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Abstract

Let Ln denote the lowest crossing of a square 2n × 2n box for critical
site percolation on the triangular lattice imbedded in Z2. Denote also
by Fn the pioneering sites extending below this crossing, and Qn the
pivotal sites on this crossing. Combining the recent results of Smirnov
and Werner (2001) on asymptotic probabilities of multiple arm paths in
both the plane and half-plane, Kesten’s (1987) method for showing that
certain restricted multiple arm paths are probabilistically equivalent to
unrestricted ones, and our own second and higher moment upper bounds,
we obtain the following results. For each positive integer τ , as n → ∞,

1. E(|Ln|τ ) = n4τ/3+o(1)

2. E(|Fn|τ ) = n7τ/4+o(1)

3. E(|Qn|τ ) = n3τ/4+o(1)

These results extend to higher moments a discrete analogue of the recent
results of Lawler, Schramm, and Werner (2001c) that the frontier, pio-
neering points, and cut points of planar Brownian motion have Hausdorff
dimensions respectively 4/3, 7/4, and 3/4.

1 Introduction

Consider site percolation on the triangular lattice. Each vertex of the lattice
is open with probability p and closed with probability 1 − p and the sites are
occupied independently of each other. We will realize the triangular lattice
with vertex set Z2. For a given (x, y) ∈ Z2, its nearest neighbors are defined as
(x±1, y), (x, y±1), (x+1, y−1), and (x−1, y+1). Bonds between neighboring
or adjacent sites therefore correspond to vertical or horizontal displacements of
one unit, or diagonal displacements between two nearest vertices along a line
making an angle of 135◦ with the positive x-axis.

∗MSC 2000 subject classification. Primary: 60K35, Secondary: 82B43. Key words and
phrases: percolation, triangular lattice, lowest crossing, pivotal sites.
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Recall that the triangular lattice may also be viewed with sites as hexagons
in a regular hexagonal tiling of the plane. This point of view is convenient
to describe the fact that when p = 1/2 (critical percolation) and the hexag-
onal mesh tends to zero, the percolation cluster interface has a conformally
invariant scaling limit, namely the stochastic Loewner evolution process SLE6

[Smirnov (2001)]. Smirnov and Werner (2001) combine the convergence of the
cluster interface with recent results on the probabilities of crossings of annular
and semi-annular regions by SLE6 calculated by Lawler, Schramm, and Werner
(2001a,b),(2002) to obtain corresponding probabilities for the critical site per-
colation on the triangular lattice.

We will use the Smirnov and Werner (2001) estimates in the case of three-
arm, two-arm and four-arm paths to establish results respectively on the length
of the lowest crossing, the size of the pioneering sites extending below this
crossing, and the pivotal sites on this crossing of a square box with sides parallel
to the coordinate axes in Z2. Here and throughout the paper we will be working
with the critical percolation model. To illustrate how our work fits in with known
results for planar Brownian motion we describe various geometric features of the
Brownian paths as follows. Define the hull Kt at time t of a planar Brownian
motion βs, s ≥ 0, as the union of the Brownian path β[0, t] := {βs, 0 ≤ s ≤ t}
with the bounded components of its complement R2\β[0, t]. The frontier or
outer boundary of β[0, t] is defined as the boundary of Kt. By contrast, a
pioneer point of the Brownian path is defined as any point βs at some time
s ≤ t such that βs is in the boundary of Ks, that is, such that βs is on the
frontier of β[0, s]. A point βs for some 0 < s < t is called a cut point of
β[0, t] if β[0, s]∩ β(s, t] = ∅. Lawler, Schramm, and Werner (2001c) have shown
that the frontier, pioneer points, and cut points of a planar Brownian motion
have Hausdorff dimensions respectively 4/3, 7/4, and 3/4. We answer an open
question [Smirnov and Werner (2001), question 2] to find an analogue of this
result in the case of critical percolation on the triangular lattice. Indeed we
asymptotically evaluate all moments of the sizes of the corresponding lowest
crossing, pioneering sites, and pivotal sites that we define below.

It turns out that our method requires a more careful analysis in the four-arm
case than in the two and three-arm cases. As pointed out in Smirnov and Werner
(2001), the probability estimates of annular crossings of multiple-arm paths (see
(2.3) below) lead naturally to a prediction of our first moment results. Only in
the pivotal (four-arm) case do we need to apply the estimate of Smirnov and
Werner (2001) for probabilities of multiple-arm crossings of semi-annular regions
in addition to the basic annular estimates to actually establish the prediction.
In all cases however the methods of Kesten (1987) are essential to construct the
probability estimates for our moment calculations. This calculation handles in
particular the probability of four-arm paths near the boundary of the box used
to define the pivotal sites.

Denote by T the full triangular lattice graph whose vertex set is Z2 and
whose edges are the nearest neighbor bonds. Define ‖x‖ := max{|x| , |y|} for
x = (x, y) ∈ Z2. For any real number r ≥ 0 we denote the square box of vertices
B(r) := {x ∈ Z2 : ‖x‖ ≤ r}. A path is a sequence of distinct vertices connected
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by nearest neighbor bonds. Thus a path is simple. Following Grimmett (1989)
the boundary or surface of a set X of vertices is the set ∂X of vertices in X
that are adjacent to some vertex not in X . A path is open (closed) from a
set X to a set Y if each vertex of the path is open (closed) and contained in
Z2 \ (X ∪ Y ) except for the endpoints in ∂X and ∂Y which may or may not be
open (closed). The interior of X is defined by int(X) = X \ ∂X . A set X of
vertices is connected if the graph induced by X is connected as a subgraph of
T. Let R be a connected set of vertices lying within a finite union of rectangles
with sides parallel to the coordinate axes. We say that a path is “in R” if its
vertices remain in R except possibly for its endpoints. If in addition R is a single
such rectangle, a horizontal open (closed) crossing of R is an open (closed) path
in R from the left side of R to the right side of R. A vertical crossing is defined
similarly.

Let n be a positive integer. For each x ∈ B(n) we define the event

L(x, n) := there exists a horizontal open crossing of B(n)
containing the vertex x, and there exists a
closed path in B(n) from x to the bottom of B(n).

(1.1)

The lowest crossing for any given configuration of vertices for which a horizontal
open crossing of B(n) exists is known (see Grimmett (1989)) to be the unique
horizontal open crossing γn of B(n) that lies in the region on or beneath any
other horizontal open crossing. In fact, on any given configuration we may also
represent the set of vertices in γn as equal to the set Ln := {x : L(x, n) occurs}.
Although this fact is well known, we briefly review its proof. First, any vertex x
of γn admits a closed path to the bottom of B(n) (so that L(x, n) occurs), else
one could construct a crossing strictly lower than γn. Therefore γn ⊂ Ln. On
the other hand, to show Ln ⊂ γn, assume the event L(x, n). The open path in
this event lies above γn, so the closed path in this event has to cross γn, unless
x ∈ γn. Thus the set of vertices of γn is precisely Ln.

We introduce next the pioneering sites extending below the lowest crossing
of a configuration in B(n). Define the event

F(x, n) := x is open and there exist two open paths in B(n)
started from x, one to the left side and one to the
right side of B(n), and there exists a closed path
in B(n) from x to the bottom of B(n).

(1.2)

Note that (1.1) implies (1.2). The difference is that in (1.2) the two open
paths need not be disjoint whereas in (1.1) the horizontal crossing through x
breaks up into two disjoint open paths. We define the set of pioneering sites
as the set Fn := {x : F(x, n) occurs}. Geometrically, Fn consists of the union
of the lowest crossing with the many complicated orbs and tendrils hanging
from it; the vertices of these latter sets do not admit two disjoint paths to the
sides of B(n). Alternatively, Fn is the set of open sites discovered through the
exploration process that starts at the lower left corner of B(n) and runs until it
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meets the right side, that determines the interface between the lowest spanning
open cluster in B(n) and the closed cluster attaching to its bottom side. This
description of Fn explains its correspondence to the trace of SLE6.

Finally we define the pivotal sites lying along the lowest crossing. Define the
event

Q(x, n) := there exists a horizontal open crossing of B(n)
containing the vertex x, and there exist two
disjoint closed paths in B(n) started from x, one
to the top side and one to the bottom side of B(n).

(1.3)

We define the set of pivotal sites as the set Qn := {x : Q(x, n) occurs}. The
two closed “arms” emanating from a pivotal (and therefore open) site x force
any horizontal open crossing of B(n) to pass through x. Let Cn be the open
cluster containing the lowest crossing whenever such a horizontal open crossing
exists. That a pivotal site exists implies that this cluster also contains the
highest horizontal open crossing and that the site belongs to both the highest
and lowest crossing.

We can now state our main result. Here and throughout P and E denote
respectively the probability and expectation for the critical percolation.

Theorem 1 For each positive integer τ , as n → ∞,

1. E(|Ln|τ ) = n4τ/3+o(1)

2. E(|Fn|τ ) = n7τ/4+o(1)

3. E(|Qn|τ ) = n3τ/4+o(1)

Note that probability upper bounds follow immediately by Markov’s inequal-
ity from the τ -th moment upper bounds in Theorem 1. On the other hand a
bound on the distribution of small values of |Ln| is obtained in Kesten and
Zhang (1993). Let L denote the event that there is a horizontal open crossing
of B(n). These authors show that there exist constants α, c > 0 and C1 < ∞
such that P (|Ln| ≤ n1+c|L) ≤ C1n

−α [Kesten and Zhang (1993), theorem 2].
We conjecture that this result continues to hold for the triangular lattice case
if the exponent 1 + c is replaced by 4/3− δ for any δ > 0 where now α > 0 may
depend on δ.

A one arm version of Theorem 1 is obtained by Kesten (1986). He shows
that there exists a limiting measure µ on configuration space, conditioned by the
event that the origin is connected to ∂B(n) as n → ∞ such that with respect
to µ there is a unique open cluster W connected to the origin with probability
1 [Kesten (1986), theorem 3]. He then proves Eµ(|W ∩ B(n)|τ ) � (n2πn)τ

where πn := P (0 is connected by an open path to (n,∞) × R) [Kesten (1986),
theorem 8]. We do not study here the number of sites in B(n) from which a five
arm path to the ∂B(n) exists. By the results of Smirnov and Werner (2001)
(see (2.3) below), the expected number of such sites is predicted to be no(1).
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Results analogous to the above-mentioned Hausdorff dimension properties of
certain planar Brownian motion point sets but now for the stochastic Loewner
evolution process SLE6 itself have been obtained as follows: the dimension of
the SLE6 curve (or trace) is 7/4 [Rhode and Schramm (2003)]; the dimension
of the (outer) frontier of SLE6 is 4/3 [Lawler, Schramm, and Werner (2001b)],
and the dimension of the set of cut points of SLE6 is 3/4 [Lawler, Schramm,
and Werner (2001a)] ; see remark 5 of Smirnov and Werner (2001). Perhaps
for both the Brownian and SLE processes one can obtain moment estimates on
the number of disks of radius ε > 0 needed to cover a given one of the above
point sets similar to the moment estimates presented here. Some results for
the expected number of such disks have been obtained by Rhode and Schramm
(2003) concerning both the SLEκ curve and hull with κ in a range of values
including the case κ = 6 that corresponds to the critical percolation of this
paper.

Finally we mention that Items 1 and 2 of Theorem 1 may be proved by the
same method that Kesten (1986) uses to establish the one arm case mentioned
above. However that method does not extend to the four arm case since then
the exponent in expression (2.3) becomes less than −1; see Subsection 3.1 for
further details. We emphasize that the difficulty in this paper lies in the case of
higher moments (τ ≥ 2) for pivotal sites wherein we study the organization of τ
vertices in the box B(n) at which four arm events occur. We develop a disjoint
boxes method (Section 4) that yields a proof of Items 1 and 2 and that also lays
a groundwork for the proof of Item 3 of Theorem 1. Our organization of the
disjoint boxes leads to two developments. First, it allows for the construction of
certain horseshoe estimates governed by Lemma 5 that are critical in establish-
ing the correct asymptotic order for even the first moment in the pivotal case.
We carry out these constructions in Sections 5 and 6. Second, it allows for the
analysis of groups of vertices that are closely clustered together in the analysis
of second and higher moments by a separate method based on Lemmas 7 and 8
shown in Section 7. These lemmas are extensions of Kesten’s (1987) lemmas 4
and 5. This latter work indeed forms the technological foundations for much of
the current paper.

2 Lower Bounds

In this section we establish lower bounds for each of the moment estimates
of Theorem 1. To do this we begin by writing down the known asymptotic
probabilities of multiple-arm paths from Smirnov and Werner (2001). Next
Kesten’s method is applied to obtain lower bounds for the probabilities of certain
restricted multiple-arm path events. The expectation lower bounds then follow
easily.

