field with temperature for several type II super-
conductors.
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– µ0M

Figure 12.17 The magnetic behavior of a type II superconductor. (a) A plot of internal
field versus external field. (b) A plot of magnetization versus external field.



When a type II superconductor is in the vortex state, sufficiently large cur-
rents can cause the vortices to move perpendicular to the current. This vortex
motion corresponds to a change in flux with time and produces resistance in
the material. By adding impurities or other special inclusions, one can effec-
tively pin the vortices and prevent their motion, to produce zero resistance in
the vortex state. The critical current for type II superconductors is the current
that, when multiplied by the flux in the vortices, gives a Lorentz force that
overcomes the pinning force.
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EXAMPLE 12.4 A Type II Superconducting
Solenoid

A solenoid is to be constructed from wire made of the alloy
Nb3Al, which has an upper critical field of at32.0 T T �

and a critical temperature of The wire has a0 K 18.0 K.
radius of the solenoid is to be wound on a hollow1.00 mm,
cylinder of diameter and length and8.00 cm 90.0 cm,
there are to be 150 turns of wire per centimeter of length.
(a) How much current is required to produce a magnetic
field of at the center of the solenoid?5.00 T

Solution The magnetic field at the center of a tightly
wound solenoid is where n is the number ofB � � nI,0
turns per unit length along the solenoid, and I is
the current in the solenoid wire. Taking n �

and we4150 turns/cm � 1.50 � 10 turns/m, B � 5.00 T,

find

B 5.00 T
I � � � 265 A

�7 2 4 �1� n (4� � 10 N/A )(1.50 � 10 m )0

(b) What maximum current can the solenoid carry if its
temperature is to be maintained at and it is to re-15.0 K
main superconducting? (Note that B near the solenoid
windings is approximately equal to B on its axis.)

Solution Using Equation 12.9, with weB (0) � 32.0 T,c
find at a temperature of For this valueB � 9.78 T 15.0 K.c
of B, we find I � 518 A.max

12.5 OTHER PROPERTIES OF SUPERCONDUCTORS

Persistent Currents

Because the dc resistance of a superconductor is zero below the critical tem-
perature, once a current is set up in the material, it persists without any applied
voltage (which follows from Ohm’s law and the fact that ). These persist-R � 0
ent currents, sometimes called supercurrents, have been observed to last for
several years with no measurable losses. In one experiment conducted by S. S.
Collins in Great Britain, a current was maintained in a superconducting ring
for 2.5 years, stopping only because a trucking strike delayed delivery of the
liquid helium that was necessary to maintain the ring below its critical temper-
ature.9

To better understand the origin of persistent currents, consider a loop of
wire made of a superconducting material. Suppose the loop is placed, in its
normal state in an external magnetic field, and then the temperature(T � T ),c
is lowered below Tc so that the wire becomes superconducting, as in Figure
12.18a. As with a cylinder, the flux is excluded from the interior of the wire
because of the induced surface currents. However, note that flux lines still pass
through the hole in the loop. When the external field is turned off, as in Figure
12.18b, the flux through this hole is trapped because the magnetic flux through the loop

9 This charming story was provided by Steve Van Wyk.



cannot change.10 The superconducting wire prevents the flux from going to zero
through the advent of a large spontaneous current induced by the collapsing
external magnetic field. If the dc resistance of the superconducting wire is truly
zero, this current should persist forever. Experimental results using a technique
known as nuclear magnetic resonance indicate that such currents will persist
for more than 105 years! The resistivity of a superconductor based on such
measurements has been shown to be less than This reaffirms the�2610 	 ·m.
fact that R is zero for a superconductor. (See Problem 43 for a simple but
convincing demonstration of zero resistance.)

Now consider what happens if the loop is cooled to a temperature T � Tc
before the external field is turned on. When the field is turned on while the
loop is maintained at this temperature, flux must be excluded from the entire loop,
including the hole, because the loop is in the superconducting state. Again, a
current is induced in the loop to maintain zero flux through the loop and
through the interior of the wire. In this case, the current disappears when the
external field is turned off.

Coherence Length

Another important parameter associated with superconductivity is the coher-
ence length, 
. The coherence length is the smallest dimension over which
superconductivity can be established or destroyed. Table 12.6 lists typical values
of the penetration depth, �, and 
 at for selected superconductors.0 K

A superconductor is type I if most of the pure metals that are super-
 � �;
conductors fall into this category. An increase in the ratio �/
 favors type II
superconductivity. A detailed analysis shows that coherence length and pene-
tration depth both depend on the mean free path of the electrons in the normal
state. The mean free path of a metal can be reduced by the addition of impu-
rities to the metal, which causes the penetration depth to increase while co-

496 CHAPTER 12 SUPERCONDUCTIVITY

35162 Serway SAUNC

1 short
standard
1 long

(a) (b)

Figure 12.18 (a) When a superconducting loop at is placed in an externalT � Tc
magnetic field and the temperature is then lowered to flux passes through theT � T ,c
hole in the loop even though it does not penetrate the interior of the material forming
the loop. (b) After the external field is removed, the flux through the hole remains
trapped, and an induced current appears in the material forming the loop.

10 Alternatively, one can apply Equation 12.12, taking the line integral of the E field over the loop.
Since everywhere along a path on the superconductor, the integral is zero, and� � 0 E � 0,
d� /dt � 0.B



herence length decreases. Thus one can cause a metal to change from type I
to type II by introducing an alloying element. For example, pure lead is a type
I superconductor but changes to type II (with almost no change in Tc) when
alloyed with 2% indium (by weight).

Flux Quantization

The phenomenon of flux exclusion by a superconductor applies only to a sim-
ply connected object—that is, one with no holes or their topological equiva-
lent. However, when a superconducting ring is placed in a magnetic field and
the field is removed, flux lines are trapped and are maintained by a persistent
circulating current, as shown in Figure 12.18b. Realizing that superconductivity
is fundamentally a quantum phenomenon, Fritz London suggested that the
trapped magnetic flux should be quantized in units of h/e.11 (The electronic
charge e in the denominator arises because London assumed that the persis-
tent current is carried by single electrons.) Subsequent delicate measurements
on very small superconducting hollow cylinders showed that the flux quantum
is one-half the value postulated by London.12 That is, the magnetic flux � is
quantized not in units of h/e but in units of h/2e:

nh
� � � n� (12.15)02e

where n is an integer and

h
�15 2� � � 2.0679 � 10 T·m (12.16)0 2e

is the magnetic flux quantum.
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Table 12.6 Penetration Depths and
Coherence Lengths of
Selected Superconductors
at T � 0 Ka

Superconductor � (nm) � (nm)

Al 16 160
Cd 110 760
Pb 37 83
Nb 39 38
Sn 34 23

a These are calculated values from C. Kittel, Introduction
to Solid State Physics, New York, John Wiley, 1986.

11 F. London, Superfluids, vol. I, New York, John Wiley, 1954.
12 The effect was discovered by B. S. Deaver, Jr., and W. M. Fairbank, Phys. Rev. Letters 7:43, 1961,

and independently by R. Doll and M. Nabauer, Phys. Rev. Letters 7:51, 1961.

Magnetic flux quantum



12.6 ELECTRONIC SPECIFIC HEAT

The thermal properties of superconductors have been extensively studied and
compared with those of the same materials in the normal state, and one very
important measurement is specific heat. When a small amount of thermal en-
ergy is added to a normal metal, some of the energy is used to excite lattice
vibrations, and the remainder is used to increase the kinetic energy of the
conduction electrons. The electronic specific heat C is defined as the ratio of
the thermal energy absorbed by the electrons to the increase in temperature
of the system.

Figure 12.19 shows how the electronic specific heat varies with temperature
for both the normal state and the superconducting state of gallium, a type I
superconductor. At low temperatures, the electronic specific heat of the ma-
terial in the normal state, Cn , varies with temperature as AT, as explained in
Chapter 11. The electronic specific heat of the material in the superconducting
state, Cs , is substantially altered below the critical temperature. As the temper-
ature is lowered starting from the specific heat first jumps to a veryT � T ,c
high value at Tc and then falls below the value for the normal state at very low
temperatures. Analyses of such data show that at temperatures well below Tc ,
the electronic part of the specific heat is dominated by a term that varies as
exp(��/kT ). A result of this form suggests the existence of an energy gap in
the energy levels available to the electrons. We shall see that the energy gap is
a measure of the thermal energy necessary to move electrons from a set of
ground states (superconducting) to a set of excited states (normal), and that
the energy gap is actually 2�.
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Figure 12.19 Electronic specific heat versus temperature for superconducting gallium
(in zero applied magnetic field) and normal gallium (in a 0.020-T magnetic field).
For the superconducting state, note the discontinuity that occurs at Tc and the expo-
nential dependence on 1/T at low temperatures. (Taken from N. Phillips, Phys. Rev. 134:
385, 1964)



12.7 BCS THEORY

According to classical physics, part of the resistivity of a metal is due to collisions
between free electrons and thermally displaced ions of the metal lattice, and
part is due to scattering of electrons from impurities or defects in the metal.
Soon after the discovery of superconductivity, scientists recognized that this
classical model could never explain the superconducting state, because the
electrons in a material always suffer some collisions, and therefore resistivity
can never be zero. Nor could superconductivity be understood through a sim-
ple microscopic quantum mechanical model, where one views an individual
electron as an independent wave traveling through the material. Although
many phenomenological theories based on the known properties of supercon-
ductors were proposed, none could explain why electrons enter the supercon-
ducting state and why electrons in this state are not scattered by impurities and
lattice vibrations.
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Several important developments in the 1950s led to better understanding of
superconductivity. In particular, many research groups reported that the criti-
cal temperatures of isotopes of a metal decreased with increasing atomic mass.
This observation, called the isotope effect, was early evidence that lattice mo-
tion played an important role in superconductivity. For example, in the case
of mercury, for the isotope for and199 200T � 4.161 K Hg, 4.153 K Hg,c

for The characteristic frequencies of the lattice vibrations are2044.126 K Hg.
expected to change with the mass M of the vibrating atoms. In fact, the lattice
vibrational frequencies are expected to be proportional to [analogous�1/2M
to the angular frequency � of a mass-spring system, where On1/2� � (k/M) ].
this basis, it became apparent that any theory of superconductivity for metals
must include electron-lattice interactions, which is somewhat surprising be-
cause electron-lattice interactions increase the resistance of normal metals.