Note that L(x, n) is a certain sub-event of a so-called three-arm path that
we now introduce. Define B(x, m) := x + B(m). Assume that B(x, m) belongs
to the interior of B(n). Denote
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A(x, m; n) := B(n) \ int(B(x, m)) (2.1)

The event of a three-arm path from B(x, m) to ∂B(n) is defined by

U3(x, m; n) := there exist two disjoint open paths in
A(x, m; n) from ∂B(x, m) to ∂B(n),
and there exists a closed path in
A(x, m; n) from ∂B(x, m) to ∂B(n).

(2.2)

We denote U3(x, n) := U3(x, 0; n). We shall use the following estimate from
Smirnov and Werner (2001).

Lemma 1 For each fixed m ≥ 0, P (U3(0, m; n)) = n−2/3+o(1) as n → ∞.

Proof. The proof follows by a direct translation of theorem 4 of Smirnov
and Werner (2001) as follows. Consider the event that there exist κ disjoint
crossings of the annulus A(r0, r) := {z ∈ C : r0 < |z| < r}, not all closed nor
all open, for the hexagonal tiling of fixed mesh 1 in C. Let Hκ(r0, r) denote
generically any of the sub-events defined by a specific ordering of closed and
open crossings among the κ disjoint crossings. Then for each κ ≥ 2,

P (Hκ(r0, r)) = r−(κ2−1)/12+o(1), as r → ∞. (2.3)

Choose now two open and one closed crossings in the definition of H3(r0, r).
Then Lemma 1 follows by applying (2.3) for κ = 3 and noting, on account of the
mild change in geometry between the hexagonal and present models for the tri-
angular lattice, that the event U3(0, m; n) satisfies H3(m/2, n) ⊂ U3(0, m; n) ⊂
H3(2m, n/2).2

Similar as (2.2) we define the events of two-arm and four-arm paths from
B(x, m) to ∂B(n) by

U2(x, m; n) := there exist two paths in A(x, m; n)
from ∂B(x, m) to ∂B(n),
one of them being open and the other closed.

(2.4)

and

U4(x, m; n) := there exist two disjoint open paths in
A(x, m; n) from ∂B(x, m) to ∂B(n),
and there exist two disjoint closed paths in
A(x, m; n) from ∂B(x, m) to ∂B(n).

(2.5)

We also denote Uκ(x, n) := Uκ(x, 0; n), κ = 2, 4. As in the proof of Lemma 1,
except now with κ = 2 and κ = 4 respectively in (2.3), we obtain the following.

Lemma 2 For fixed m ≥ 0, P (U2(0, m; n)) = n−1/4+o(1) and P (U4(0, m; n)) =
n−5/4+o(1) as n → ∞.
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We now make precise the notion of restricted multiple-arm paths. Let π
be the probability of a given κ-arm path from a given vertex inside B(n/4) to
∂B(n). We restrict the κ-arm path by specifying disjoint intervals of length
proportional to n and separated by intervals also proportional to n on the
∂B(n) for the hitting sets of the various arms. Kesten (1987) shows that
there is only a multiplicative constant cost in the probability π of this re-
stricted event. In fact Kesten shows a little more that we will describe ex-
plicitly for the Lemmas 3 and 4. To begin, define certain rectangles that sit on
the four sides of B(n), counting counterclockwise from the left side of B(n),
by R1 := [−n,−n/2] × [−n/2, n/2], R2 := [−n/2, n/2] × [−n,−n/2], R3 :=
[n/2, n] × [−n/2, n/2], and R4 := [−n/2, n/2] × [n/2, n]. Let R be a rectan-
gle with sides parallel to the coordinate axes and sharing one side with the
boundary of a box B. We say that a path h-tunnels through R on its way to
∂B if the intersection of the path with the smallest infinite vertical strip con-
taining R remains in R. Thus the path may weave in and out of R but not
through the top or bottom sides of R, and comes finally to ∂B. Likewise we say
that a path v-tunnels through R on its way to ∂B if the roles of horizontal and
vertical are interchanged in the preceding definition. This definition is consis-
tent with the requirements of Kesten’s (1987), lemma 4. Accordingly, for each
x ∈ B(n/4) we define a certain restricted three-arm path event by

T3(x, n) := ∃ two disjoint open paths in B(n) started from x,
one to the left side of B(n) that h-tunnels through
R1, and one to the right side of B(n) that h-tunnels
through R3, and there is a closed path in B(n) from x
to the bottom of B(n) that v-tunnels through R2.
Further, there are vertical open crossings of each of R1

and R3, and there is a horizontal closed crossing of R2.

(2.6)

By the proof of Kesten’s (1987) lemma 4, we obtain the following.

Lemma 3 There exists a constant C3 such that uniformly for all x ∈ B(n/4),
P (U3(x, n)) ≤ C3P (T3(x, n))

Note by Lemma 3 that for x ∈ B(n/4) the probabilities of L(x, n), U3(x, n),
and T3(x, n) are all comparable.

We next define certain restricted two-arm and four-arm path events. In the
two-arm case we introduce rectangles that cut off the top and bottom sides of
B(n) by S2 := [−n, n]× [−n,−n/2] and S4 := [−n, n]× [n/2, n]. In the four-arm
case we have the similar picture as the three-arm case except now there is one
more closed arm that v-tunnels through R4 on the way to the top of B(n). We
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thus define for any x ∈ B(n/4),

T2(x, n) := there exists an open path in B(n) from x
to the top of B(n) that v-tunnels through S4,
and a closed path in B(n) from x to the
bottom of B(n) that v-tunnels through S2.
Further, there exists a horizontal open crossing
of S4 and a horizontal closed crossing of S2.

(2.7)

and
T4(x, n) := ∃ two disjoint open paths in B(n) started from x,

one to the left side of B(n) that h-tunnels through
R1, and one to the right side of B(n) that h-tunnels
through R3, and ∃ two disjoint closed paths in B(n)
from x, one to the bottom of B(n) that v-tunnels
through R2 and one to the top of B(n) that v-tunnels
through R4. Further, there are vertical open crossings
of each of R1 and R3, and there are
horizontal closed crossings of each of R2 and R4.

(2.8)

Again by the proof of Kesten (1987) we have the following.

Lemma 4 There are constants C2 and C4 such that uniformly for x ∈ B(n/4),
P (Uκ(x, n)) ≤ CκP (Tκ(x, n)), κ = 2, 4.

2.1 Proof of lower bounds

We now obtain expectation lower bounds for the sizes of the lowest crossing, pi-
oneering sites, and pivotal sites. By definition we have |Ln| =

∑
x∈B(n) 1L(x,n).

Thus,

E |Ln| =
∑

x∈B(n)

P (L(x, n)) ≥
∑

x∈B(n/4)

P (L(x, n)) (2.9)

By Lemmas 1 and 3 and the inclusion {x is open} ∩ T3(x, n) ⊂ L(x, n), we
have 2P (L(x, n)) ≥ (1/C3)P (U3(x, n)) ≥ (1/C3)P (U3(0, 5n/4)) ≥ n−2/3+o(1),
uniformly for x ∈ B(n/4). Therefore, summing on x ∈ B(n/4) in (2.9) we
obtain

E |Ln| ≥ (n/4)2n−2/3+o(1) = n4/3+o(1) (2.10)

In exactly the same way, but using now Lemmas 2 and 4 and the inclusions
{x is open} ∩ T2(x, n) ⊂ F(x, n) and {x is open} ∩ T4(x, n) ⊂ Q(x, n), we have

E |Fn| ≥ (n/4)2n−1/4+o(1) = n7/4+o(1) (2.11)

and
E |Qn| ≥ (n/4)2n−5/4+o(1) = n3/4+o(1) (2.12)

Note finally that the τ -th moment lower bounds in Theorem 1 follow immedi-
ately from (2.10)-(2.12) and Jensen’s inequality for all τ ≥ 1.2
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3 Lowest crossing and pioneering sites

In this section we carefully study an upper bound for the first and second mo-
ments of |Ln| and |Fn|. We do this to establish a dyadic summation construc-
tion alternative to Kesten’s (1986) method that we will later incorporate in our
analysis of the pivotal case in Sections 5 and 6. We introduce the following
concentric square annuli of vertices in B(n). Let j0 = j0(n) be the smallest
integer j such that 2−jn ≤ 1. Define

A0 := B(n/2),
Aj := B((1 − 2−(j+1))n) \ B((1 − 2−j)n), 1 ≤ j < j0
Aj0 := B(n) \ ∪j0−1

j=0 Aj = ∂B(n)
(3.1)

The annuli Aj become thinner as they approach the boundary of B(n) such
that for j < j0 the distance from a point x ∈ Aj to ∂B(n) is comparable with
2−jn and also comparable with the width of Aj . Since Aj0 = ∂B(n), we will use
instead the property, valid for all j ≤ j0, that if x ∈ Aj and ‖y−x‖ < 2−(j+1)n
then y ∈ B(n). Notice that the annuli Aj are natural for an approach based
on disjoint boxes by the following reasoning. For any vertex x ∈ B(n) we will
construct a box B(x, r) centered at x that is roughly as large as it can be yet
stays inside B(n). The collection of vertices x that give rise to boxes B(x, r)
with radii r � 2−jn correspond to the annuli Aj . Therefore, roughly speaking,
the sizes of largest disjoint boxes may be organized by arranging the centers of
the boxes in these annuli.

If the sizes of the sets Aj were defined by areas of the regions between
concentric squares rather than by cardinalities of subsets of vertices of B(n), we
would obtain an upper bound for the sizes of these sets immediately by using
the fact that (2n)2(1 − 2−(j+1))2 − (2n)2(1 − 2−j)2 ≤ 2−j+2n2. An error in
approximating |Aj | by the area between concentric squares may come about
due to inclusion or exclusion of a ring of vertices. However, if j < j0 then the
thickness of a given annulus is 2−(j+1)n ≥ 1/2 so the area estimate may only
be an under-estimate by a factor of at most 4. Therefore, since the boundary
of B(n) has cardinality 8n − 4, we have for all 0 ≤ j ≤ j0, that

|Aj | ≤ 2−j+4n2 (3.2)

3.1 Expectation upper bound

We write the expectation of the size of the lowest crossing as

E |Ln| =
∑

x∈B(n)

P (L(x, n))) =
j0∑

j=0

∑
x∈Aj

P (L(x, n)) (3.3)

We note that by (2.2), for x ∈ Aj ,

P (L(x, n)) ≤ P (U3(0, 2−(j+1)n)) (3.4)
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Let ε > 0. By Lemma 1 there exists a constant Cε such that

P (U3(0, r)) ≤ Cεr
−2/3+ε, for all r ≥ 1 (3.5)

Here and in the sequel we allow Cε to be a constant depending on ε that may
vary from appearance to appearance. Thus by (3.2)-(3.5) we obtain

E |Ln| ≤ Cε

j0∑
j=0

|Aj |
(
2−(j+1)n

)−2/3+ε ≤ Cεn
4/3+ε

∞∑
j=0

2−j/3 (3.6)

Since the geometric series in (3.6) converges we obtain by (3.6) that

E |Ln| ≤ n4/3+o(1) (3.7)

By the same argument we construct an upper bound for E |Fn|. Indeed, let
ε > 0. By Lemma 2 there exists a constant Cε such that

P (U2(0, r)) ≤ Cεr
−1/4+ε, for all r ≥ 1 (3.8)

Therefore Just as in (3.3) and (3.6) but using now (3.8) in place of (3.5) we find
E |Fn| ≤ n7/4+o(1). The proof of the upper bounds for τ = 1 of Items 1 and 2
of Theorem 1 is thus complete.2

We comment that the exponent (−1/4+ε) that takes the place of (−2/3+ε)
in the upper bound for E |Fn| does not affect the convergence of the geometric
sum because the exponents in (3.5) and (3.8) are greater than −1. Note however
that a four arm calculation similar to that shown above would require the use
of an exponent (−5/4 + ε) so that the corresponding geometric sum would not
converge. It is precisely for this reason that we must establish an alternative
to Kesten’s (1986) method of proof to obtain our Theorem 1 for the pivotal
case. The approach we have shown above for the first moment upper bound
may be extended in fact to all moments, though we will not show the general
case due to the fact mentioned earlier that Kesten’s method may be applied
successfully to obtain a general τ -th moment bound in the one, two, and three
arm cases. We only show in addition below a second moment upper bound
for the lowest crossing because it demonstrates the way we extend our dyadic
summation method to higher moments in all cases, including the pivotal one.

3.2 Second moment upper bound

We show an estimation of the second moment of |Ln|. Write

E
(
|Ln|2

)
=

∑

x∈B(n)

∑

y∈B(n)

P (L(x, n) ∩ L(y, n)) (3.9)

Recall the definition of j0 = j0(n) and Aj in (3.1). Consider first the “diagonal”
contribution to (3.9) defined by

I :=
j0∑

j=0

∑

x∈Aj

∑

y∈B(x,2−(j+2)n)

P (L(x, n) ∩ L(y, n)) (3.10)
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Fix j ≤ j0 and x ∈ Aj and work on the inner sum in (3.10). For this purpose
we introduce a net of concentric square annuli am = am(x) whose union is the
box B(x, 2−(j+2)n) as follows:

am(x) := B(x, 2−mn) \ B(x, 2−(m+1)n), j + 2 ≤ m ≤ j0 − 1
aj0(x) := B(x, 2−j0n)

(3.11)

Notice that aj0 may consist of only the single point x. By this decomposition we

have that
j0∑

m=j+2

∑
y∈am

P (L(x, n) ∩ L(y, n)) is equal to the inner sum in (3.10).

By (3.11) the size of am is easily estimated by

|am| ≤ 2−2m+2n2, all j + 2 ≤ m ≤ j0 (3.12)

Furthermore for x ∈ Aj and y ∈ am, with j + 2 ≤ m < j0, by halving the
distance between x and y we have that

B(x, 2−(m+2)n) ∩ B(y, 2−(m+2)n) = ∅ (3.13)

Also, for y ∈ am with m ≥ j + 2, since ‖y − x‖ ≤ 2−(j+2)n and 2−(m+2)n +
2−(j+2)n < 2−(j+1)n, we have that both B(x, 2−(m+2)n) and B(y, 2−(m+2)n)
are subsets of B(n). Therefore since L(x, n) ∩ L(y, n) occurs implies that for
each of the boxes in (3.13) there exists a three-arm path from the center of the
box to its boundary, we have by (3.13), independence, and (3.5) that for all
y ∈ am with m < j0

P (L(x, n) ∩ L(y, n)) ≤ Cε

(
2−mn

)−4/3+2ε (3.14)

Also, trivially, (3.14) continues to hold with m = j0 since then 2−mn ≥ 1/2.
Thus by (3.14) we have

j0∑
m=j

∑
y∈am

P (L(x, n) ∩ L(y, n)) ≤ Cε

∞∑
m=j

2−2mn2 (2−mn)−4/3+2ε

≤ Cεn
2/3+2ε2−2j/3

(3.15)

Therefore, by (3.10), (3.15), and (3.2) we have

I ≤ Cεn
2/3+2ε

∞∑
j=0

|Aj | 2−2j/3 ≤ Cεn
8/3+2ε

∞∑
j=0

2−5j/3 ≤ Cεn
8/3+2ε (3.16)

We next consider the off-diagonal part of the sum (3.9) defined by

II :=
j0∑

j=0

∑

x∈Aj

j0∑

k=0

∑

y∈Ak

χ{‖x−y‖>2−j−2n}P (L(x, n) ∩ L(y, n)) (3.17)

Here χA denotes the indicator function of the given set of vertices A. In the
sum II , for all eligible vertices x ∈ Aj and y ∈ Ak with k ≥ j we have that the
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boxes B(x, 2−j−3n) and B(y, 2−k−3n) are disjoint and lie inside B(n), while if
k < j the same holds true by (3.1) when we replace these boxes respectively by
B(x, 2−j−3n) and B(y, 2−k−5n). Therefore by (3.5), (3.17) and (3.2) we have

II ≤ Cε

j0∑
j=0

|Aj |
j0∑

k=0

|Ak|
(
2−jn

)−2/3+ε (2−kn
)−2/3+ε

= Cε

(
j0∑

j=0

|Aj |
(
2−jn

)−2/3+ε

)2

≤ Cεn
8/3+2ε

(3.18)

Therefore by definitions (3.9), (3.10), and (3.17), and by collecting the estimates
(3.16) and (3.18), we obtain

E
(
|Ln|2

)
≤ n8/3+o(1) (3.19)

We handle an upper bound for the second moment of the number of pioneering
sites by the same method. Thus we have established the upper bound for τ = 2
of Items 1 and 2 of Theorem 1. This concludes our discussion of these Items. 2

4 Method of disjoint boxes

Denote pn,τ (x1,x2, . . . ,xτ ) = P (∩τ
i=1Q(xi, n)). Recall the definition of j0 =

j0(n) and Aj in (3.1). Define for all j1 ≤ j2 ≤ ... ≤ jτ ,

Σj1,j2,...,jτ :=
∑

x1∈Aj1

∑

x2∈Aj2

· · ·
∑

xτ∈Ajτ

pn,τ (x1, . . . ,xτ ) (4.1)

By symmetry, to obtain an upper bound for the τ -th moment of the number of
pivotal sites, it suffices to estimate the sum

Σ0 :=
j0∑

j1=0

j0∑

j2=j1

· · ·
j0∑

jτ=jτ−1

Σj1,j2,...,jτ (4.2)

Moreover by induction on τ in Theorem 1, we may assume that all the vertices
in (4.1)-(4.2) are distinct. In this section we establish a parameterization of
certain boxes centered at the vertices x1,x2, . . . ,xτ that are both mutually dis-
joint and large enough to yield convergence of the sum (4.2) in our method for
estimating this sum shown in Sections 5 and 6. Indeed we are lead naturally to
a certain graph G defined below that organizes the vertices and their relative
distances from one another. Although this organization is somewhat compli-
cated, it will allow us to introduce estimations of pn,τ (x1,x2, . . . ,xτ ) that refine
the estimation approach based solely on disjoint boxes (illustrated in Subsection
3.2) because our estimation will depend also on the configuration of the graph.

We lay the groundwork for the definition of the graph G as follows. Let
c ≥ 2 be a positive integer depending only on τ that we will specify later. We
say a vertex v is “near to” a vertex u for some u ∈ Aj if v ∈ B(u, 2−j−2cn),
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and write this (asymmetric) relation as vNu. If v is not near to u we write
instead vÑu. Let now xi ∈ Aji , 1 ≤ i ≤ τ , with j1 ≤ j2 ≤ ... ≤ jτ . We say
that a sequence of vertices xf1 , . . . ,xfh

is a chain that leads from xf1 to xfk
if

xfiNxfi+1 for each i = 1, ..., k − 1. Define e1 := 1 and

V1 := {xe : e 6= e1, and there exists a chain from xe to xe1}

Thus V1 is the set of all vertices that lead to xe1 . Note that x1 may lead to
x2 but if x2 does not lead to x1 then xe2 /∈ V1. We denote inductively by
Ei := {e : xe ∈ Vi}, the set of indices corresponding to vertices in Vi, i=1,2, . . . ,
that we now continue to define. Note that the cardinalities of Ei and Vi are the
same since we have assumed the vertices xe are distinct. Let e2 be the smallest
index with e2 > e1 such that e2 /∈ E1. Define

V2 := {xe : e /∈ ({e1, e2} ∪ E1), and there exists a chain from xe to xe2}

Thus no element of V2 begins a chain that leads to xe1 . It may be that xe1 leads
to xe2 but we leave xe1 out of V2 as defined. Continuing in this fashion we take
e3 to be the smallest index with e3 > e2 such that e3 /∈ (E1 ∪ E2). Define

V3 := {xe : e /∈ ({e1, e2, e3} ∪ E1 ∪ E2), and ∃ a chain from xe to xe3}

Finally we obtain a disjoint collection of sets of vertices V1, . . . , Vr , where some
of the Vi may be empty. We say that Vi is the set of vertices chained to the root
xei .

Thus for example if τ = 3 and both x3Nx1 and x2Nx1 then V1 = {x2,x3}
and e2 is undefined. Also if x3Nx1 and x2Ñx1 but instead x2Nx3 then again
V1 = {x2,x3} and e2 is undefined. If on the other hand x2Nx1, x3Ñx1, and
x3Ñx2 then V1 = {x2} and e2 = 3 and V2 is empty. Further if x2Ñx1, x3Ñx1,
and x3Nx2 then V1 is empty and e2 = 2 and V2 = {x3}. Finally if x2Ñx1,
x3Ñx1, and x3Ñx2 then ei = i and Vi is empty, i = 1, 2, 3.

Suppose now in general that ei is defined for i = 1, . . . , r. Thus r is the
number of root vertices. Note by definition that the vertex x1 is always counted
among the roots. We say that a vertex xei is isolated if Vi = ∅. At non-isolated
roots we introduce a decomposition of the sets Vi themselves by means of a local
“near to” relation. It turns out that we will be able to work with one original
root xei and its corresponding set of vertices Vi at a time in constructing the
moment estimates of Sections 5 and 6, so in what follows we only write out a
decomposition of V1. We will represent this decomposition as a graph G1 below,
where in general a connected graph Gi with vertex set {xei} ∪ Vi is associated
with the root vertex xei . The graph G on all vertices is defined simply as the
union of the component graphs Gi.

Let |V1| ≥ 1. We denote V1 := {y1,y2, . . . }, where the names of the vertices
have been changed such that y1 ∈ ap1(x1),y2 ∈ ap2(x1), . . . , for p1 ≥ p2 ≥
· · · , where y1 is determined such that y1Nx1 and such that y1 minimizes the
distance to x1. Therefore p1 ≥ j1 + 2c by (3.11). We now say that vMwu for
some u ∈ am(w) if v ∈ B(u, 2−m−2cn). We call Mw a local relation where w
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fixes the locale of the relation. We describe how to decompose V1 via a collection
of local relations starting with Mx1 in a way wholly similar to the decomposition
of the original set of vertices {x1, . . . ,xτ} via the N -relation. Indeed, set f1 = 1,
rename y1 as w1, and define W1 as all the vertices of V1 \{w1} that are chained
to the root w1 by means of a chain of relations for the relation Mx1 . We rename
pf1 = m1 so that w1 ∈ am1(x1). Let f2 be the smallest index with f2 > f1 such
that yf2 /∈ W1. We rename yf2 = w2 and also pf2 = m2 so that w2 ∈ am2(x1).
Note in particular that w2M̃x1w1. Define

W2 := {yf : yf /∈ ({w1,w2} ∪ W1), and ∃ a Mx1-chain from yf to w2}

Continuing in this way we define also f3 < f4 < · · · as long as these exist
and so also local roots wi = yfi and corresponding sets Wi, i = 3, 4, . . . chained
to them by the relation Mx1 . We also define indices for the locations of the
local roots. Indeed following the example above for our definitions of m1 and
m2 we define mi such that wi ∈ ami(x1) for all i such that wi exists. Note by
definition, since mi = pfi and p1 ≥ p2 ≥ · · · , we have that m1 ≥ m2 ≥ · · · . In
general, for each i we further decompose the set Wi into a disjoint union:

({wi,1} ∪ Wi,1) ∪ ({wi,2} ∪ Wi,2) ∪ · · ·

Here for each j = 1, 2, . . . , Wi,j is a set of vertices chained to the corresponding
local root wi,j by the relation Mwi as follows. Assume W1 is not empty else
w1,1 and W1,1 are undefined. Since W1 is the set of elements chained to w1,
we know there exists y ∈ W1 such that yMx1w1. We take w1,1 as such a
vertex y that minimizes the distance to w1. We define the index m1,1 by the
property: w1,1 ∈ am1,1(w1). Therefore by definition of Mx1 and the fact that
w1 ∈ am1(x1), we have m1,1 ≥ m1 + 2c. Note by definition of w1,1 that for any
y ∈ W1 we have y ∈ ap(w1) with some p ≤ m1,1. We define W1,1 as the set of
vertices in W1 \ {w1,1} that are chained to the local root w1,1 by the relation
Mw1 . We perform a similar procedure starting with W2 to define the local root
w2,1. In particular w2,1Mx1w2. Likewise, as long as Wi is not empty we define
wi,1 ∈ Wi and a set Wi,1 chained to wi,1 by the relation Mwi . Here the indices
m2,1, m3,1, . . . are defined such that wi,1 ∈ ami,1(wi), i = 2, 3, . . . . Again we
choose wi,1 such that mi,1 is maximal, i.e. there does not exist y ∈ am(wi)∩Wi

with m > mi,1.
We define w1,2 and W1,2 if W1\(W1,1∪{w1,1}) is not empty. We do this in the

same way that we defined w2 and W2 from V1 \ (W1∪{w1}). Thus we order the
vertices in W1 as w1,1, y2, y3, . . . where yi ∈ api(w1) with m1,1 ≥ p2 ≥ p3 ≥ · · · .
Among all elements of W1 \ {w1,1} that are not chained to the local root w1,1

by the relation Mw1 , we choose w1,2 to be the vertex yi with least index.
Correspondingly we define W1,2 as the elements of W1 \ (W1,1 ∪ {w1,1,w1,2})
that are chained to w1,2 by the relation Mw1 . Note in particular that w1,2 ∈
am1,2(w1) with m1,2 ≤ m1,1. Similarly, we define local roots w1,j , j = 3, 4, . . .
and for each i ≥ 2, the roots wi,j , j = 2, 3, . . . . We define mi1,i2 , for i2 = 1, 2, . . .
as indices such that wi1,i2 ∈ am(wi1) with m = mi1,i2 . Again by definition
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mi,1 ≥ mi,2 ≥ · · · , and, since wi,1 ∈ ami,1(wi) and wi,1Mx1wi, we have that
mi,1 ≥ mi + 2c.