The full microscopic theory of superconductivity presented in 1957 by Bar-
deen, Cooper, and Schrieffer has had good success in explaining the features
of superconductors. The details of this theory, now known as the BCS theory,
are beyond the scope of this text, but we can describe some of its main features
and predictions.

The central feature of the BCS theory is that two electrons in the supercon-
ductor are able to form a bound pair called a Cooper pair if they somehow
experience an attractive interaction. This notion at first seems counterintuitive
since electrons normally repel one another because of their like charges. How-
ever, a net attraction can be achieved if the electrons interact with each other
via the motion of the crystal lattice as the lattice structure is momentarily de-
formed by a passing electron.13 To illustrate this point, Figure 12.20 shows two
electrons moving through the lattice. The passage of electron 1 causes nearby
ions to move inward toward the electron, resulting in a slight increase in the

13 For a lively description of this process, see D. Teplitz, ed., Electromagnetism: Path to Research, New
York, Plenum Press, 1982. In particular, see Chapter 1, “Electromagnetic Properties of Super-
conductors,” by Brian B. Schwartz and Sonia Frota-Pessoa. Note that the electron that causes the
lattice to deform remains in that region for a very short time, compared to the much�16�10 s,
longer time it takes the lattice to deform, Thus the sluggish ions continue to move�13�10 s.
inward for a time interval about 1000 times longer than the response time of the electron, so the
region is effectively positively charged between and�16 �1310 s 10 s.



concentration of positive charge in this region. Electron 2 (the second electron
of the Cooper pair), approaching before the ions have had a chance to return
to their equilibrium positions, is attracted to the distorted (positively charged)
region. The net effect is a weak delayed attractive force between the two elec-
trons, resulting from the motion of the positive ions. As one researcher has
beautifully put it, “the following electron surfs on the virtual lattice wake of the
leading electron.” 14 In more technical terms, one can say that the attractive
force between two Cooper electrons is an electron-lattice-electron interaction, where
the crystal lattice serves as the mediator of the attractive force. Some scientists
refer to this as a phonon-mediated mechanism, because quantized lattice vibrations
are called phonons.

A Cooper pair in a superconductor consists of two electrons having opposite
momenta and spin, as described schematically in Figure 12.21. In the super-
conducting state, the linear momenta can be equal and opposite, correspond-
ing to no net current, or slightly different and opposite, corresponding to a
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Electron #2
– –

Electron #1

Lattice ion

Figure 12.20 The basis for the attractive interaction between two electrons via the
lattice deformation. Electron 1 attracts the positive ions, which move inward from their
equilibrium positions (dashed circles). This distorted region of the lattice has a net
positive charge, and hence electron 2 is attracted to it.

14 Many authors choose to refer to this cooperative state of affairs as a collective state. As an
analogy, one author wrote that the electrons in the paired state “move like mountain-climbers
tied together by a rope: should one of them leave the ranks due to the irregularities of the terrain
(caused by the thermal vibrations of the lattice atoms) his neighbors would pull him back.”

Spin up

p

–p

Spin downFigure 12.21 A schematic diagram
of a Cooper pair. The electron mov-
ing to the right has a momentum p
and its spin is up, while the electron
moving to the left has a momentum
�p and its spin is down. Hence the
total momentum of the system is
zero and the total spin is zero.



net superconducting current. Because Cooper pairs have zero spin, they can
all be in the same state. This is in contrast with electrons, which are fermions
(spin ) that must obey the Pauli exclusion principle. In the BCS theory, a1

2
ground state is constructed in which all electrons form bound pairs. In effect, all
Cooper pairs are “locked” into the same quantum state. One can view this state
of affairs as a condensation of all electrons into the same state. Also note that,
because the Cooper pairs have zero spin (and hence zero angular momentum),
their wavefunctions are spherically symmetric (like the s-states of the hydrogen
atom.) In a “semiclassical” sense, the electrons are always undergoing head-on
collisions and as such are always moving in each other’s wakes. Because the two
electrons are in a bound state, their trajectories always change directions in
order to keep their separation within the coherence length.

The BCS theory has been very successful in explaining the characteristic
superconducting properties of zero resistance and flux expulsion. From a qual-
itative point of view, one can say that in order to reduce the momentum of any
single Cooper pair by scattering, it is necessary to simultaneously reduce the
momenta of all the other pairs—in other words, it is an all-or-nothing situation.
One cannot change the velocity of one Cooper pair without changing those of
all of them.15 Lattice imperfections and lattice vibrations, which effectively scat-
ter electrons in normal metals, have no effect on Cooper pairs! In the absence
of scattering, the resistivity is zero and the current persists forever. It is rather
strange, and perhaps amazing, that the mechanism of lattice vibrations that is
responsible (in part) for the resistivity of normal metals also provides the in-
teraction that gives rise to their superconductivity. Thus, copper, silver, and
gold, which exhibit small lattice scattering at room temperature, are not su-
perconductors, whereas lead, tin, mercury, and other modest conductors have
strong lattice scattering at room temperature and become superconductors at
low temperatures.

As we mentioned earlier, the superconducting state is one in which the
Cooper pairs act collectively rather than independently. The condensation of
all pairs into the same quantum state makes the system behave as a giant quan-
tum mechanical system or macromolecule that is quantized on the macroscopic
level. The condensed state of the Cooper pairs is represented by a single coherent wave-
function  that extends over the entire volume of the superconductor.

The stability of the superconducting state is critically dependent on strong
correlation between Cooper pairs. In fact, the theory explains superconducting
behavior in terms of the energy levels of a kind of “macromolecule” and the
existence of an energy gap Eg between the ground and excited states of the
system, as in Figure 12.22a. Note that in Figure 12.22b there is no energy gap
for a normal conductor. In a normal conductor, the Fermi energy EF represents
the largest kinetic energy the free electrons can have at 0 K.

The energy gap in a superconductor is very small, of the order of k TB c
at as compared with the energy gap in semiconductors�3(�10 eV) 0 K,

or the Fermi energy of a metal The energy gap represents(�1 eV) (�5 eV).
the energy needed to break apart a Cooper pair. The BCS theory predicts that
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A Cooper pair is somewhat analogous to a helium atom, in that both are bosons with zero415 He,2
spin. It is well known that the superfluidity of liquid helium may be viewed as a condensation of
bosons in the ground state. Likewise, superconductivity may be viewed as a superfluid state of
Cooper pairs, all in the same quantum state.



at T � 0 K,

E � 3.53 k T (12.17)g B c

Thus superconductors that have large energy gaps have relatively high critical
temperatures. The exponential dependence of the electronic heat capacity dis-
cussed in the preceding section, exp(��/kBT ), contains an experimental fac-
tor, that may be used to determine the value of Eg. Furthermore,� � E /2,g
the energy-gap values predicted by Equation 12.17 are in good agreement with
the experimental values in Table 12.7. (The tunneling experiment used to
obtain these values is described later.) As we noted earlier, the electronic heat
capacity in zero magnetic field undergoes a discontinuity at the critical tem-
perature. Furthermore, at finite temperatures, thermally excited individual
electrons interact with the Cooper pairs and reduce the energy gap continu-
ously from a peak value at to zero at the critical temperature, as shown in0 K
Figure 12.23 for several superconductors.

Because the two electrons of a Cooper pair have opposite spin angular mo-
menta, an external magnetic field raises the energy of one electron and lowers
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E F

Superconductor Normal metal
(a) (b)

Figure 12.22 (a) A simplified energy-band structure for a superconductor. Note the
energy gap between the lower filled states and the upper empty states. (b) The energy-
band structure for a normal conductor has no energy gap. At all states belowT � 0 K,
the Fermi energy EF are filled, and all states above it are empty.

Table 12.7 Energy Gaps
for Some
Superconductors
at T � 0 K

Superconductor Eg (meV)

Al 0.34
Ga 0.33
Hg 1.65
In 1.05
Pb 2.73
Sn 1.15
Ta 1.4
Zn 0.24
La 1.9
Nb 3.05



the energy of the other (Problem 29). If the magnetic field is made strong
enough, it becomes energetically favorable for the pair to break up into a state
where both spins point in the same direction and the superconducting state is
destroyed. The value of the external field that causes the breakup corresponds
to the critical field.

12.8 ENERGY GAP MEASUREMENTS 503

35162 Serway SAUNC

1 short
standard
1 long

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E g
(T

)/
E g

(0
)

T/Tc

BCS  curve
Tin
Tantalum
Niobium

Figure 12.23 The points on this graph represent reduced values of the observed en-
ergy gap Eg(T)/Eg(0) as a function of the reduced temperature T/Tc for tin, tantalum,
and niobium. The solid curve gives the values predicted by the BCS theory. (Data are
from electron tunneling measurements by P. Townsend and J. Sutton, Phys. Ref. 28:591, 1962)

EXAMPLE 12.5 The Energy Gap for Lead

Use Equation 12.17 to calculate the energy gap for lead,
and compare the answer with the experimental value in
Table 12.7.

Solution Because for lead, Equation 12.17T � 7.193 Kc
gives

�23E � 3.53k T � (3.53)(1.38 � 10 J/K)(7.193 K)g B c

�22 �3� 3.50 � 10 J � 0.00219 eV � 2.19 � 10 eV

The experimental value is corresponding�32.73 � 10 eV,
to a difference of about 20%.

16 I. Giaever, Phys. Rev Letters 5:147, 464, 1960.

12.8 ENERGY GAP MEASUREMENTS

Single-Particle Tunneling

The energy gaps in superconductors can be measured very precisely in single-
particle tunneling experiments (those involving normal electrons), first re-
ported by Giaever in 1960.16 As described in Chapter 6, tunneling is a phenom-



enon in quantum mechanics that enables a particle to penetrate and go
through a barrier even though classically it has insufficient energy to go over
the barrier. If two metals are separated by an insulator, the insulator normally
acts as a barrier to the motion of electrons between the two metals. However,
if the insulator is made sufficiently thin (less than about ), there is a small2 nm
probability that electrons will tunnel from one metal to the other.

First consider two normal metals separated by a thin insulating barrier, as in
Figure 12.24a. If a potential difference V is applied between the two metals,
electrons can pass from one metal to the other, and a current is set up. For
small applied voltages, the current-voltage relationship is linear (the junction
obeys Ohm’s law). However, if one of the metals is replaced by a superconduc-
tor maintained at a temperature below Tc , as in Figure 12.24b, something quite
unusual occurs. As V increases, no current is observed until V reaches a thresh-
old value that satisfies the relationship where � is half theV � E /2e � �/e,t g
energy gap. (The voltage source provides the energy required to break a
Cooper pair and free an electron to tunnel. The factor of one half comes from
the fact that we are dealing with single-particle tunneling, and the energy re-
quired is one-half the binding energy of a pair, 2�.) That is, if theneV � 0.5E ,g
tunneling can occur between the normal metal and the superconductor.

Thus, single-particle tunneling provides a direct experimental measurement
of the energy gap. The value of � obtained from such experiments is in good
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Figure 12.24 (a) The current-voltage relationship for electron tunneling through a
thin insulator between two normal metals. The relationship is linear for small currents
and voltages. (b) The current-voltage relationship for electron tunneling through a thin
insulator between a superconductor and a normal metal. The relationship is nonlinear
and strongly temperature-dependent. (Adapted from N. W. Ashcroft and N. D. Mermin, Solid
State Physics, Philadelphia, Saunders College Publishing, 1975)



agreement with the results of electronic heat capacity measurements. The I-V
curve in Figure 12.24b shows the nonlinear relationship for this junction. Note
that as the temperature increases toward Tc, some tunneling current occurs at
voltages smaller than the energy-gap threshold voltage. This is due to a com-
bination of thermally excited electrons and a decrease in the energy gap.

Absorption of Electromagnetic Radiation

Another experiment used to measure the energy gaps of superconductors is
the absorption of electromagnetic radiation. In superconductors, photons can
be absorbed by the material when their energy is greater than the gap energy.
Electrons in the valence band of the semiconductor absorb incident photons,
exciting the electrons across the gap into the conduction band. In a similar
manner, superconductors absorb photons if the photon energy exceeds the
gap energy, 2�. If the photon energy is less than 2�, no absorption occurs.
When photons are absorbed by the superconductor, Cooper pairs are broken
apart. Photon absorption in superconductors typically occurs in the range be-
tween microwave and infrared frequencies, as the following example shows.
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EXAMPLE 12.6 Absorption of Radiation
by Lead

Find the minimum frequency of a photon that can be ab-
sorbed by lead at to break apart a Cooper pair.T � 0 K

Solution From Table 12.7 we see that the energy gap for
lead is Setting this equal to the photon�32.73 � 10 eV.
energy hf, and noting that we find�191 eV � 1.60 � 10 J,

�3 �22hf � 2� � 2.73 � 10 eV � 4.37 � 10 J

�224.37 � 10 J
11f � � 6.60 � 10 Hz

�346.626 � 10 J·s

Exercise What is the maximum wavelength of radiation
that can be absorbed by lead at 0 K?

Answer which is in the far infrared� � c/f � 0.455 mm,
region.

12.9 JOSEPHSON TUNNELING

In the preceding section we described single-particle tunneling from a normal
metal through a thin insulating barrier into a superconductor. Now we consider
tunneling between two superconductors separated by a thin insulator. In 1962
Brian Josephson proposed that, in addition to single particles, Cooper pairs
can tunnel through such a junction. Josephson predicted that pair tunneling
can occur without any resistance, producing a direct current when the applied
voltage is zero and an alternating current when a dc voltage is applied across
the junction.

At first, physicists were very skeptical about Josephson’s proposal because it
was believed that single-particle tunneling would mask pair tunneling. How-
ever, when the phase coherence of the pairs is taken into account, one finds
that, under the appropriate conditions, the probability of tunneling of pairs
across the junction is comparable to that of single-particle tunneling. In fact,
when the insulating barrier separating the two superconductors is made suffi-
ciently thin (say, ) Josephson tunneling is as easy to observe as single-�1 nm
particle tunneling.



In the remainder of this section, we describe three remarkable effects asso-
ciated with pair tunneling.
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The dc Josephson Effect

Consider two superconductors separated by a thin oxide layer, typically 1 to
thick, as in Figure 12.25. Such a configuration is known as a Josephson2 nm

junction. In a given superconductor, the pairs could be represented by a wave-
function where � is the phase and is the same for every pair. If thei� �  e ,0
superconductor to the left of the insulating layer has a phase �1 and that to
the right has a phase �2, Josephson showed that at zero voltage there appears
across the junction a supercurrent satisfying the relationship

I � I sin(� � � ) � I sin � (12.18)s max 2 1 max

where is the maximum current across the junction under zero-voltageImax
conditions. The value of depends on the surface area of each supercon-Imax
ductor-oxide interface and decreases exponentially with the thickness of the
oxide layer.

Rowell and Anderson made the first confirmation of the dc Josephson effect
in 1963. Since then, all of Josephson’s other theoretical predictions have been
verified.

The ac Josephson Effect

When a dc voltage V is applied across the Josephson junction, a most remark-
able effect occurs: the dc voltage generates an alternating current I, given by

I � I sin(� � 2�ft) (12.19)max

where � is a constant equal to the phase at and f is the frequency of thet � 0
Josephson current:

2eV
f � (12.20)

h

A dc voltage of results in a current frequency of Precise mea-1 �V 483.6 MHz.
surements of the frequency and voltage have enabled physicists to obtain the
ratio e/h to unprecedented precision.

The ac Josephson effect can be demonstrated in various ways. One method
is to apply a dc voltage and detect the electromagnetic radiation generated by
the junction. Another method is to irradiate the junction with external radia-
tion of frequency f �. With this method, a graph of direct current versus voltage
has steps when the voltages correspond to Josephson frequencies f that are
integral multiples of the external frequency f �—that is, when V � hf/2e �

(Fig. 12.26). Because the two sides of the junction are in differentnhf �/2e
quantum states, the junction behaves as an atom undergoing transitions be-
tween these states as it absorbs or emits radiation. In effect, when a Cooper pair
crosses the junction, a photon of frequency is either emitted or ab-f � 2eV/h
sorbed by the system.

Quantum Interference

Quantum interference is the behavior of the direct-tunneling current in the
presence of an external magnetic field. When a Josephson junction is subjected
to a magnetic field, the maximum critical current in the junction depends on

Insulator

Superconductors

Figure 12.25 A Josephson
junction consists of two super-
conductors separated by a very
thin insulator. Cooper pairs can
tunnel through this insulating
barrier in the absence of an ap-
plied voltage, setting up a direct
current.



the magnetic flux through the junction. The tunneling current under these
conditions is predicted to be periodic in the number of flux quanta through
the junction.

Figure 12.27a shows the maximum tunneling current as a function of mag-
netic field in an Sn-SnO-Sn junction at Note that the current depends1.90 K.
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Figure 12.26 A plot of dc current as a function of bias voltage for a Josephson junction
placed in an electromagnetic field. At a frequency of as many as 500 steps have10 GHz,
been observed. (In the presence of an applied electromagnetic field, there is no clear
onset of single-particle tunneling.)
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Figure 12.27 (a) Maximum Josephson tunneling current as a function of applied
magnetic field in an Sn-SnO-Sn junction. The zero current points are directly related to
the number of flux quanta through the junction. (From R. D. Parks, ed., Superconductiv-
ity, vol. 1, New York, Dekker, 1969) (b) A schematic diagram of a SQUID constructed from
two Josephson junctions in parallel.



periodically on the magnetic flux. For typical junctions, the field periodicity is
about This is not surprising in view of the quantum nature of the�410 T.
magnetic flux.

If a superconducting circuit is constructed with two Josephson junctions in
parallel, such as in the ring in Figure 12.27b, one can observe interference
effects similar to the interference of light waves in Young’s double-slit experi-
ment. In this case, the total current depends periodically on the flux inside the
ring. Because the ring can have an area much greater than that of a single
junction, the magnetic field sensitivity is greatly increased.

A device that contains one or more Josephson junctions in a loop is called
a SQUID, an acronym for superconducting quantum interference device.
SQUIDs are very useful for detecting very weak magnetic fields, of the order of

which is a very small fraction of the Earth’s field�1410 T, (B � 0.5 �Earth
Commercially available SQUIDs are capable of detecting a change in�410 T).

flux of about in a bandwidth of (where �0 is the�5 �20 210 � � 10 T·m 1 Hz0
magnetic flux quantum given by Eq. 12.16). For example, they are being used
to scan “brain waves,” a medical term for fields generated by current-carrying
neurons. The essay by Clark Hamilton following this chapter contains a more
detailed discussion of SQUIDs and other superconducting devices.