We inductively continue this procedure such that for a given local root
wi1,...,ik

and associated local elements Wi1,...,ik
chained to it, we decompose

Wi1,...,ik
= ({wi1,...,ik,1} ∪ Wi1,...,ik,1) ∪ ({wi1,...,ik,2} ∪ Wi1,...,ik,2) ∪ · · ·

by means of the relation Mw for w = wi1,...,ik
. We continue in this way until

no further local roots may be defined. In general for k ≥ 1 we have wi1,...,ik,1 ∈
am(wi1,...,ik

) for m = mi1,...,ik,1 and

wi1,...,ik,1Mwi1,...,ik−1
wi1,...,ik

Here when k = 1, wi1,...,ik−1 becomes x1. We also define the index mi1,...,ik+1

in general by the property that wi1,...,ik+1 ∈ am(wi1,...,ik
) with m = mi1,...,ik+1 .

We have that for all k ≥ 0, mi1,...,ik,1 ≥ mi1,...,ik,2 ≥ · · · and mi1,...,ik,1 ≥
mi1,...,ik

+ 2c, where for k = 0, mi1,...,ik
denotes j1.

We now use our parameter c to obtain one further property of the indices
not mentioned in the previous paragraph. First, since W1 consists of all vertices
w that may be chained to w1 by the relation Mx1 , we argue that c may be
chosen such that

w ∈ ap(x1) with p ≥ m1 − 1, for all w ∈ W1 (4.3)

Indeed since there are at most τ − 1 relations with respect to Mx1 that must
be satisfied, if c is large enough and if w ∈ am(x1) for some m ≤ m1 − 2,
then the chain will not be able to cross the square annulus am1−1(x1) to reach
w1 ∈ am1(x1). Therefore we choose c sufficiently large to guarantee (4.3). Note
that the value of c so chosen does not depend on the value m1 or the location
x1. Now, since we have control on the index p for the location of w, it is easy by
estimating the sum of distances between successive vertices in a chain of relations
leading to w1 by (τ − 1)2−m1+1−2cn that again, by choosing c somewhat larger
if necessary, we have m1,i2 ≥ m1 + c for all i2 = 2, 3 . . . , while of course we still
have that m1,1 ≥ m1 + 2c. By the same argument based at any local root, we
have for all k ≥ 0 that

mi1,...,ik,ik+1 ≥ mi1,...,ik
+ c for ik+1 = 2, 3, . . .

mi1,...,ik,1 ≥ mi1,...,ik
+ 2c

(4.4)

We now define the graph G1 alluded to above. The vertices of G1 are
{x1}∪V1. We assume |V1| ≥ 1, else the graph is trivial. If wi1,...,ik

is a local root
we say that the root is at level k. We define a (horizontal) edge at level k between
wi1,...,ik

and wi1,...,ik+1 whenever both these local roots exist. In our diagram
below we make the edge go horizontally to the left from wi1,...,ik

to wi1,...,ik+1

to recall the fact that the associated indices satisfy mi1,...,ik+1 ≤ mi1,...,ik
. Next,

we call w1 an immediate successor of x1. Similarly, if wi1,...,ik
is a local root

of level k and if the root wi1,...,ik,1 exists at level k + 1 then we call this local
root the immediate successor of the former local root. We now define that a
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Figure 1: The graph G1.

(vertical) edge exists between two immediate successors. In our diagram the
level increases vertically with k. We illustrate G1 for the following example
in Figure 1: |V1| = 10, |W1| = 3, |W1,1| = 0, |W1,2| = 1, and |W1,2,1| = 0;
|W2| = 5, |W2,1| = 2, |W2,2| = 1, |W2,2,1| = 0, |W2,1,1| = 0, and |W2,1,2| = 0.

4.1 Representation of disjoint boxes

We fix the graph G1 and study the problem of verifying that certain boxes
centered at its vertices that we now construct are indeed disjoint. Assume
|V1| ≥ 1. For each vertex w = wi1,...,ik

∈ G1 we define

m(w) =

{
mi1,i2,...,ik,1, if wi1,i2,...,ik,1 exists
mi1,i2,...,ik

, if wi1,i2,...,ik,1 does not exist
(4.5)

Note that since we assume that w1 exists we also have m(x1) = m1. We set the
constant value s := 2c + 4 where c appears in (4.4).

Proposition 1 The collection of boxes B(w, 2−m(w)−sn), w ∈ G1, are mutu-
ally disjoint.

Proof. Let k ≥ 0 and let w = wi1,...,ik
and w′ = wi′1,...,i′

k′
be distinct vertices

in G1. Define l as the largest non-negative integer such that i′1 = i1, . . . , i
′
l = il

and set z := wi1,...,il
. If one of w or w′ is x1 then we set l = 0 and put z = x1.

We consider two cases, namely, (a) one of w or w′ is equal to z, or (b) neither
w nor w′ is equal to z. In case (a) we assume without loss of generality that
w = z. Note therefore that with this choice in case (a), l = k, k′ > k, and
w′ ∈ Wi1,...,ik

since wi1,...,ik,1 exists. In case (b) we must have both k ≥ l + 1
and k′ ≥ l + 1 else we are in case (a) again. Thus in case (b) we may switch the
designation of the primed vertex if necessary such that i′l+1 > il+1.
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We work first with case (a). Since w′ ∈ Wi1,...,ik
, we have that

w′ ∈ ap(w), for some p ≤ mi1,...,ik,1 (4.6)

Indeed, (4.6) holds by the definition of mi1,...,ik,1 as the maximal m such that
y ∈ am(w) among all y ∈ Wi1,...,ik

\ {w}. Now by (4.5) we have m(w) =
mi1,...,ik,1, so by (4.6),

B(w′, 2−m(w)−2n) and B(w, 2−m(w)−2n) are disjoint (4.7)

Consider first a special case of (a), namely that

w′ ∈ {wi1,...,ik,1} ∪ Wi1,...,ik,1 (4.8)

so that w′ is either the immediate successor of w or is one of the descendants
of this immediate successor. It follows by (4.8) that i′k+1 = 1. Therefore, since
k′ ≥ k + 1, we have by (4.4) and (4.8) that

mi′1,i′2,...,i′
k′ ,1 ≥ mi′1,i′2,...,i′

k′
+ 2c ≥ mi1,i2,...,ik,1 + 2c

Therefore by (4.5) we have that m(w′) ≥ m(w) whether or not the vertex
wi′1,i′2,...,i′

k′ ,1 exists. Hence it follows by (4.7) that

B(w′, 2−m(w′)−sn) and B(w, 2−m(w)−sn) are disjoint

Thus we have established disjoint boxes under condition (4.8) in case (a).
Suppose next for case (a) that k′ ≥ k + 1 with i′k+1 ≥ 2. Thus we consider

the remaining descendants w′ of w that were not considered in the special case
(4.8). Put w̃ := wi1,...,ik,i′

k+1
, so either w′ = w̃ (when k′ = k + 1) or w′ is a

descendant of w̃:
w′ ∈ {w̃} ∪ Wi1,...,ik,i′k+1

For all such w′ we have that

w′ ∈ ap(w) for some p ≤ mi1,...,ik,i′k+1
(4.9)

Indeed by definition the vertex w̃ lies in the annulus am(w) where m is maximal:

if some y ∈ Wi1,...,ik
\ ∪i′k+1−1

i=1 (Wi1,...,ik,i ∪ {wi1,...,ik,i}) lies also in ap(w) then
m ≥ p. Therefore since indeed w′ is one such vertex y, the assertion (4.9) is
verified. Hence by (3.13),

B(w′, 2−p−2n) and B(w, 2−p−2n) are disjoint

But, by definition of the indices and (4.9) we have

m(w) = mi1,...,ik,1 ≥ mi1,...,ik,i′
k+1

≥ p

Also by (4.4) and (4.5), since l = k and k′ ≥ k + 1, we have that

m(w′) ≥ mi′1,...,i′
k′

≥ mi1,...,ik,i′
k+1

+ c ≥ p + c ≥ p
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Thus, since s ≥ 2 we obtain the desired conclusion. This completes the proof
of disjoint boxes for case (a).

We now proceed to study case (b). We first note that since k, k′ ≥ l + 1,

(i) w ∈ {wi1,...,il,il+1} ∪ Wi1,...,il,il+1

(ii) w′ ∈ {wi1,...,il,i′l+1
} ∪ Wi1,...,il,i′l+1

(4.10)

Therefore just as in (4.9), we find by (4.10) that

(i) w ∈ ap(z) for some p ≤ mi1,...,il,il+1

(ii) w′ ∈ ap′(z) for some p′ ≤ mi1,...,il,i′l+1

(4.11)

Now we claim that for p given in (4.11) we have

w′ /∈ B(w, 2−p−2cn) (4.12)

Indeed on the contrary we would have w′Mzw. Therefore we could chain w′ to
wi1,...,il,il+1 by the relation Mz. Indeed, if l ≤ k − 2 then w is already chained
in this way to wi1,...,il,il+1 while if l = k − 1 then w = wi1,...,il,il+1 so we would
have directly that w′Mzwi1,...,il,il+1 . Therefore on the one hand we have the
inclusion (ii) of (4.10) and on the other we would have that w′ ∈ ∪il+1

i=1 Wi1,...,il,i

since w′ is chained to wi1,...,il,il+1 . But these two inclusions are in contradiction
since i′l+1 > il+1. Hence we must not have that this chain relation exists and
therefore (4.12) holds.

To finish the argument for case (b), suppose first that p′ < p − 2. Then
by (4.11) alone and (3.11) we have that B(w′, 2−p′−2n) and B(w, 2−p−2n) are
disjoint. But by (4.4) and (4.5),

m(w′) ≥ mi1,...,il,i′l+1
≥ p′ and m(w) ≥ mi1,...,il,il+1 ≥ p

Thus, since s ≥ 2 we obtain the desired disjoint boxes condition. Suppose fi-
nally that p′ ≥ p − 2. We have by (4.12) and (3.13) that B(w′, 2−p−2c−2n)
and B(w, 2−p−2c−2n) are disjoint. Therefore we obtain the disjoint boxes con-
dition by using (4.4), (4.5), and (4.11) to obtain the following two strings of
inequalities:

m(w′) + s ≥ mi′1,...,i′
k′

+ s ≥ mi1,...,il,i′l+1
+ s ≥ p′ + s ≥ p + 2c + 2

and

m(w) + s ≥ mi1,...,ik
+ s ≥ mi1,...,il,il+1 + s ≥ p + s ≥ p + 2c + 2

This completes the proof of case (b). Therefore the proof of Proposition 1 is
complete.2

5 Upper bounds in the pivotal case

In this section we will prove in detail upper bounds for the first and second
moments of |Qn|. To do this we will recall the approach of Kesten (1987) to
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lay the groundwork that allows us to establish certain “horseshoe” estimates
that we describe below. Let B1 ⊂ B(n) be a box centered at x near the
right boundary of B(n) such that the right boundary of B1 lies on the right
boundary of B(n), and let B2 ⊂ B(n) be a box containing B1 such that the
right edge of B1 is centered in the right edge of B2. Thus B2 \ B1 is a semi-
annular region that we call a horseshoe. To estimate E(|Qn|) we bound the
P (Q(x, n)) by the product of probabilities of two subevents of Q(x, n), namely
(i) there exists a four-arm path from x to ∂B1, and (ii) there exists a three-arm
crossing of the horseshoe. The probability of the latter event will be handled
by the Lemma 5 below. To organize the sizes of the larger boxes B2 that
fit inside B(n) we introduce a partition of the box B(n) that is dual to the
original partition of concentric annuli introduced in Section 3. For the second
moment we must estimate P (Q(x, n) ∩ Q(y, n)). We employ the same “near
to” definition employed in Section 4. When yÑx, so that x and y are isolated
root vertices, we determine first whether these vertices are separated sufficiently
to give rise to one or two horseshoes. The boxes and horseshoes we construct
for our probability estimates will remain disjoint. We then utilize independence
of events and Lemma 5 below applied to each horseshoe that appears in our
construction. From this point of view our method for the pivotal case may
be termed the method of disjoint horseshoes. However if yNx then it does
not suffice to simply apply a disjoint boxes argument combined with Lemma 2,
because this leads to a divergent sum in our dyadic summation method. Thus
we need another result, namely Lemma 7 below that is proved in Section 8.