12.10 HIGH-TEMPERATURE SUPERCONDUCTIVITY

For many years, scientists have searched for materials that are superconductors
at higher temperatures, and until 1986 the alloy Nb3Ge had the highest known
critical temperature, Theorists made various predictions that the max-23.2 K.
imum critical temperature for a superconductor in which the electron-lattice
interaction was important would be in the neighborhood of Early in 198630 K.
J. Georg Bednorz and Karl Alex Müller of IBM Research Laboratory in Zurich
made a remarkable discovery that has revolutionized the field of superconduc-
tivity. They found that an oxide of lanthanum, barium, and copper became
superconducting at about Figure 12.28 shows the temperature depen-30 K.
dence of the resistivity of their samples. A portion of the abstract from this
unpretentious paper reads as follows:

Upon cooling, the samples show a linear decrease in resistivity, then an approximately
logarithmic increase, interpreted as a beginning of localization. Finally, an abrupt
decrease by up to three orders of magnitude occurs, reminiscent of the onset of
percolative superconductivity. The highest onset temperature is observed in the

range. It is markedly reduced by high current densities.830 K

The superconducting phase was soon identified at other laboratories as the
compound where By replacing barium with strontium,La Ba CuO , x � 0.2.2�x x 4
researchers soon raised the value of Tc to about Inspired by these devel-36 K.
opments, scientists worldwide worked feverishly to discover materials with even
higher Tc values, and research in the superconducting behavior of metallic
oxides accelerated at a tremendous pace. The year 1986 marked the beginning
of a new era of high-temperature superconductivity. Bednorz and Müller were
awarded the Nobel prize in 1987 (the fastest-ever recognition by the Nobel
committee) for their very important discovery.

Early in 1987 research groups at the University of Alabama at Huntsville and
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the University of Houston announced the discovery of superconductivity near
in a mixed-phase sample containing yttrium, barium, copper, and oxy-92 K

gen.17 The discovery was confirmed in other laboratories around the world,
and the superconducting phase was soon identified to be the compound

Figure 12.29 shows a plot of resistance versus temperature forY Ba Cu O .2 3 7��

this compound. This was an important milestone in high-temperature super-
conductivity, because the transition temperature of this compound is above the
boiling point of liquid nitrogen a coolant that is readily available, in-(77 K),
expensive, and much easier to handle than liquid helium.

At an American Physical Society meeting on March 18, 1987, a special panel
discussion on high-temperature superconductivity introduced the world to the
newly discovered novel superconductors. This all-night session, which attracted
a standing-room-only crowd of about 3000, produced great excitement in the

12.10 HIGH-TEMPERATURE SUPERCONDUCTIVITY 509

35162 Serway SAUNC

1 short
standard
1 long

ρ(
Ω

 c
m

)
ρ

0.06

0.05

0.04

0.03

0.02

0.01

0 100 200

T(K)

x = 1
0.25 A/cm2

0

0.50 A/cm2

x = 0.75
0.50 A/cm2

300

Figure 12.28 Temperature dependence of the resistivity of Ba-La-Cu-O for samples
containing different concentrations of barium and lanthanum. The influence of current
density is shown in the upper two curves. (Taken from J. G. Bednorz and K. A. Müller, Z.
Phys. B, 64:189, 1986)

17 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang,
and C. W. Chu, Phys. Rev. Letters 58:908, 1987.



scientific community and has been referred to as “the Woodstock of physics.”
Realizing the possibility of routinely operating superconducting devices at liq-
uid-nitrogen temperature and perhaps eventually at room temperature,
thousands of scientists from a variety of disciplines entered the arena of super-
conductivity research. The exceptional interest in these novel materials arises
from at least four factors:

• The metallic oxides are relatively easy to fabricate and hence can be in-
vestigated at smaller laboratories and universities.

• They have very high Tc values and very high upper critical magnetic fields,
estimated to be greater than in several materials (Table 12.8).100 T
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Figure 12.29 Temperature dependence of the resistance of a sample of
showing the transition temperature near (Taken from M. W. Wu etYBa Cu O 92 K.2 3 7��

al., Phys. Rev. Letters 58:908, 1987)

Table 12.8 Some Properties of High-Tc
Superconductors in the Form
of Bulk Ceramics

Superconductor Tc (K) Bc2(0) (T)a

La-Ba-Cu-O 30
La1.85Sr0.15CuO5 36.2 �36
La2CuO4 40
YBa2Cu3O7�� 92 �160
ErBa2Cu3O9�� 94 �28
DyBa2Cu3O7 92.5
Bi-Sr-Ca-Cu-O 120
Tl-Ba-Ca-Cu-O 125
HgBa2Ca2Cu3O8

b 134

a These are projected extrapolations based on data up to
about 30 T.
b The compound HgBa2Ca2Cu3O8 has a critical temper-
ature of 164 K under a hydrostatic pressure of 45 GPa.



• Their properties and the mechanisms responsible for their superconduct-
ing behavior represent a great challenge to theoreticians.

• They may be of considerable technological importance.

Since 1986, several complex metallic oxides in the form of ceramics have
been investigated, and critical temperatures above (triple-digit supercon-100 K
ductivity) have been observed. Early in 1988 researchers reported supercon-
ductivity at in a Bi-Sr-Ca-Cu-O compound and at in a Tl-Ba-Ca-120 K 125 K
Cu-O compound. As of early 1995, the record high critical temperature was

in the compound HgBa2Ca2Cu3O8. The increase in Tc since 1986 is134 K,
dramatized in Figure 12.30. As you can see from this graph, the new high-Tc
materials are all copper oxides of one form or another.

The various superconducting compounds that have been extensively studied
to date can be classified in terms of what are called perovskite crystal structures.
The first class (Fig. 12.31a) consists of the cubic perovskites such(a � b � c),
as one of the original “high-Tc materials” TheBaPb Bi O , (T � 10 K).1�x x 3 c
second class (Fig. 12.31b) is single-layer perovskites, which have a tetragonal
distortion La2CuO4 is an example Note that the lat-(a � b � c); (T � 38 K).c
tice parameters a and b are measured in the copper-oxygen planes, while c is
perpendicular to these planes. The third class is multilayer perovskites (Fig.
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Figure 12.30 Evolution of the superconducting critical temperature since the discov-
ery of the phenomenon.



12.31c), such as Y Ba2Cu3O7 with an orthorhombic structure(T � 92 K),c
Compounds in this class are sometimes called 1-2-3 materials be-(a � b � c).

cause of their relative metallic composition.
The structures of the more complex copper oxides are not illustrated in

Figure 12.31, but a most interesting observation can be made about them. There
appears to be a direct correlation between the number of copper-oxygen layers and critical
temperature, with critical temperature clearly increasing as copper-oxygen layers
are added. There is some reason to expect that adding even more copper-
oxygen layers to these complex oxides will raise the critical temperature even
higher. On the basis of such results, some experts in the field are predicting
Tc values above 200 K.

The maximum supercurrents in these structures are high in the copper-
oxygen planes and much lower in the direction perpendicular to those planes.
In effect, conduction can be viewed as being two-dimensional. Recently the Los
Alamos Superconductivity Technology Center manufactured flexible supercon-
ducting tape having a critical-current density of more than at10 210 A/m 77 K
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(a) La2CuO4
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(b) YBa2Cu3O7–δ
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(c)

c
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a

Figure 12.31 Crystal structures for some of the new superconducting materials, the
general class structure of which is perovskite. (a) The fundamental perovskite unit.
(b) The single-layered perovskite having a tetragonal distortion ( The firsta � b � c).
high-temperature superconductor falls in this class. (c) The double-layered(T � 30 K)c
perovskite with its orthorhombic structure This structure is also related to(a � b � c).
the fundamental perovskite cube but has missing oxygen atoms.



with a critical temperature of about The high critical-current density was90 K.
achieved when a metallurgical technique known as texturing was used to
achieve grain alignment. The tape consists of three layers: a substrate of flexible
nickel, a second layer of textured cubic zirconia, and a third layer of supercon-
ducting Y Ba2Cu3O7.

Mechanisms of SuperconductivityHigh-Tc
Although the framework of the conventional BCS theory has been quite

successful in explaining the behavior and properties of the “old-generation”
superconductors, theoreticians are still trying to understand the nature of su-
perconductivity in the “new-generation” high-Tc cuprate oxides. The various
models and mechanisms that have been proposed are far too technical to de-
scribe here.

Recently, researchers at IBM measured the symmetry of the wavefunction
that describes Cooper pairs in Y Ba2Cu3O7 to be a d-wave 18 They made(L � 2).
their measurements on a sample consisting of a ring of Y Ba2Cu3O7 deposited
on a tricrystal substrate of SrTiO3. By forming an odd number of Josephson
junctions at the grain boundaries of the substrate, they observed a spontaneous
magnetic flux equal to an odd integer times the magnetic flux quantum (that
is, �0/2, 3�0/2, and so on). This experiment provides strong evidence that
antiferromagnetism in the cuprate oxides plays an important role in the estab-
lishment of the superconducting state in these high-Tc compounds and the
formation of corresponding Cooper pairs.
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18 C. C. Tsuei and J. R. Kirtley, Phys. Rev. Lett. 73:593, 1994.

O P T I O N A L12.11 APPLICATIONS OF SUPERCONDUCTIVITY

High-temperature superconductors may lead to many important technological ad-
vances, such as highly efficient, lightweight superconducting motors. However, many
significant materials-science problems must be overcome before such applications
become reality. Perhaps the most difficult technical challenge is to mold the brittle
ceramic materials into useful shapes, such as wires and ribbons for large-scale appli-
cations and thin films for small devices (e.g., SQUIDs). Another major problem is
the relatively low current density that bulk ceramic compounds can carry. Assuming
that such problems will be overcome, it is interesting to speculate on some of the
future applications of these newly discovered materials.