Let B1 = B1(2ρ) ⊂ B(n) be a fixed box of radius 2ρ and for each ν ≥ ρ such
that ν−ρ is an integer, let B2 = B2(2ν) ⊂ B(n) be a box of radius 2ν containing
B1 such that the right edge of ∂B1 is centered in the right edge of ∂B2. Denote
by H := H(ρ, ν) := B2(2ν) \B1(2ρ) the corresponding horseshoe. Consider ∂H
with the right edges in common with the right edge of ∂B2 removed. The result-
ing set of vertices consists of two concentric semi-rings of vertices in ∂H . The
smaller semi-ring we denote by ∂1H and call the inner horseshoe boundary and
the larger semi-ring we denote by ∂2H and call the outer horseshoe boundary.
Define the event

J (ρ, ν) := there exists an open path r1 in H = H(ρ, ν) that
connects ∂2H to ∂1H and there exist two disjoint
closed paths r2 and r4 in H(ρ, ν) that connect
∂2H to ∂1H ; r4 is oriented counterclockwise and
r2 clockwise from r1 as viewed from ∂2H

(5.1)

Lemma 5 Define the event that there is a three-arm crossing of the horseshoe
H(ρ, ν) in B(n) with inner radius 2ρ and outer radius 2ν by (5.1). Then there
is a function ε(u) → 0 as u → ∞ and constant C such that P (J (ρ, ν)) ≤
C2ρ(2+ε(ρ))/2ν(2+ε(ν))

Proof. The first main step is to establish (5.2) below. To do this we
have to recall the proof of Kesten’s (1987) lemma 4. Since Kesten’s connection
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arguments will continue to play a role in our proof of Lemma 7, we repeat the
main outlines of these arguments here for the sake of completeness. For any box
B = B(x, r) we define the i-th side, i = 1, 2, 3, 4, as the part of the boundary
of B that is respectively on the left, bottom, right, or top of B. Define disjoint
filled squares βi = βi(ρ), i = 1, 2, 4, that lie outside but adjacent to the sides of
B1(2ρ) where the index i refers to the i-th side, so that the squares are listed in
counterclockwise order around the boundary of B(y, 2ρ). Here and in the sequel
a square will be synonymous with a box B(x, r) for some center x and radius
r. We assume that the squares βi are of radius 2ρ−3 with spacing 7(2ρ−3) on
either side. See Figure 2. Define the event H(ρ, ν) as the event J (ρ, ν) with the
additional requirements that the path r1 h-tunnels through β1 and the paths r2

and r4 v-tunnel through β2 and β4 respectively, and further, there is a vertical
open crossing of β1 and there are horizontal closed crossings of β2 and β4. We
will show

P (J (ρ, ν)) ≤ CP (H(ρ, ν)) (5.2)

Define H(ρ1, ν) := B2(2ν) \ B2(2ρ1) for any ρ ≤ ρ1 ≤ ν, where by our
definition above, B2(2ρ1) = B1(2ρ) for ρ1 = ρ. We now take ρ1 = ν − k
and so view a nested sequence of boxes B2(2ν−k), k ≥ 1, each in a similar
relationship to the box B1(2ρ) as the original box B2(2ν). Introduce disjoint
squares αi = αi(ν−k), i = 1, 2, 4, of radii 2ν−k−3 that lie now inside but adjacent
and centered to the i-th sides of B2(2ν−k), k = 0, ..., ν − ρ − 1. Likewise by
similarity to the squares βi(ρ) on the outside of B1(2ρ), introduce corresponding
squares βi(ν − k − 1) of radii 2ν−k−4 on the outside of B2(2ν−k−1). First note
for the case k = 0 that, by the existence of vertical open crossings of the squares
α1(ν) and β1(ν − 1) and horizontal closed crossings of the squares αi(ν) and
βi(ν − 1), i = 2, 4, and by the existence of appropriate connecting paths that
h-tunnel through both α1(ν) and β1(ν−1) and that v-tunnel through αi(ν) and
βi(ν − 1) for each i = 2, 4, and by FKG, there exists a constant c1 such that

P (H(ν − 1, ν)) ≥ c1

Now we iterate this argument with k ≥ 1 while keeping track of the probability
of connecting paths from one step to the next. Indeed, we replace in the above
argument the squares αi(ν) and βi(ν − 1) by the squares α1(ν − k) and β1(ν −
k−1), and only require, besides the horizontal closed crossings and vertical open
crossings, the existence of connecting paths that, as appropriate, either h-tunnel
or v-tunnel through all three of βi(ν − k) and αi(ν − k), and βi(ν − k − 1), to
show by induction that there exists a constant c2 such that

P (H(ν − k − 1, ν)) ≥ c1c
−k
2 , all k = 0, ..., ν − ρ − 1 (5.3)

We may assume that ν > ρ+2, so we now do so. Define the event J (ρ+2, ν)
by replacing the horseshoe H(ρ, ν) in (5.1) by H(ρ + 2, ν), so that obviously
J (ρ, ν) ⊂ J (ρ+2, ν). Consider the event K(ρ+2, ν) that the paths ri, i = 1, 2, 4,
defining J (ρ + 2, ν) can be chosen such that each has a certain fence around it
at the location that it meets the inner horseshoe boundary ∂1H(ρ + 2, ν); see
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B2(2ρ1)

B1(2ρ)

β4(ρ)

β2(ρ)

β1(ρ)

β4(ρ1)

β2(ρ1)

β1(ρ1)

α4(ρ1)

α2(ρ1)

α1(ρ1)

Figure 2: Arrangement of the connection boxes in the proof of Lemma 5. Here
ρ1 = ρ + 1.
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Kesten (1987), p.134, for the precise definition of the fence. Kesten shows, by
adroit application of the FKG inequality (see Kesten (1987), lemma 3), that
each fence in turn will allow an extension of the chosen path ri into H(ρ, ρ + 2)
by means of a certain corridor it will travel through, with the result that there
is only a multiplicative constant cost in probability that the path will h-tunnel
or v-tunnel as appropriate through the corresponding square βi:

P (K(ρ + 2, ν)) ≤ Cf P (H(ρ, ν)) (5.4)

where Cf depends on the parameter of the fence.
On the exceptional set, where one of the paths ri can not be chosen to have

such a fence, one obtains following Kesten (1987), p. 131, a bound

P (J (ρ + 2, ν) \ K(ρ + 2, ν)) ≤ δP (J (ρ + 3, ν)) (5.5)

The parameter δ can be made as small as desired by adjusting the parameter
of the fence (see Kesten (1987), lemma 2). Therefore by (5.1) and (5.5) one
obtains

P (J (ρ, ν)) ≤ P (J (ρ + 2, ν)) ≤ P (K(ρ + 2, ν)) + δP (J (ρ + 3, ν)) (5.6)

By iteration of (5.6) and by applying (5.4) and (5.3) at the end, one obtains
just as in Kesten (1987), p. 131, that

P (J (ρ, ν)) ≤
∑
t≥0

δtP (K(ρ + 3t + 2, ν)) + Cδ(ν−ρ)/3

≤
∑
t≥0

CfδtP (H(ρ + 3t, ν)) + C(δc3
2)

(ν−ρ)/3P (H(ρ, ν))

≤ P (H(ρ, ν))(
∑
t≥0

Cf c−1
1 (δc3

2)t + C(δc3
2)(ν−ρ)/3)

(5.7)

Since δ is arbitrary, by (5.7) the desired estimate (5.2) follows.
We continue the proof of the lemma. Let y′ be the center vertex of the right

side of B1 := B1(2ρ). Recall that ∂1H denotes the inner horseshoe boundary
of the horseshoe H(ρ, ν). Let the squares αi(ρ), i = 1, 2, 4, as defined above lie
inside the boundary of B2(2ρ) = B1(2ρ). Define the events

E(ρ) := there exists an open path r1 in B1(2ρ) from y′ to
∂1H and there exist two disjoint closed paths
r2 and r4 in B1(2ρ) from y′ to ∂1H ;
r2 is oriented counterclockwise and r4

clockwise from r1 as viewed from the vertex y′

(5.8)

and

D(ρ) := E(ρ) occurs, the path r1 h-tunnels through α1(ρ),
and, for each i = 2, 4, the paths ri v-tunnel through αi(ρ).
Further there exists a vertical open crossing of α1(ρ)
and horizontal closed crossings of α2(ρ) and α4(ρ)

(5.9)
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By Kesten’s arguments again, P (E(ρ)) ≤ CP (D(ρ)) and P (H(ρ, ν))P (D(ρ)) ≤
CP (E(ν)). Therefore by (5.2) and these two inequalities, P (J (ρ, ν))P (E(ρ)) ≤
CP (H(ρ, ν))P (D(ρ)) ≤ CP (E(ν)). Therefore

P (J (ρ, ν)) ≤ CP (E(ν))/P (E(ρ)) (5.10)

Finally, to complete the proof of the Lemma we recall Smirnov and Werner’s
semi-annulus version of Lemma 1 [theorem 3 of Smirnov and Werner (2001)] as
follows. Let Gκ(r0, r) denote the event that there exist κ disjoint crossings of
the semi-annulus A+(r0, r) = {z ∈ C : r0 < |z| < r,=z > 0} for the hexagonal
tiling of fixed mesh 1 in C. Then for all κ ≥ 1,

P (Gκ(r0, r)) = r−κ(κ+1)/6+o(1), as r → ∞. (5.11)

Therefore by (5.11) with κ = 3 we have

P (E(ρ)) = 2−ρ(2+o(1)) as ρ → ∞ (5.12)

Hence by (5.10) and (5.12) the proof of the Lemma is complete.2
For our proof of Lemma 7 below we will also need the following result that

is a restatement of Kesten’s (1987) lemma 5. Let B(l) be a box centered at the
origin with radius l ≥ 2, and let B(x, m) ⊂ B(l/2). Define disjoint filled squares
βi, i = 1, 2, 3, 4, that lie outside but adjacent to the sides of B(x, m) where the
index i refers to the i-th side. We take the squares to have radii m/8 and to
be centered in the sides of B(x, m). Let U4(x, m; l) be as defined in (2.5). Let
V4(x, m; l) be defined by (2.5) with the following additional requirements: the
open paths r1 and r3 that exist from ∂B(l) to ∂B(x, m) will h-tunnel through β1

and β3 respectively on their ways to ∂B(x, m), and likewise the closed paths r2

and r4 will v-tunnel through β2 and β4 respectively on their ways to ∂B(x, m),
and further there exist vertical open crossings of β1 and β3 and horizontal closed
crossings of β2 and β4.

Lemma 6 There is a constant C such that P (U4(x, m; l)) ≤ CP (V4(x, m; l)).

5.1 Expectation bound for pivotal sites

We are now ready to estimate E(|Qn|). We will refine the partition of the
box B(n) defined by the concentric annuli Aj of (3.1) by cutting these annuli
transversally. Define an increasing sequence of regions B∗(j∗), j∗ ≥ 0, each
lying inside B(n) by

B∗(j∗) := {(x1, x2) ∈ B(n) : min{|x1| , |x2|} ≤ (1 − 2−j∗−1)n} (5.13)

The set B∗(j∗) is the box B(n) with squares of diameter 2−j∗−1n removed from
each of its corners. We define the dual sets to the annuli Aj by taking the
successive differences of the sets B∗(j∗):

A∗
0 := B∗(0)

A∗
j∗ := B∗(j∗) \B∗(j∗ − 1), j∗ ≥ 1 (5.14)
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Thus for j∗ > 0, A∗
j∗ consists of four “L”-shaped regions. For each such region

the “L” cuts off a square in the corresponding corner of B(n). The collection
{A∗

j∗ , j∗ ≥ 0} is a partition of B(n). Moreover, the following properties hold:

Aj ∩ A∗
j∗ = ∅, j∗ > j

is a union of eight rectangles, if 0 < j∗ < j
is a union of four corner squares, if 0 < j∗ = j
is a union of four rectangles, if j∗ = 0 and j > 0
one central square, if j∗ = j = 0

(5.15)

Note by (3.1), (5.13), and (5.14) that we have the estimate
∣∣Aj ∩ A∗

j∗

∣∣ ≤ C2−j−j∗n2, all 0 ≤ j∗ ≤ j, n ≥ 1 (5.16)

for some constant C. Let {Aj , 0 ≤ j ≤ j0} be the partition of B(n) defined by
(3.1). Thus by (5.15), the collection {Aj ∩ A∗

j∗ , 0 ≤ j∗ ≤ j ≤ j0} comprises a
joint partition of B(n). Hence we can write

E (|Qn|) =
∑

x∈B(n)

P (Q(x, n)) =
j0∑

j=0

j∑
j∗=0

∑
x∈Aj∩A∗

j∗

P (Q(x, n)) (5.17)