An obvious application using the property of zero resistance to direct currents is
low-loss electrical power transmission. A significant fraction of electrical power is lost
as heat when current is passed through normal conductors. If power transmission
lines could be made superconducting, these dc losses could be eliminated and sub-
stantial savings in energy costs would result.

The new superconductors could have a major impact in the field of electronics.
Because of its switching properties, the Josephson junction can be used as a computer
element. In addition, if one could use superconducting films to interconnect com-
puter chips, chip size could be reduced and consequently speeds would be enhanced.
Thus information could be transmitted more rapidly and more chips could be con-
tained on a circuit board with far less heat generation.



The phenomenon of magnetic levitation can be exploited in the field of trans-
portation. In fact, a prototype train that runs on superconducting magnets has been
constructed in Japan. The moving train levitates above a normal conducting metal
track through eddy-current repulsion. One can envision a future society of vehicles
of all sorts gliding above a freeway, making use of superconducting magnets. Some
scientists are speculating that the first major market for levitating devices will be the
toy industry.

Another very important application of superconductivity is the superconducting
magnet, a crucial component in particle accelerators. Currently, all high-energy par-
ticle accelerators use liquid-helium-based superconducting technology. Again, signif-
icant savings in cooling and operating costs would result if a liquid-nitrogen-based
technology were developed.

An important application of superconducting magnets is a diagnostic tool called
magnetic resonance imaging (MRI). This technique has played a prominent role in
diagnostic medicine because it uses relatively safe radio-frequency radiation, rather
than x-rays, to produce images of body sections. Because the technique relies on
intense magnetic fields generated by superconducting magnets, the initial and op-
erating costs of MRI systems are high. A liquid-nitrogen-cooled magnet could reduce
such costs significantly.

In the field of power generation, companies and government laboratories have
worked for years to develop superconducting motors and generators. In fact, a small-
scale superconducting motor using the newly discovered ceramic superconductors
has already been constructed at Argonne National Laboratory in Illinois.

We have already mentioned some small-scale applications of superconductivity—
namely SQUIDs and magnetometers that make use of the Josephson effect and quan-
tum interference. Josephson junctions can also be used as voltage standards and as
infrared detectors. SQUIDs have been fabricated from films of andY Ba Cu O ,2 3 7��

Josephson junctions using this compound have been operated at liquid-nitrogen tem-
perature and above.
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This prototype train, con-
structed in Japan, has supercon-
ducting magnets built into its
base. A powerful magnetic field
both levitates the train a few
inches above the track and pro-
pels it smoothly at speeds of

or more. ( Joseph Brig-300 mph
nolo/The Image Bank)

SUMMARY

Paramagnetic and ferromagnetic materials are those that have atoms with
permanent magnetic dipole moments that tend to align in the direction of an
external magnetic field impressed on these materials. Diamagnetic materials
are those whose atoms have no permanent magnetic dipole moments. When a
diamagnetic material is placed in an external magnetic field, weak dipole mo-
ments opposing the field are induced in the material.

Superconductors are materials that have zero dc resistance below a certain
temperature Tc , called the critical temperature. A second characteristic of a
type I superconductor is that it behaves as a perfect diamagnet. At temperatures
below Tc , any applied magnetic flux is expelled from the interior of a type I
superconductor. This phenomenon of flux expulsion is known as theMeissner
effect. The superconductivity of a type I superconductor is destroyed when an
applied magnetic field exceeds the critical magnetic field, Bc , which is less
than for the elemental superconductors.0.2 T

A type II superconductor is characterized by two critical fields. When an
applied field is less than the lower critical field, the material is entirelyB ,c1
superconducting and there is no flux penetration. When the applied field ex-
ceeds the upper critical field, the superconducting state is destroyed andB ,c2
the flux penetrates the material completely. However, when the applied field



lies between and the material is in a vortex state that is a combinationB B ,c1 c2
of superconducting regions threaded by regions of normal resistance.

Once set up in a superconducting ring, persistent currents (also called
supercurrents) circulate for several years with no measurable losses and with
zero applied voltage. This is a direct consequence of the fact that the dc resis-
tance is truly zero in the superconducting state.

A central feature of the BCS theory of superconductivity for metals is the
formation of a bound state called a Cooper pair, consisting of two electrons
having opposite momenta and opposite spins. The two electrons can form a
bound state through a weak attractive interaction in which the crystal lattice of
the metal serves as a mediator. In effect, one electron is weakly attracted to the
other after the lattice is momentarily deformed by the first electron. In the
ground state of the superconducting system, all electrons form Cooper pairs
and all Cooper pairs are in the same quantum state. Thus the superconducting
state is represented by a single coherent wavefunction that extends over the
entire volume of the sample.

The BCS model predicts an energy gap in contrast to a normalE � 3.53kT ,g c
conductor, which has no energy gap. This value represents the energy needed
to break up a Cooper pair and is of the order of for the elemental1 meV
superconductors.

High-temperature superconductors have critical temperatures as high as
They are all copper oxides, and the critical temperatures appear to be150 K.

linked to the number of copper-oxygen layers in the structures. The new-gen-
eration materials, known to be type II superconductors, have highly anisotropic
resistivities and high upper critical fields. However, in the form of bulk ceramic
samples, the materials have limited critical currents and are quite brittle. Al-
though the BCS model appears to be consistent with most empirical observa-
tions on high-temperature superconductors, the basic mechanisms giving rise
to the superconducting state remain unknown.
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QUESTIONS

1. Why is in a vacuum? What is the relationship be-M � 0
tween B and H in a vacuum?

2. Explain why some atoms have permanent magnetic di-
pole moments and others do not.

3. Explain the significance of the Curie temperature for a
ferromagnetic substance.

4. Explain why it is desirable to use hard ferromagnetic
materials to make permanent magnets.

5. Describe how you would measure the two major char-
acteristics of a superconductor.

6. Why is it not possible to explain zero resistance using a
classical model of charge transport through a solid?

7. Discuss the differences between type I and type II su-
perconductors. Discuss their similarities.

8. The specific heat of a superconductor in the absence of
a magnetic field undergoes an anomaly at the critical
temperature and decays exponentially toward zero be-
low this temperature. What information does this be-
havior provide?

9. What is the isotope effect, and why does it play an im-
portant role in testing the validity of the BCS theory?

10. What are Cooper pairs? Discuss their essential properties,
such as their momentum, spin, binding energy, and so on.

11. How would you explain the fact that lattice imperfec-
tions and lattice vibrations can scatter electrons in nor-
mal metals but have no effect on Cooper pairs?

12. Define single-particle tunneling and the conditions un-
der which it can be observed. What information can one
obtain from a tunneling experiment?

13. Define Josephson tunneling and the conditions under
which it can be observed. What is the difference between
Josephson tunneling and single-particle tunneling?

14. What are the features of high-temperature supercon-
ductors that limit their possible applications?

15. Discuss four features of high-Tc superconductors that
make them superior to the old-generation superconduc-
tors. In what way are the new superconductors inferior
to the old ones?
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The following questions deal with the Meissner effect. A
small permanent magnet is placed on top of a high-temper-
ature superconductor (usually ), starting atYBa Cu O2 3 7��

room temperature. As the superconductor is cooled with liq-
uid nitrogen the permanent magnet levitates—a(77 K),
most dazzling phenomenon. Assume, for simplicity, that the
superconductor is type I.

16. Because of the Meissner effect, a magnetic field is ex-
pelled from the superconductor below its critical tem-
perature. How does this explain the levitation of the
permanent magnet? What must happen to the super-
conductor in order to account for this behavior?

17. As soon as the permanent magnet has levitated, it gains
potential energy. What accounts for this increase in me-
chanical energy? (This is a tricky one.)

18. If the experiment is repeated by first cooling the super-
conductor below its critical temperature and then plac-
ing the permanent magnet on top of it, will the magnet
still levitate? If so, will there be any difference in its el-
evation compared to the previous case?

19. If a calibrated thermocouple is attached to the super-
conductor to measure its temperature, describe how you
could use this demonstration to obtain a value for Tc.
(Hint: Start the observation below Tc with a levitated per-
manent magnet.)

PROBLEMS

12.1 Magnetism in Matter

1. What is the relative permeability of a material that has a
magnetic susceptibility of �41.00 � 10 ?

2. An iron-core toroid is wrapped with 250 turns of wire
per meter of its length. The current in the winding is

Taking the magnetic permeability of iron to be8.00 A.
calculate (a) the magnetic field strength� � 5000� ,m 0

H and (b) the magnetic flux density B. (Note: B is fre-
quently called the magnetic field as well, but its units
[tesla] clearly distinguish it from H, which has units of
amperes per meter.)

3. A toroid with a mean radius of and 630 turns of20 cm
wire is filled with powdered steel whose magnetic sus-
ceptibility � is 100. If the current in the windings is

find B (assumed uniform) inside the toroid.3.00 A,
4. A toroid has an average radius of and carries a9.0 cm

current of How many turns are required to pro-0.50 A.
duce a magnetic field strength of 700 withinA·turns/m
the toroid?

5. A magnetic field of magnitude is to be set up in1.3 T
an iron-core toroid. The toroid has a mean radius of

and magnetic permeability of 5000�0. What cur-10 cm
rent is required if there are 470 turns of wire in the
winding?

6. A toroid has an average radius of and a cross-10 cm
sectional area of There are 400 turns of wire on21.0 cm .
the soft iron core, which has a permeability of 800�0.
Calculate the current necessary to produce a magnetic
flux of through a cross-section of the core.�45.0 � 10 Wb

7. A coil of 500 turns is wound on an iron ring (� �m
of 20-cm mean radius and 8.0-cm2 cross-sectional750� )0

area. Calculate the magnetic flux �B in this Rowland
ring when the current in the coil is 0.50 A.

8. A uniform ring of radius R and total charge Q rotates
with constant angular speed � about an axis perpendic-
ular to the plane of the ring and passing through its
center. What is the magnetic moment of the rotating
ring?

9. In the text, we found that an alternative description for
the magnetic field B in terms of magnetic field strength
H and magnetization M is Relate theB � � H � � M.0 0
magnetic susceptibility � to |H| and |M| for paramag-
netic or diamagnetic materials.

10. A magnetized cylinder of iron has a magnetic field B �
in its interior. The magnet is in diameter0.040 T 3.0 cm

and long. If the same magnetic field is to be pro-20 cm
duced by a 5.0-A current carried by an air-core solenoid
with the same dimensions as the cylindrical magnet, how
many turns of wire must be on the solenoid?

11. In Bohr’s 1913 model of the hydrogen atom, the elec-
tron is in a circular orbit of radius and�115.3 � 10 m,
its speed is (a) What is the magnitude of62.2 � 10 m/s.
the magnetic moment due to the electron’s motion?
(b) If the electron orbits counterclockwise in a horizon-
tal circle, what is the direction of this magnetic moment
vector?

12. At saturation, the alignment of spins in iron can con-
tribute as much as to the total magnetic field B. If2.0 T
each electron contributes a magnetic moment of

(one Bohr magneton), how many�24 29.27 � 10 A·m
electrons per atom contribute to the saturated field of
iron? (Hint: There are iron atoms in a cubic288.5 � 10
meter.)

13. Curie’s law of paramagnetism. Curie’s law, Equation 12.8,
may be derived on the basis of a few assumptions. Recall
that paramagnetism is produced by the net alignment
of electronic magnetic moments of size ��B along the
direction of an applied magnetic field, B. The paramag-
netic magnetization where n1 is theM � � (n � n ),B 1 2
number of moments per unit volume parallel to the ap-
plied field and n2 is the number of moments antiparal-
lel. (a) Show that the ratio

n 2� B1 B2� B/k TB B� e � 1 �
n k T2 B

by using the Maxwell-Boltzmann distribution and assum-
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ing that dipoles oriented parallel toB have energy ��BB
and those antiparallel to B have energy ��BB. (b) Show
that the exponent for and2� B/k T �� 1 B � 1.0 TB B

ThusT � 300 K.

n � n 2� B1 2 B�
n k T2 B

(c) Show that where n is the totaln � n � n� B/k T,1 2 B B
number of magnetic moments, and show that the para-
magnetic magnetization is given by Equation 12.8,

with 2M � C(B/T), C � n� /k .B B

speed of the superconducting electrons. (Assume that
the density of conducting electrons is n � 5.0 �s

)27 310 /m .
22. Diamagnetism. When a superconducting material is

placed in a magnetic field, the surface currents estab-
lished make the magnetic field inside the material truly
zero. (That is, the material is perfectly diamagnetic.)
Suppose a circular disk, in diameter, is placed in2.0 cm
a 0.020-T magnetic field with the plane of the disk per-
pendicular to the field lines. Find the equivalent surface
current if it all lies at the circumference of the disk.

23. Surface currents. A rod of a superconducting material
long is placed in a 0.54-T magnetic field with its2.5 cm

cylindrical axis along the magnetic field lines. (a) Sketch
the directions of the applied field and the induced sur-
face current. (b) Estimate the magnitude of the surface
current.

12.7 BCS Theory
12.8 Energy Gap Measurements

24. Calculate the energy gap for each superconductor in Ta-
ble 12.4 as predicted by the BCS theory. Compare your
answers with the experimental values in Table 12.7.

25. Calculate the energy gap for each superconductor in Ta-
ble 12.5 as predicted by the BCS theory. Compare your
values with those found for type I superconductors.

26. High-temperature superconductor. Estimate the energy
gap Eg for the high-temperature superconductor

which has a critical temperature ofYBa Cu O ,2 3 7��

assuming BCS theory holds.92 K,
27. Isotope effect. Because of the isotope effect, Use��T � M .c

these data for mercury to determine the value of the
constant �. Is your result close to what you might expect
on the basis of a simple model?

Isotope T (K)c

199Hg 4.161
200Hg 4.153
204Hg 4.126

28. Cooper pairs. A Cooper pair in a type I superconductor
has an average separation of about If�41.0 � 10 cm.
these two electrons can interact within a volume of this
diameter, how many other Cooper pairs have their cen-
ters within the volume occupied by one pair? Use the
appropriate data for lead, which has n � 2.0 �s

22 310 electrons/cm .
29. Dipole in a magnetic field. The potential energy of a mag-

netic dipole of moment � in the presence of a magnetic
field B is When an electron is placed in aU � ���B.
magnetic field, its magnetic moment can be aligned ei-
ther with or against the field. The energy separation be-
tween these two states is where the magnetic�E � 2�B,
moment of the electron is �5� � 5.79 � 10 eV/T.

12.3 Some Properties of Type I Superconductors
12.4 Type II Superconductors

14. A wire made of Nb3Al has a radius of and is2.0 mm
maintained at Using the data in Table 12.5, find4.2 K.
(a) the upper critical field for this wire at this tempera-
ture, (b) the maximum current that can pass through
the wire before its superconductivity is destroyed, and
(c) the magnetic field from the wire surface6.0 mm
when the current has its maximum value.

15. A superconducting solenoid is to be designed to gener-
ate a 10-T magnetic field. (a) If the winding has

what is the required current? (b) What2000 turns/m,
force per meter does the magnetic field exert on the
inner windings?

16. Determine the current generated in a superconducting
ring of niobium metal in diameter if a 0.020-T2.0 cm
magnetic field directed perpendicular to the ring is sud-
denly decreased to zero. The inductance of the ring is

�8L � 3.1 � 10 H.
17. Determine the magnetic field energy, in joules, that

needs to be added to destroy superconductivity in
of lead near Use the fact that Bc(0) for lead31.0 cm 0 K.

is 0.080 T.
18. The penetration depth for lead at is Find0.0 K 39 nm.

the penetration depth in lead at (a) (b) and1.0 K, 4.2 K,
(c) 7.0 K.

19. Find the critical magnetic field in mercury at (a) 1.0 K
and (b) 4.0 K.

12.5 Other Properties of Superconductors

20. Persistent currents. In an experiment carried out by S. C.
Collins between 1955 and 1958, a current was main-
tained in a superconducting lead ring for 2.5 years with
no observed loss. If the inductance of the ring was

and the sensitivity of the experiment was�83.14 � 10 H,
1 part in 109, determine the maximum resistance of the
ring. (Hint: Treat this as a decaying current in an RL
circuit, and recall that for small x.)�xe � 1 � x

21. Speed of electron flow. Current is carried throughout the
body of niobium-tin, a type II superconductor. If a nio-
bium-tin wire of cross-section can carry a max-22.0 mm
imum supercurrent of estimate the average51.0 � 10 A,



(a) If a Cooper pair is subjected to a 38-T magnetic field
(the critical field for Nb3Ge), calculate the energy sep-
aration between the spin-up and spin-down electrons.
(b) Calculate the energy gap for Nb3Ge as predicted by
the BCS theory at using the fact that0 K, T � 23 K.c
(c) How do your answers to (a) and (b) compare? What
does this result suggest, based on what you have learned
about critical fields?

12.9 Josephson Tunneling

30. Estimate the area of a ring that would fit one of your
fingers, and calculate the magnetic flux through the ring
due to the Earth’s magnetic field If this�5(5.8 � 10 T).
flux were quantized, how many fluxons would the ring
enclose?

31. A Josephson junction is fabricated using indium for the
superconducting layers. If the junction is biased with a
dc voltage of find the frequency of the alter-0.50 mV,
nating current generated. (For comparison, note that
the energy gap of indium at is )0 K 1.05 meV.

32. If a magnetic flux of ( of the flux1�41.0 � 10 �0 10 000
quantum) can be measured with a SQUID (Fig. P12.32),
what is the smallest magnetic field change �B that can
be detected with this device for a ring having a radius of
2.0 mm?

33. A superconducting circular loop of very fine wire has a
diameter of and a self-inductance of2.0 mm 5.0 nH.
The flux through the loop, �, is the sum of the applied
flux, and the flux due to the supercurrent,� , � �app sc

where L is the self-inductance of the loop. BecauseLI,
the flux through the loop is quantized, we have

n� � � � � � � � LI0 app sc app

where �0 is the flux quantum. (a) If the applied flux is
zero, what is the smallest current that can meet this

quantization condition? (b) If the applied field is per-
pendicular to the plane of the loop and has a magnitude
of find the smallest current that circulates�93.0 � 10 T,
around the loop.

Additional Problems

34. A solenoid of diameter and length is wound8.0 cm 1 m
with 2000 turns of superconducting wire. If the solenoid
carries a current of find (a) the magnetic field at150 A,
the center, (b) the magnetic flux through the center
cross-section, and (c) the number of flux quanta
through the center.

35. Energy storage. A novel method has been proposed to
store electrical energy. A huge underground supercon-
ducting coil, in diameter, carries a maximum cur-1.0 km
rent of through each winding of a 150-turn Nb3Sn50 kA
solenoid. (a) If the inductance of this huge coil is

what is the total energy stored? (b) What is the50 H,
compressive force per meter acting between two adja-
cent windings apart?0.25 m

36. Superconducting power transmission. Superconductors have
been proposed for power transmission lines. A single
coaxial cable (Fig. P12.36) could carry 31.0 � 10 MW
(the output of a large power plant) at dc, over200 kV,
a distance of without loss. The superconductor1000 km
would be a 2.0-cm-radius inner Nb3Sn cable carrying the
current I in one direction, while the outer surround-
ing superconductor of 5.0-cm radius would carry the re-
turn current I. In such a system, what is the magnetic
field (a) at the surface of the inner conductor and
(b) at the inner surface of the outer conductor? (c) How
much energy would be stored in the space between the
conductors in a 1000-km superconducting line?
(d) What is the force per meter length exerted on the
outer conductor?