Now for any 0 ≤ j∗ ≤ j, we consider x ∈ Aj ∩ A∗
j∗ . Choose real numbers

ρ = ρ(j, n) and ν = ν(j∗, n) such that 2ρ � 2−jn and 2ν � 2−j∗n and ν − ρ
is integer. Here f � g over a range of arguments for the functions f and g
means that there exists a constant C > 0 such that (1/C)g ≤ f ≤ Cg over
this range. We choose B1(2ρ) to have center x and make the definition of
ρ such that B1(2ρ) ⊂ B(n) but also such that ∂B1(2ρ) ⊂ ∂B(n). This is
possible since the box B(x, 2−j−2n) lies interior to B(n) by construction, so
now we expand the radius of this box such that its boundary just meets that
of B(n). Notice therefore that while ρ is not independent of x the value of 2ρ

only varies by a constant factor with x. We also construct a box B2(2ν) ⊂ B(n)
containing B1(2ρ) as in the context of Lemma 5 such that B2(2ν) and B1(2ρ)
share boundary points along the side of B(n) corresponding to the side of the
annulus Aj that x belongs to. This is possible by our construction of the dual
A∗

j∗ . Thus by the definition (5.1) of J(ρ, ν) and the definition of the four-arm
path (2.5), and by independence, we have that

P (Q(x, n)) ≤ P (U4(0, 2ρ))P (J (ρ, ν)) (5.18)

Let ε > 0. By Lemma 2 there exists a constant Cε,1 such that

P (U4(0, r)) ≤ Cε,1r
−5/4+ε, all r ≥ 1

Similarly by Lemma 5 there exists a constant Cε,2 such that P (J (ρ, ν)) ≤
Cε,22(ρ−ν)(2−ε), all ρ ≤ ν. Therefore by these considerations with r = C2−jn ≥
C/2 and with 2−jn and 2−j∗n in place of 2ρ and 2ν respectively, we have by
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(5.16) and (5.18) that there exists a constant Cε such that

E (|Qn|) ≤ Cε

j0∑
j=0

j∑
j∗=0

2−j−j∗n2(2−jn)−5/4+ε2(−j+j∗)(2−ε)

≤ Cεn
3/4+ε

∞∑
j=0

2−3j/4 ≤ Cεn
3/4+ε

(5.19)

This concludes the case τ = 1 of Item 3 of Theorem 1. 2

5.2 Second moment for pivotal sites

In the case of second and higher moments we will have to consider the condition
that a given root vertex xei is not isolated (so that |Vi| ≥ 1; see Section 4).
To handle the need for an extra convergence factor in our dyadic summation
method in this case we introduce the following lemma. We will use this lemma
in particular to estimate the probability of the event Q(x, n) ∩ Q(y, n) in case
yNx for the second moment estimate below. Let R be a filled-in rectangle of
vertices with sides parallel to the coordinate axes. For any vertex w contained
in the interior of R denote

U4(w; R) := P (∃ a four arm path in R from w to ∂R) (5.20)

This is simply an extension of the definition U4(w, n) in (2.5) with R in place
of B(n). Recall also definition (2.8).

Lemma 7 Let R = R(x′) be a rectangle centered at x′ with its shortest half-side
of length l ≥ 1 and longest half-side of length L ≥ 1 such that 1 ≤ L/l ≤ 2. Let
R contain a vertex x such that ‖x−x′‖ ≤ l/2. Suppose further that R contains
a collection of disjoint boxes Bi := B(yi, 2λi), i = 1, . . . , v, which also have the
property that for each i = 1, . . . , v, x /∈ Bi. Then there exist constants C, d,
and c1, depending only on v, such that

P (U4(x; R) ∩ (∩v
i=1U4(yi; R))) ≤ CP (T4(0, l/d))

v∏

i=1

P (U4(0, 2λi−c1))

We prove Lemma 7 in an appendix, Section 8.
We are now ready to estimate the second moment of |Qn|. As in the esti-

mation of the first moment we use the partition {Aj ∩ A∗
j∗ , 0 ≤ j∗ ≤ j ≤ j0}

of B(n). Denote pn(x,y) := P (Q(x, n) ∩ Q(y, n)). Hence as in (4.1)-(4.2) it
suffices to estimate

Σ0 :=
j0∑

j=0

j∑

j∗=0

∑

x∈Aj∩A∗
j∗

j0∑

k=j

k∑

k∗=0

∑

y∈Ak∩A∗
k∗

pn(x,y) (5.21)

Recall that, as mentioned at the beginning of Section 4, we may assume that
the vertices x and y are distinct in (5.21). We now define a diagonal sub-sum
of the sum (5.21) according to the condition y ∈ B(x, 2−j−2cn) that is yNx.
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For this case, we recall by (3.11) that ∪j0
m=j+2cam(x) = B(x, 2−j−2cn) where c

is defined in Section 4 by (4.4). Therefore we write this diagonal sum as

I :=
j0∑

j=0

j∑

j∗=0

∑

x∈Aj∩A∗
j∗

j0∑

m=j+2c

∑

y∈am(x)

pn(x,y) (5.22)

Let ε > 0. We estimate I . We use that if y ∈ am(x) then (3.13) holds.
If m ≥ j + 2c + 4, we apply Lemma 7 with v = 1 and x′ = x for a square
R ⊂ B(n) with half-side l � 2−jn such that B(y, 2−m−2n) ⊂ R. Note that
indeed x /∈ B(y, 2−m−2n) for y ∈ am so that the hypothesis of Lemma 7 is
satisfied with 2λ1 = 2−m−2n. If instead j +2c ≤ m < j +2c+4 then we can still
define the square R for the same asymptotic size of l but such that now the box
B(y, 2−m−2n) ⊂ B(n) is disjoint from R. In this latter case we simply apply
independence of events. Finally we find a box B1 in B(n) of radius 2ρ � 2−jn
one of whose edges lies in ∂B(n) and that contains both R and the box B(y, 2λ1 ).
For x ∈ Aj ∩A∗

j∗ we construct a box B2 ⊂ B(n) of radius 2ν � 2−j∗n such that
the horseshoe pair (B1, B2) conforms to the context of Lemma 5. Therefore,
since on the event Q(x, n) ∩ Q(y, n) there must be a three-arm crossing of the
horseshoe, by Lemma 5, independence, and Lemma 7, and by Lemma 2 applied
to both P (U4(0, 2λ1−c1)) and P (U4(0, l/d)) for l � 2ρ, we have that

pn(x,y) ≤ Cε2(ρ+λ1)(−5/4+ε)+(ρ−ν)(2−ε)

≤ Cεn
−5/2+2ε22j∗+(−3j+5m)/4 (5.23)

Therefore by (3.12), (5.16), (5.22), and (5.23), we have that

I ≤ Cεn
−5/2+2ε

∞∑
j=0

|Aj ∩ A∗
j∗ |

∞∑
m=j

|am|22j∗+(−3j+5m)/4

≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
m=j

2j∗+(−7j−3m)/4 ≤ Cεn
3/2+2ε

∞∑
j=0

2−3j/2
(5.24)

We now turn to the remaining sum II := Σ0 − I . The vertices x and y
left to consider in this sum are isolated root vertices, so that yÑx. We would
like to construct a horseshoe along the side of B(n) for each vertex in this
pair of vertices. But boxes centered at these vertices defined by the condition
that each box just comes to the side of B(n) may overlap. To treat this case
we define an (asymmetric) horseshoe relationship as follows. We write yKx if
y ∈ B(x, 2−j+6n). If yKx then we define one root horseshoe vertex, that is
x, while if yK̃x then both x and y are defined as root horseshoe vertices. We
shall refer to these cases respectively by the number h of root horseshoe vertices,
namely h = 1 or h = 2. The horseshoe relationship provides a useful way to
organize our construction of estimates.

Consider first that h = 1 and write II1 for the sum over pairs of vertices
in II corresponding to this condition. Though there are few vertices y near x
that satisfy both the conditions ‖x − y‖ > 2−j−2cn and h = 1, the fact that y
may lie near the boundary of B(n) requires us to construct a horseshoe at y if
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k is much larger than j. So we write II1 = II1a + II1b where the sums II1a
and II1b correspond respectively to the cases (a) j ≤ k ≤ j + 2c + 2, and (b)
k > j +2c+2. In case (a), because h = 1 we can fit two disjoint boxes centered
at our vertices each with radius asymptotic to 2−jn inside a box B1 that has a
radius 2ρ � 2−jn of the same asymptotic order as the boxes it contains yet also
has one edge in ∂B(n). Again we find a box B2 ⊂ B(n) of radius 2ν � 2−j∗n
such that the pair (B1, B2) conforms to the context of Lemma 5. Note that the
size of the set of vertices that y is confined to by the conditions h = 1 and (a) is
bounded by C2−2jn. Therefore in a similar fashion as the estimation of I but
now without the use of Lemma 7 we have that

II1a ≤ Cεn
−5/2+2ε

∞∑
j=0

j∑
j∗=0

|Aj ∩ A∗
j∗ |2−2jn222ρ(−5/4+ε)+(ρ−ν)(2−ε)

≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

2j∗−5j/2

(5.25)

To estimate II1b we first construct a pair of boxes (B1, B2) as in the context
of Lemma 5 with the parameter σ playing the role of ρ as follows. We find
B1 := B(y, 2σ) ⊂ B(n) with 2σ � 2−kn such that B1 has one side in the
boundary of B(n). We take B2 accordingly by defining its radius 2ν � 2−jn
such that B2 is disjoint from B(x, 2ρ) for 2ρ = 2−j−2c−1n. That B1 and B2

will exist follows by (b) and the assumption that the vertices are isolated roots.
Now since h = 1 we can also find another inner horseshoe box B̃1 with radius
2ρ1 � 2−jn that now contains both B(x, 2−j−2c−1n) and B2. We pair the box
B̃1 with an outer horseshoe box B̃2 with radius 2ν1 � 2−j∗n. Thus we have the
horseshoe formed by the pair (B1, B2) nested inside the horseshoe formed by
(B̃1, B̃2). Hence by independence and Lemmas 2 and 5 we find that

pn(x,y) ≤ P (U4(0, 2ρ))P (U4(0, 2σ))P (J (σ, ν))P (J (ρ1, ν1))
≤ Cεn

−5/2+2ε22j∗+(5j−3k)/4 (5.26)

Therefore, since there are only on the order of 2−j−kn2 vertices y accounted for
when y ∈ Ak in the sum II1b, we find by (5.26) that

II1b ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

2j∗+(−3j−7k)/4 (5.27)

Consider next that h = 2. Write II2 for the sum over pairs of vertices falling
under II that correspond to this condition. In this way II = II1 + II2. As
before we define j, j∗, k, and k∗ by the inclusions x ∈ Aj∩A∗

j∗ and y ∈ Ak∩A∗
k∗ .

We consider two cases: either (a) |k∗ − j∗| ≤ 1 or (b) |k∗ − j∗| > 1. Accordingly
we will break up the sum II2 into the sum II2 = II2a + II2b with summands
corresponding respectively to these cases.

We first work with the case (a). Since k∗ is almost equal to j∗ we shall in
effect lengthen the set Ak ∩ A∗

j∗ in the long directions of Ak, and denote this
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lengthening by
Ak,j∗ := Ak ∩

(
∪j∗+1

k∗=j∗−1A
∗
k∗

)
(5.28)

Consider one of the eight connected components A′
k,j∗ ⊂ Ak,j∗ that is a rec-

tangular section of Ak on the same side of Ak that x belongs to in Aj . The
other components of Ak,j∗ can be handled similarly. Note that by (5.28) and
(5.16) A′

k,j∗ has dimensions on order of 2−kn by 2−j∗n. Assume without loss of
generality that x = (x1, x2) and y = (y1, y2) ∈ A′

k,j∗ both belong to the right
side Aj and Ak respectively.