37. Penetration depth. The penetration depth of a magnetic
field into a superconductor is found, from London’s
equations, to be

me� �
2� n e0 s

q
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Figure P12.32 A superconducting quantum interference
device (SQUID).

I

a = 2.0 cm

b = 5.0 cmaI

b

Figure P12.36
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where me is the mass of the electron, e is the charge of
the electron, and ns is the number of superconducting
electrons per unit volume. (a) Estimate ns in lead at

if the magnetic penetration depth near is0 K 0 K � �0
(b) Starting with Equation 12.12, deter-�84.0 � 10 m.

mine ns in lead as a function of temperature for T �
T .c

38. “Floating” a wire. Is it possible to “float” a superconduct-
ing lead wire of radius in the magnetic field of1.0 mm
the Earth? Assume that the horizontal component of the
Earth’s magnetic field is �54.0 � 10 T.

39. Magnetic field inside a wire. A type II superconducting wire
of radius R carries current uniformly distributed
through its cross-section. If the total current carried by
the wire is I, show that the magnetic energy per unit
length inside the wire is �0I 2/16�.

40. Magnetic levitation. If a very small but very strong per-
manent magnet is lowered toward a flat-bottomed type
I superconducting dish, at some point the magnet will
levitate above the superconductor because the super-
conductor is a perfect diamagnet and expels all mag-
netic flux. Therefore the superconductor acts like an
identical magnet lying an equal distance below the sur-
face (Fig. P12.40). At what height does the magnet lev-
itate if its mass is and its magnetic moment4.0 g � �

(Hint: The potential energy between two di-20.25 A·m ?
pole magnets a distance r apart is �0�2/4�r3).

ducting state. (These data were reported by J. File and
R. G. Mills, Phys. Rev. Letters 10:93, 1963.)

42. Entropy difference. The entropy difference per unit vol-
ume between the normal and superconducting states is

2�S � B
� � � �V �T 2�0

where B2/2�0 is the magnetic energy per unit volume
required to destroy superconductivity. Determine the
entropy difference between the normal and supercon-
ducting states in of lead at if the critical1.0 mol 4.0 K
magnetic field andB (0) � 0.080 T T � 7.2 K.c c

43. A convincing demonstration of zero resistance. A direct and
relatively simple demonstration of zero dc resistance can
be carried out using the four-point probe method. The
experimental set-up, shown in Figure P12.43, consists of
a disc of (a high-Tc superconductor) toY Ba Cu O2 3 7��

which four wires are attached by indium solder (or some
other suitable contact material). A constant current,
maintained through the sample by a dc voltage between
points a and b, is measured with a dc ammeter. (The
current is varied with the variable resistance R.) The po-
tential difference between c and d is measuredVcd
with a digital voltmeter. When the disc is immersed in
liquid nitrogen, it cools quickly to which is below77 K,
its critical temperature ( ); the current remains ap-92 K
proximately constant, but drops abruptly to zero.Vcd
(a) Explain this observation on the basis of what you
know about superconductors and your understanding of
Ohm’s law. (b) The data in Table 12.9 represent actual
values of for different values of I taken on a sampleVcd
at room temperature. Make an I-V plot of the data, and
determine whether the sample behaves in a linear

41. Designing a superconducting solenoid. A superconducting
solenoid was made with Nb3Zr wire wound on a 10-cm-
diameter tube. The solenoid winding consisted of a dou-
ble layer of 0.50-mm-diameter wire with 984 turns (cor-
responding to a coil length of ). (a) Calculate the25 cm
inductance, L, of the solenoid, assuming its length is
great relative to its diameter. (b) The magnitude of the
persistent current in this solenoid in the superconduct-
ing state has been reported to decrease by 1 part in 109

per hour. If the resistance of the solenoid is R, then the
current in the circuit should decay according to I �

This resistance, although small, is due to mag-�Rt/LI e .0
netic flux migration in the superconductor. Determine
an upper limit of the coil’s resistance in the supercon-

Superconductora

b

c

d

R

A V

Figure P12.43 A circuit diagram used in the four-point
probe measurement of the dc resistance of a sample. A dc
digital ammeter is used to measure the current, and the po-
tential difference between c and d is measured with a dc
digital voltmeter. Note that there is no voltage source in the
inner loop circuit where Vcd is measured.

Magnet
x

Image 
magnet

Superconductor

Figure P12.40 A magnetic levitation experiment.



manner. From the data, obtain a value of the dc resis-
tance of the sample at room temperature. (c) At room
temperature, it is found that forV � 2.234 mVcd
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but after the sample is cooled toI � 100.3 mA, 77 K,
and What do you think might ex-V � 0 I � 98.1 mA.cd

plain the slight decrease in current?

Table 12.9 Current Versus Potential Difference
Vcd in a Bulk Ceramic Sample of
YBa2Cu3O7�	 at Room
Temperaturea

I (mA) Vcd (mV)

57.8 1.356
61.5 1.441
68.3 1.602
76.8 1.802
87.5 2.053

102.2 2.398
123.7 2.904
155 3.61

a The current was supplied by a 6-V battery in series with a variable
resistor R. The values of R ranged from 10 	 to 100 	. The data are
from the author’s laboratory.
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Superconductivity was discovered in 1911 by Dutch physicist Heike Kamerlingh
Onnes. In experiments carried out to measure the resistance of frozen mercury,
he made the startling discovery that resistance vanished completely at a tempera-

ture a few degrees above absolute zero. Since that time, superconductivity has been
observed in a large number of elemental metals and alloys. The first proposed applica-
tion of this new phenomenon was the construction of powerful magnets, since super-
conductors can carry current with no heat generation. Unfortunately it was soon discov-
ered that modest magnetic fields destroy the superconductivity in materials such as
mercury, tin, and lead. In fact, the conditions under which superconductivity exists in
any material can be described by a three-dimensional diagram such as that shown in
Figure 1a. The axes are temperature, magnetic field, and current density. The curved
surface in this figure represents the transition between normal and superconducting
behavior, and its intersections with the three axes are the critical current density ( Jc),
critical field (Hc), and critical temperature (Tc). The primary objective of research in
superconducting materials since 1911 has been to expand the volume of superconduct-
ing behavior in this diagram. This effort has generated a wide variety of what are now
called conventional superconductors, with critical temperatures up to and critical23 K
fields up to (the Earth’s magnetic field is ). The primary drawback of40 K 0.00005 T
these conventional superconductors is the expense and inconvenience of their refrig-
eration systems. Nevertheless, the fabrication of superconducting magnets for magnetic
resonance imaging, accelerator magnets, fusion research, and other applications is a
$200 million/year business.

In 1987 Karl Alex Müller and J. Georg Bednorz received the Nobel prize in physics
for their discovery in 1986 of a new class of higher-temperature superconducting ceram-
ics consisting of oxygen, copper, barium, and lanthanum. Expanding on their work,
researchers at the University of Alabama at Huntsville and the University of Houston
developed the compound YBa2Cu3Ox, which has a transition temperature above 90 K.
For the first time, superconductivity became possible at liquid-nitrogen temperatures.
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(a)
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Critical J -H-T
Surface

H

J

(b)

T

LN2

NbSn

YBaCuO

Figure 1 (a) A three-dimensional diagram illustrating the surface separating normal
and superconducting behavior as a function of temperature (T), magnetic field (H),
and current density ( J ). (b) A comparison of the J-H-T diagrams for Nb3Sn and
YBa2Cu3Ox. (Courtesy of Alan Clark, National Institute of Standards and Technology.)

* Contribution of the National Institute of Standards and Technology, not subject to copyright.



An explosion of research on the new materials has resulted in the discovery of many
materials with transition temperatures near and hints of superconductivity at100 K
much higher temperatures. Figure 1b compares the transition parameters of the old
and new materials and illustrates the potential of the new superconductors. With their
high transition temperatures and critical fields projected to hundreds of tesla, the pa-
rameter space where superconductivity exists has been greatly expanded. Unfortunately,
the critical-current density of the new materials over most of the H-T plane is very low.
It is expected that this problem will be solved when the new materials can be made in
sufficiently pure form.

SUPERCONDUCTIVITY

In 1957 John Bardeen, L. N. Cooper, and J. R. Schrieffer published a theory which shows
that superconductivity results from an interaction between electrons and the lattice in
which they flow. Coulomb attraction between electrons and lattice ions produces a1,2,3

lattice distortion that can attract other electrons. At sufficiently low temperatures, the
attractive force overcomes thermal agitation, and the electrons begin to condense into
pairs. As the temperature is reduced further, more and more electrons condense into
the paired state. In so doing, each electron pair gives up a condensation energy 2�. The
electron pairs are all described by a common quantum mechanical wavefunction, and
thus a long-range order exists among all of the electron pairs in the superconductor. As
a result of this long-range order, the pairs can flow through the lattice without suffering
the collisions that lead to resistance in normal conductors.

We can model a superconductor as a material in which current is carried by two
different electron populations. The first population consists of normal electrons, which
behave as the electrons in any normal metal do. The second population consists of
electron pairs, which behave coherently and are described by a common wavefunction
(x, t). The amplitude of (x, t) is usually constant throughout the superconductor,
but its phase may vary, depending on the current. The condensation energy of the
electron pairs produces an energy gap between normal and superconducting electrons,
which is for conventional superconductors. This model is known as the2�/e � 2 meV
two-fluid model.

JOSEPHSON JUNCTIONS

In addition to the work on large-scale applications of superconductivity (primarily mag-
nets), considerable research has been done on small-scale superconducting devices.
Most of these devices take advantage of the unusual properties of a Josephson junction,
which is simply two superconductors separated by an insulating barrier, as shown in
Figure 2. When the barrier is thin enough, electron pairs can tunnel from one super-
conductor to the other. Brian Josephson shared the Nobel prize in physics in 1973 for
his prediction of the behavior of such a device. The remainder of this essay will discuss
the operation of Josephson devices and circuits.

The equations for the current associated with electron pairs across a Josephson junc-
tion can be derived by solving two coupled wave equations with a potential energy
difference eV that depends on the voltage V across the junction.1 The result is the
Josephson equations:

I � I sin � (1)J 0

d� 2eV
� (2)

dt �
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where IJ is the electron-pair current through the junction, � is the phase difference
between the superconducting wavefunctions on the two sides of the barrier, and I0 is a
constant related to the barrier thickness. The full behavior of the junction can be mod-
eled by the equivalent circuit of Figure 2b. The resistance R describes the flow of normal
electrons; X represents a pure Josephson element having a flow of electron pairs, IJ,
given by Equations 1 and 2; and C is the normal geometrical capacitance. Thus the total
junction current is

V dV
I � � C � I sin � (3)0R dt

Substituting Equation 2, this becomes

2C� d � � d�
I � � � I sin � (4)022e dt 2eR dt

Under different drive and parameter conditions, Equation 4 leads to an almost infinite
variety of behavior and is the subject of more than 100 papers.

THE PENDULUM ANALOGY

In understanding Equation 4, it is useful to make the analogy between the current in a
Josephson junction and the torque applied to a pendulum that is free to rotate 360� in
a viscous medium, as shown in Figure 2c. The applied torque, �, on such a pendulum
can be written

2d � d�
2� � Mr � k � Mgr sin � (5)

2dt dt

where is the damping torque, is the inertial term, and Mgr sin � is the
2d� d �

2k Mr
2dt dt

gravitational restoring torque. Since Equations 4 and 5 have identical form, we can say
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Figure 2 The geometry of a Josephson junction (a), its equivalent circuit (b), and a
mechanical analog for the junction behavior (c).
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that the torque on the pendulum is the analog of current in a Josephson junction, and
the rate of rotation of the pendulum is the analog of voltage across the junction.

We are now in a position to understand the Josephson junction I-V curve shown in
Figure 3a. For currents less than I0, the junction phase assumes a value such that all of
the current is carried by the Josephson element, as described by Equation 1. Except for
a small transient, the voltage remains zero. In the analog, the pendulum assumes a fixed
angle that balances the torque and the gravitational restoring force. When the torque
exceeds the critical value Mgr, the pendulum rotation accelerates until the viscous damp-
ing term can absorb the applied torque. Similarly, when the current applied to a Jo-
sephson junction exceeds the critical value I0, the junction switches to a voltage state in
which the junction current oscillates and has an average value determined by the normal
state resistance. As the current decreases, the voltage follows the normal state curve until
the current reaches a value Below the voltage falls abruptly to zero as theI . Imin min
junction switches back into the superconducting state. In the analog, with decreasing
torque, the pendulum rotation slows down to the point where the applied torque is
insufficient to push it over the top, and it then settles into a nonrotating state.

The nonlinearity in the normal state curve for the junction can be explained as
follows. For small voltages, the resistance is high because there are comparatively few
normal-state electrons to tunnel across the barrier. At voltages greater than the super-
conducting energy gap voltage, 2�/e, there is sufficient energy from the bias source to
break superconducting pairs, and the substantial increase in the number of normal
carriers causes an abrupt increase in current.

JOSEPHSON VOLTAGE STANDARD

One of the first applications of the Josephson effect comes from the fact that the Jo-
sephson current oscillates at a frequency proportional to the applied voltage, where the
frequency is Since this relation is independent of all other parameters andf � 2eV/h.
has no known corrections, it forms the basis of voltage standards throughout the world.
In practice, these standards operate by applying a microwave current through the junc-
tion and allowing the Josephson frequency to phase-lock to some harmonic of the ap-
plied frequency. With the correct choice of design parameters, the only stable operating
points of the junction will be at one of the voltages where n is an integer.V � nhf/2e,
These voltages are very accurately known, because frequency can be measured with great
accuracy and is a defined value for the purpose of voltage2e/h � 483.594 GHz/mV
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Figure 3 (a) The I-V curve of a Josephson junction. (b) The I-V curve when the junc-
tion is exposed to radiation. The quantized voltage levels occur at the values96 GHz
V � nhf/2e.n
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standards. Figure 3b is the I-V curve of a junction that is driven at About ten96 GHz.
quantized voltage levels span the range from �1 to Each of these levels represents1 mV.
a phase lock between a harmonic of the applied frequency at and the quantum96 GHz
phase difference, �, across the junction. Practical voltage standards use up to 20 000
junctions in series to generate reference voltages up to 10 V.

FLUX QUANTIZATION

Consider a closed superconducting loop surrounding magnetic flux �. We know from
Faraday’s law that any change in � must induce a voltage around the loop. Since the
voltage across a superconductor is zero, the flux cannot change and is therefore trapped
in the loop. There is a further restriction in that the phase of the quantum wavefunction
around the loop must be continuous. It can be shown that the variation of the quantum
phase along a superconducting wire is proportional to the product of the current and
the inductance L of the wire,

2�LI
�� � (6)

h/2e

In order for � to be continuous around the loop, �� must be a multiple of 2�. It is
thus a simple matter to show that the product LI must be quantized in units of h/2e.
Since LI is just the magnetic flux through the loop, the flux is quantized; the quantity

is the flux quantum.�15 2� � h/2e � 2.07 � 10 T·m0

SQUIDs

One of the most interesting of all superconducting devices is formed by inserting two
Josephson junctions in a superconducting loop, as shown in Figure 4a. From a circuit2,3

viewpoint, this looks like two junctions in parallel, and it therefore has an I-V curve like
that of a single junction (Fig. 4b). The current through the loop is just the sum of the
currents in the two junctions.

I � I sin � � I sin � (7)01 1 02 2

The equation for continuity of phase around the loop is

L(I � I ) �1 2
�� � 2�n � � � � � 2� � 2� (8)1 2

� �0 0

When Equations 7 and 8 are solved to maximize I, the total critical current is foundImax
to be a periodic function of the magnetic flux � applied to the loop as shown in Figure
4c. This pattern can be interpreted as the consequence of interference between the
superconducting wavefunctions on the two sides of the junction. These devices are there-
fore called superconducting quantum interference devices, or SQUIDs.

The most important application of SQUIDs is the measurement of small magnetic
fields. This is done by using a large pick-up loop to inductively couple flux into the
SQUID loop. A sensitive electronic circuit senses the changes in critical current Imax
caused by changing flux in the SQUID loop. This arrangement can resolve flux changes
of as little as For a typical SQUID with an inductance this corre-�610 � . L � 100 pH,0
sponds to an energy resolution of which approaches2 �32�E � �� /2L � 2 � 10 J,
the theoretical limit set by Planck’s constant.

A rapidly expanding application of SQUIDs is the measurement of magnetic fields
caused by the small currents in the heart and brain. Systems with as many as seven
SQUIDs are being used to map these biomagnetic fields. This new nonintrusive tool may
one day play an important role in locating the source of epilepsy and other brain dis-
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orders. In such applications it is important to discriminate against distant sources of
magnetic noise. This is done by using two pick-up coils wound in opposite directions, so
that the SQUID is sensitive only to the gradient of the magnetic field.

DIGITAL APPLICATIONS

The possibility of digital applications for Josephson junctions is suggested immediately
by the bistable nature of the I-V curve in Figure 3a. At a fixed-bias current, the junction
can be in either the zero-voltage state or the finite-voltage state, representing a binary 0
or 1. In the mid-1970s a major effort was mounted to develop large-scale computing
systems that used Josephson devices.4 The motivation for this is twofold. First, Josephson
junctions can switch states in only a few picoseconds; second, the power dissipation of
Josephson devices is nearly three orders of magnitude less than that of semiconductor
devices. The low power dissipation results from the low logic levels (0 and ) of2 mV
Josephson devices. Dissipation becomes increasingly important in ultra-high-speed com-
puters because the need to limit the propagation delay forces the computer into a small
volume. As the computer shrinks, heat removal becomes increasingly difficult.

A variety of Josephson logic circuits have been proposed. We will consider just one,
based on the SQUID circuit of Figure 4a. Suppose that the SQUID carries a current at
the level of the lower dashed line in Figure 4. Current in the two input lines (Ia, Ib)
moves the bias point horizontally along this line in Figure 4c. For example, a current in
either line moves the operating point to (c), while a current in both lines moves the
operating point across the threshold curve to (d). When the threshold curve is crossed,
the SQUID switches into the voltage state. The output of the device thus is the “AND”
function of the two inputs. Other logic combinations can be achieved by adjusting the
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Figure 4 (a) The circuit diagram for a SQUID. (b) Its I-V curve. (c) The dependence
of critical current on applied magnetic flux.



coupling of the input lines. Memory can be made by using coupled SQUIDs, where one
SQUID senses the presence or absence of flux in a second SQUID. Figure 5 is a pho-
tograph of two coupled thin-film SQUIDs that form a flip-flop circuit. These devices
are made by photolithographic processes similar to those used in the semiconductor
industry.

Josephson logic and memory chips with thousands of junctions have been built and
successfully operated. However, there are still significant problems to be overcome in
developing a complete Josephson computer. The greatest obstacle is the dependence of
Josephson logic on threshold switching. This results in circuits that operate over only a
small range of component parameters. Such circuits are said to have small margins. Until
a way is found to improve the margins or until fabrication processes with very tight
control are developed, the Josephson computer will remain on the drawing board.
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Figure 5 A photograph of a Josephson integrated circuit consisting of two coupled
SQUIDs. The minimum feature size is 4 microns.
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