We introduce bands of vertices bv := bv(x, j, k, j∗) in A′
k,j∗ for v ≥ 1 by

bv := {(y1, y2) ∈ A′
k,j∗ : v2−j+5n < |x2 − y2| ≤ (v + 1)2−j+5n} (5.29)

Here v ranges up to order vmax � 2j−j∗ . By our construction these bands
of vertices cross A′

k,j∗ transversally. Note that by the assumption h = 2 that
y ∈ bv only for some v ≥ 2 so that A′

k,j∗ = ∪vmax

v=2 bv . As for the sizes of the
bands bv we have by the definition of Ak and (5.29) that, independent of j∗ and
v,

|bv| ≤ C2−j−kn2 (5.30)

Now choose 2ρ � 2−jn such that the right edge of B1(x) := B(x, 2ρ) just
meets ∂B(n). Also for y ∈ bv define 2σ � 2−kn such that the right edge of
B1(y) := B(y, 2σ) just meets ∂B(n). These are the inner boxes of horseshoes
we will construct at each of x and y. For each v = 2, . . . , vmax, we define an
exponent ν by 2ν � v2−jn, uniformy in v ≥ 2, so that boxes B2(x) ⊂ B(n) and
B2(y) ⊂ B(n) each with radius 2ν exist and are disjoint such that (B1(x), B2(x))
and (B1(y), B2(y)) each form a horseshoe pair as in the context of Lemma
5. The outer boxes remain in B(n) by (5.28) and the expression for vmax.
Moreover, the outer boxes B2(x) and B2(y), while disjoint, are nested inside
another box B̃1 of radius C2ν whose right edge lies in ∂B(n). Since we are
in case (a) we may again pair B̃1 with an outer borseshoe box B̃2 of radius
2ν1 � 2−j∗n. Therefore by independence and by application of Lemmas 5 to
the horseshoe pairs, and by Lemma 2 we obtain

pn(x,y) ≤ Cε2(ρ+σ)(−5/4+ε)+(σ+ρ−ν−ν1)(2−ε)

≤ Cεn
−5/2+2εv−2+ε22j∗+(5j−3k)/4 (5.31)

Hence by (5.16), (5.30), and (5.31), we have

II2a ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

∞∑
v=1

v−2+ε2j∗+(−3j−7k)/4 (5.32)

Finally we turn to the sum II2b. By (b) we have |x2−y2| ≥ 2−j∗−1n ≥ 2−k∗
n

if k∗ > j∗ + 1 while |x2 − y2| ≥ 2−k∗−1n ≥ 2−j∗n if k∗ < j∗ − 1. We can
therefore define two different values of ν, namely ν1 and ν2, by 2ν1 � 2−j∗n and
2ν2 � 2−k∗

n to obtain two disjoint horseshoes with outer radii 2ν1 and 2ν2 . In
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detail, we have two pairs of boxes (B1, B2), where each pair of boxes conforms
to the context of Lemma 5, and where both larger boxes B2 are disjoint and
belong to B(n). In one pair B1 = B(x, 2ρ) and B2 has radius 2ν1 and in the
other pair B1 = B(y, 2σ) and B2 has radius 2ν2 . Here 2ρ � 2−jn and 2σ � 2−kn
are chosen such that the inner boxes B1 lie along the boundary of B(n) and are
disjoint by h = 2. See Figure 3. Therefore by independence and Lemmas 2 and
5 we estimate that

pn(x,y) ≤ Cε2(ρ+σ)(−5/4+ε)+(ρ+σ−ν1−ν2)(2−ε)

≤ Cεn
−5/2+2ε2(2j∗+2k∗)2(−3j−3k)/4 (5.33)

Hence by (5.16) and (5.33), we have

II2b ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

k∑
k∗=0

2j∗+k∗+(−7j−7k)/4 (5.34)

Thus by (5.19), (5.24), (5.25), (5.27), (5.32) and (5.34) we have we have proved
Item 3 of Theorem 1 for τ = 2.2

6 Higher moments for pivotal sites

In this section we show how to generalize the first and second moments for
the number of pivotal sites shown in the previous section. We will outline the
main ingredients for establishing a general τ -th moment by considering in some
detail the case τ = 3. The main issues not covered so far will be to determine
(a) the sizes and numbers of horseshoes to construct, (b) the manner in which
Proposition 1 is applied, and (c) the way that Lemma 7 is applied. We recall
the definition pn,τ (x1, ...,xτ ) := P (∩τ

i=1Q(xi, n)) and the sum Σ0 that we must
estimate in (4.1)-(4.2). As in the previous section we assume that each of the
vertices in (4.1) belongs to the right side of its respective annulus Aji .

To organize our construction of estimates we generalize the horseshoe rela-
tion K on the set of root vertices xei , i = 1, . . . , r, defined in Section 4. Write

xek
Kxei if xek

∈ B(xei , 2
−jei

+6n)

The constant in the exponent allows some breathing room so that in particular
if xek

K̃xei then there exists l � 2−jek n such that the right edge of the box
B(xek

, l) lies on ∂B(n) and such that ‖xei − xek
‖ ≥ 4l.

We define root horseshoe vertices among the set of root vertices by analogy
with the definition of root vertices in Section 4 but now for the horseshoe rela-
tionship. We denote these root horseshoe vertices by xfa , a = 1, . . . , h, for some
h ≤ r where fa = eia and in particular f1 = 1. We shall define the sets Ua of
root vertices chained to the root horseshoe vertices xfa in a way that is different
from the default definition given by the method of Section 4. The reason for
this is that the organization of certain probability estimates we make below is
sensitive to the order of the indices in the roots that are not root horseshoe
vertices. We proceed inductively as follows. First, if xe2Kxe1 then xe2 ∈ U1
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else by our definition of root horseshoe vertices xe2 is the root horseshoe ver-
tex xf2 . Suppose now that f2 = e2 so indeed xe2 is the second root horseshoe
vertex. Then if xe3Kxe1 but xe3K̃xf2 we put xe3 ∈ U1. This is the default
arrangement that we spoke of. However, if instead xe3Kxf2 then we put in-
stead xe3 ∈ U2. In general, if each xek

, 1 ≤ k ≤ i has been designated as some
root horseshoe vertex xfa with some 1 ≤ a ≤ b or placed as an element of Ua for
some 1 ≤ a ≤ b, then we determine the designation or placement of xei+1 by the
following rule. If xei+1K̃xek

for all 1 ≤ k ≤ i then ei+1 = fb+1, that is we have
a new root horseshoe vertex. Else we place xei+1 in the set Ua of highest index
a such that xei+1 is related to some vertex in the current set {xfa} ∪ Ua. Thus
the sets Ua are continuously updated, but elements may only be added and not
subtracted, and they are only added at the highest possible level subject to a
chain condition available at the current step. As a consequence we obtain the
property that if a < b then any element of Ua is not related to any element of
{xfb

} ∪ Ub. This is a true statement through each step of the construction and
therefore also in the final state. Notes that even though it may be that Ua = ∅,
there may be many roots in horseshoe relation to xfa .

6.1 The third moment

We organize our discussion of the case τ = 3 at first according to the value of
r. Subsequent levels of organization derive from the values of h and a further
parameter t ≤ h that we shall define below.

6.1.1 τ = 3, r = 1.

We assume r = 1 so that |V1| = 2. Thus G = G1 has vertices given by either
(i) {x1,w1,w1,1} or (ii) {x1,w1,w2}. We write I to denote the sub-sum of Σ0

that corresponds to r = 1. We also write I = Ii + Iii where the sums Ii and
Iii correspond respectively to the cases (i) and (ii).

Assume first that (i) holds. Consider now the following subcases under (i):

(a) m1,1 ≥ m1 + s + 2, (b) m1,1 < m1 + s + 2

where s is the constant 2c + 4. Partition the sum Ii = Iia + Iib accord-
ingly. Consider first subcase (a). Put R := B(w1, l), for l := 2−m1−s. Since
w1,1 ∈ am1,1(w1), we have by (a) that B(w1,1, 2−m1,1−2n) ⊂ R while also
w1 /∈ B(w1,1, 2−m1,1−2n). Therefore we may apply Lemma 7 with v = 1,
x′ = x = w1, y1 = w1,1, and 2λ1 = 2−m1,1−2n. We also apply Proposition 1 to
the subgraph of G1 with vertex set {x1,w1} only. Therefore B(x1, l) and R are
disjoint. Hence by these results and independence we find that

pn,3(x1,w1,w1,1) ≤ P (U4(0, l))P (U4(0, 2λ1−c1))P (U4(0, l/d)) (6.1)

Note that automatically, because r = 1 we have that h = 1 in any case. There-
fore we may construct a horseshoe with inner radius 2ρ � 2−j1n and outer
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radius 2ν � 2−j∗1 n for x ∈ Aj1 ∩ A∗
j∗1

whose inner box contains all the boxes
discussed above. Hence by Lemma 5 we will be able to improve the estimate
(6.1) by a factor 2(ρ−ν)(2−ε). Thus by (6.1), Lemma 2, and this last observation,
we estimate that

pn,3(x1,w1,w1,1) ≤ Cεn
−15/4+3ε22j∗1−2j1+5(2m1+m1,1)/4 (6.2)

Since we apply the size estimate (3.12) for each of the indices m = m1 and
m = m1,1, we obtain by (6.2) that

Iia ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
m1=j1

∞∑
m1,1=m1

2j∗1−3j1+(2m1−3m1,1)/4 (6.3)

Now consider subcase (b). By Proposition 1 applied directly to G1 we have
that the boxes B(w1,1, 2−m1,1−sn), B(w1, 2−m1−2s−2n), and B(x1, 2−m1−sn)
are mutually disjoint under (i). Then since m1,1 is at most a constant different
than m1 by (b) and (4.4), by independence and Lemma 2 alone we obtain that
(6.2) continues to hold with m1 in place of m1,1. Therefore by substitution of
m1 for m1,1 also in the size estimate of am1,1 and by eliminating the sum on
m1,1 we obtain

Iib ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1 =0

∞∑
m1=j1

2j∗1−3j1−m1/4 (6.4)

To help with case (ii) as well as further cases arising in higher moment
calculations, we first state a general consequence of Proposition 1 that we will
use to set up our application of Lemma 7.

Proposition 2 Consider the graph G1 = {x1,w1, . . . }. Set D := 2−j1−2cn.
There exists a constant c0 and a rectangle R centered at x̃1 with smallest half-
side of length l satisfying D/10 ≤ l ≤ D/5 and largest half-side of length L
satisfying L/l ≤ 2 and with center satisfying ‖x̃1 −x1‖ ≤ l/2 such that each box
B′(w) := B(w, 2−m(w)−s−c0n), w ∈ G1, w 6= x1, lies either entirely inside R
or entirely outside R.

Proof. First, by Proposition 1 the boxes B(w) = B(w, 2−m(w)−sn), w ∈ G1,
are mutually disjoint. Since the sum of the radii of the boxes B(w), w 6= x1, is
bounded by (τ−1)D, we may choose c0 so large that the sum of the diameters of
the corresponding shrunken boxes B′(w) is at most D/4. Therefore by the same
argument as given in the proof of Lemma 7 in Section 8 for the construction of
R̃, with D here playing the role there of the distance Dv, the proof is complete.2

We now continue our discussion of case (ii). We apply Proposition 2 directly
to the graph G1 to obtain the rectangle R having the properties stated there so
that in particular B(x1, l/2) ⊂ R ⊂ B(x1, D/5) for D := 2−j1−2cn. We apply
Lemma 7 with v = 2, x = x1, and 2λi = 2−m(wi)−s−c0n. Hence by Lemma 2,
and by independence applied to any shrunken box lying outside R, we have that
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pn,3(x1,w1,w2) ≤ CP (U4(0, l/d))
∏2

i=1 P (U4(0, 2λi−c1n))
≤ Cεn

−15/4+3ε25(j1+m1+m2)/4 (6.5)

As in case (i) we may construct a horseshoe with inner radius 2ρ and outer
radius 2ν as chosen above, whose inner box contains all the boxes implied by
the estimate (6.5). So we may improve this estimate by the same factor coming
from Lemma 5 as before. Therefore, by (6.5), this repeated observation, and
the size estimate (3.12) for each index m = m1 and m = m2, we obtain

Iii ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
m2=j1

∞∑
m1=m2

2j∗1 +(−7j1−3m2−3m1)/4 (6.6)

6.1.2 τ = 3, r = 2.

We first assume that |V1| = 1 and |V2| = 0. For simplicity we assume that x3

is the second root. Thus the graph G1 has vertices {x1,w1} and the graph G2

is trivial over the (isolated) root vertex {x3}. Next we determine whether we
have a horseshoe relationship between the two root vertices or not. If x3Kx1

then we have h = 1 else we have h = 2.
We work first with the case h = 1. Similar as our analysis of the corre-

sponding case of the second moment estimation we have two possibilities under
h = 1: either (a), j1 ≤ j3 ≤ j1 + 2c + 2, or (b), j3 > j1 + 2c + 2. We write
II1 to denote the sub-sum of Σ0 that corresponds to r = 2 and h = 1. We also
write II1 = II1a + II1b where the sums II1a and II1b correspond respectively
to the cases (a) and (b). We study first case (a). We apply Proposition 2 to
the graph G1 to obtain a rectangle R such that B(x1, l/2) ⊂ R ⊂ B(x1, D/5)
for D := 2−j1−2cn and l ≥ D/10, so that B′(w1) lies either inside or outside
R. Since by construction of the original roots, the box B(x3, 2−j3−2c−2n) is
disjoint from both R and the box B(w1, 2−m1−2n), we can apply independence
and Lemmas 2 and 7 to estimate

pn,3(x1,w1,x2) ≤ P (U4(0, l/d))P (U4(0, C2−m1n))P (U(0, C2−j3n))
≤ Cεn

−15/4+3ε25(2j1+m1)/4 (6.7)

where the last inequality holds because under (a), j3 is within a constant of
j1. Since h = 1, it is again an easy matter to construct a horseshoe as in
each case of Subsection 6.1.1 with inner radius 2ρ � 2−j1n and outer radius
2ν � 2−j∗1 n whose inner box contains all the boxes implied by the estimate
(6.7). So we may improve this estimate by an application of lemma 5. Hence
because |am1 | ≤ C2−2m1n2 and since there are only C2−2j1n2 vertices x3 to
account for when h = 1 and (a) holds, we have that

II1a ≤ Cεn
9/4+3ε

∞∑

j1=0

j1∑

j∗1 =0

∞∑

m1=j1

2j∗1+(−10j1−3m1)/4 (6.8)
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We next study case (b). Since h = 1 we have that the rectangle R exists as
constructed above. But now because j3 is sufficiently larger than j1 and since x3

is isolated, there is room to construct a pair of boxes B1 and B2 as in the context
of Lemma 5 with B1 centered at x3 as follows. We find B1 = B(x3, 2ρ3) ⊂ B(n)
with 2ρ3 � 2−j3n such that the right side of B1 lies in ∂B(n). We take B2

accordingly by defining its radius as 2ν3 � 2−j1n such that B2 is disjoint from
both B′(w1) and R where B′(w1) is the shrunken box given by Proposition 2.
Hence by independence and Lemmas 2, 5, and 7, we find

pn,3(x1,w1,x3) ≤ P (U4(0, l/d))
×P (U4(0, C2−m1n))P (U4(0, 2ρ3))P (J (ρ3, ν3))
≤ Cεn

−5/2+2ε2(j1+m1+j3)(5/4−ε)2(j1−j3)(2−ε)
(6.9)

Again we may improve this estimate by introducing a horseshoe whose inner
box contains R, B′(w1) and the horseshoe pair (B1, B2). So we multiply its
right side of (6.9) by the factor 2(ρ−ν)(2−ε) where the radii 2ρ and 2ν are defined
up to multiplicative constants in the previous case (a). Since by h = 1 there
are only C2−j1−j3n2 vertices x3 accounted for with x1 ∈ Aj1 and x3 ∈ Aj3 , we
find by these observations that

II1b ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1 =0

∞∑
m1=j1

∞∑
j3=j1

2j∗1+(−3j1−3m1−7j3)/4 (6.10)

We now pass to the case h = 2. Note that the sum over x3 in II2 is no
longer localized strictly nearby x1 via the horseshoe relation, so we will be able
to construct a larger horseshoe at x3, but how large now depends on the relation
between the dual indices of the original two roots. Let xi ∈ A∗

j∗i
, i = 1, 3. There

are two cases to consider regarding the dual indices:

either (a) |j∗1 − j∗3 | ≤ 1 or (b) |j∗1 − j∗3 | ≥ 2

Define sums II2a and II2b by partitioning the sum II2 according to these cases.
We work first with case (a). As in Section 5 we have x3 ∈ Aj3,j∗1

where
the latter set is defined by (5.28). For convenience we rewrite the bands bv =
bv(x1, j1, j3, j

∗
1 ) of (5.29) by

bv := {(y1, y2) ∈ A′
j3,j∗1

: v2−j1+5n < |(x1)2 − y2| ≤ (v + 1)2−j1+5n}

for each v = 0, 1, 2, . . . , vmax, with vmax � 2j1−j∗1 . Here we have simply substi-
tuted x1, j1, j3, and j∗1 for x, j, k, and j∗ respectively in the original definition.
For the sake of reference we allow v = 0 in the definition. Notice by the definition
of the horseshoe relation that x3 ∈ bv only for v ≥ 2. We utilize the rectangle R
and the box B′(w1) we have constructed for h = 1 and note that both of these
lie well inside b0. First choose the radius 2ρ3 � 2−j3n such that the right edge of
B1(x3) := B(x3, 2ρ3) just meets ∂B(n). Also choose 2ρ1 � 2−j1n such that the
right edge of B1(x1) := B(x1, 2ρ1) just meets ∂B(n). These are the inner boxes
of horseshoes we will construct at each of x3 and x1, respectively. Note that
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B1(x1) in fact contains both R and B′(w1) because these latter sets are chosen
via the constant c of Section 4 to both lie within a box of radius 2−j1−cn centered
at x1. For each v = 2, . . . , vmax, we define 2ν � v2−jn, uniformly in v ≥ 2, so
that boxes B2(x1) ⊂ B(n) and B2(x3) ⊂ B(n) each with radius 2ν exist and are
disjoint such that (B1(x1), B2(x1)) and (B1(x3), B2(x3)) each form a horseshoe
pair as in the context of Lemma 5. The outer boxes remain in B(n) by (5.28)
and the expression for vmax. Moreover, the outer boxes B2(x1) and B2(x3),
while disjoint, are nested inside another box B̃1 of radius C2ν whose right edge
also lies in ∂B(n). Since we are in case (a) we may again pair B̃1 with an outer
horseshoe box B̃2 of radius 2ν1 � 2−j∗1 n. Therefore by independence and by
application 5 to the horseshoe pairs, and by an application of Lemma 7 as in
the case h = 1, for x3 ∈ bv, we have that, for all v ≥ 2, pn := pn,3(x1,w1,x3)
satisfies

pn ≤ Cεn
−5/2+2ε2(j1+m1+j3)(5/4−ε)2(ρ1+ρ3−ν−ν1)(2−ε)

≤ Cεn
−15/4+3εv−2+ε2(5j1+5m1−3j3)/4 (6.11)

Hence by (6.11), (5.16), (3.12) and the estimate |bv| ≤ C2−j1−j3n2 (cf. (5.30)),
we have

II2a ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1 =0

∞∑
m1=j1

∞∑
j3=j1

∞∑
v=1

v−2+ε2j∗1+(−3j1−3m1−7j3)/4 (6.12)

Consider next case (b) under h = 2. The difference with case (a) is that now
the outer boxes B2(x1) and B2(x3) found there may be chosen with larger radii
while still remaining disjoint. Thus the horseshoe pair (B̃1, B̃2) is no longer
needed in this case. Indeed we may now take the radii of these outer boxes as
2ν1 � 2−j∗1 n and 2ν3 � 2−j∗3 n respectively. By definition of the dual partition
these larger boxes still remain in B(n) and are disjoint. Therefore we obtain in
place of (6.11) the bound

pn ≤ Cεn
−5/2+2ε2(j1+m1+j3)(5/4−ε)2(ρ1+ρ3−ν1−ν3)(2−ε)

≤ Cεn
−15/4+3ε22j∗1+2j∗3 +(−3j1+5m1−3j3)/4 (6.13)

Hence by (6.13) we have

II2b ≤ Cεn
9/4+3ε

∞∑
j1=0

∞∑
m1=j1

∞∑
j3=j1

j1∑
j∗1=0

j3∑
j∗3 =0

2j∗1+j∗3+(−7j1−3m1−7j3)/4 (6.14)

Finally in the case that the isolated root vertex is instead x1 (so V1 = ∅) and the
second root vertex is x2 (so V2 = {x3}) we obtain a wholly analogous estimation
by writing out the cases (a) j2 ≤ j1 + 2c + 2, and (b) j2 > j1 + 2c + 2 under
h = 1 and by writing out the cases (a) |j∗2 − j∗1 | ≤ 1, and (b) |j∗2 − j∗1 | > 1 under
h = 2.
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6.1.3 τ = 3, r = 3.

In the case r = 3 we must have three isolated roots relative to the original
partition {Aj} that are simply x1, x2, and x3. The basic plan in all that follows
is that a horseshoe must be constructed whenever there is room at a given
level of algebraic or dyadic division to do so. Algebraic levels of division arise
according to placement of a root vertex in a band bv or in another closely related
band b′u that we define in Subsection 6.1.4. The horseshoe structure depends
on the room that exists between root vertices. This spacing will be accounted
for by various joint inequalities in the dyadic indices ji, or in another spacing
relation that we introduce for the dual indices j∗i in Subsection 6.1.5.

6.1.4 τ = 3, r = 3, h = 1.

We assume first that h=1. The set of root vertices chained to x1 by the horseshoe
relationship is therefore U1 = {x2,x3}. We write III1 to denote the sub-sum of
Σ0 that corresponds to r = 3 and h = 1. We write four conditions:

(a1) j1 ≤ j2 ≤ j1 + 2c + 8 (b1) j2 > j1 + 2c + 8
(a2) j2 ≤ j3 ≤ j2 + 2c + 8 (b2) j3 > j2 + 2c + 8 (6.15)

We also write III1 = III1a1a2 + III1b1a2 + III1a1b2 + III1b1b2 where the
summands correspond respectively to these four joint cases.

For any vertex xi ∈ U1 we define bands of vertices b′u = b′u(xi, ji), for
all u = 0, 1, . . . and i ≥ 2, that divide R0 := B(x1, 2−j1+6+τn) ∩ B(n) into
horizontal sections by

b′u := {(y1, y2) : u2−ji+5n < |(xi)2 − y2| ≤ (u + 1)2−ji+5n} (6.16)

where u ranges up to umax � 2ji−j1 for i ≥ 2. Here the exponent in the
definition of R0 is chosen such that by the definition of the horseshoe relation
any vertex in U1 lies in R0. The main difference between the bands b′u and the
bands bv that we defined in (5.29) is that contrary to that definition, here we
place no restriction that b′u lie in some single annulus Ajk

. Although these new
bands play a similar role as the original ones, we apply them at a different level
of the construction of estimates. We apply in general the b′u within a horseshoe
set Ua with Ua 6= ∅. We apply the bv instead in a region between such horseshoe
sets. Now, by (6.16), for any annulus Ajk

, we have that

|b′u(xi, ji) ∩ Ajk
| ≤ C2−ji−jkn2 for all u ≥ 0 (6.17)

Study first the joint case (a1)-(a2). In this case all three vertices are located
either in Aj1 or a nearby annulus. Therefore since h = 1, x2 and x3 are each
confined to a set of vertices of size at most C2−2j1n2. We call such a size estimate
a confinement factor. Since the roots are isolated we may construct disjoint
boxes with centers at the vertices xi, i = 1, 2, 3, such that each has a radius
2ρ1 � 2−j1n and each lies in R0. Construct a box B1 of radius 2ρ � 2−j1n whose
right edge meets ∂B(n) and that contains R0. Pair B1 with an associated outer
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horseshoe box B2 of radius 2ν � 2−j∗1 n. Hence by independence and Lemmas 2
and 5, and the confinement factors, we easily have

III1a1a2 ≤ Cεn
9/4+3ε

∞∑

j1=0

j1∑

j∗1 =0

2j∗1−13j1/4 (6.18)

Under the joint case (b1)-(a2) we study two subcases,

either (i) x3 ∈ b′0(x2, j2), or (ii) x3 ∈ b′u(x2, j2) for some u ≥ 1 (6.19)

Partition the sum III1b1a2 accordingly: III1b1a2 = III1b1a2i + III1b1a2ii.
Study first subcase (i) under (b1)-(a2). Since the vertices are isolated roots,
by (a2) we can choose radii 2σ � 2−j2n and 2ρ � 2−j1n such that the boxes
B(x1, 2ρ), B(x2, 2σ), and B(x3, 2σ) lie in B(n) and are mutually disjoint. More-
over, by (b1) and (i) the boxes centered at x2 and x3 are both contained in a box
B1 of radius C2σ ≤ 2−j1−2n whose right edge lies on ∂B(n) where we choose 2ρ

such that B1 is also disjoint from the box centered at x1. We construct a second
box B2 so that the pair (B1, B2) conforms to the context of Lemma 5 where
the outer box has radius C2ρ and is disjoint from the box centered at x1. We
also construct an inner horseshoe box B̃1 of radius 2ρ1 � 2−j1n that contains
all the boxes constructed so far and pair it with an outer horseshoe box B̃2 of
radius 2ν1 � 2−j∗1 n. Thus by independence and Lemma 2 and two applications
of Lemma5, we have

pn,3(x1,x2,x3) ≤ Cε2(ρ+2σ)(−5/4+ε)+(σ+ρ1−ρ−ν1)(2−ε)

≤ Cεn
−15/4+3ε22j∗1+(5j1+2j2)/4 (6.20)

Since under h = 1 and (a2) the confinement factor for x2 is C2−j1−j2n2, and
since under the added condition (i) the confinement factor for x3 is C2−2j2n2,
we obtain by (6.20) that

III1b1a2i ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
j2=j1

2j∗1+(−3j1−10j2)/4 (6.21)

Consider next subcase (ii) under (b1)-(a2). The difference with case (i) is
that we now create two disjoint inner horseshoes instead of just one. We take
inner boxes B1(xi) centered at xi, i = 2, 3, with radii 2ρi � 2−j2n, i = 2, 3
such that these inner boxes meet the boundary of B(n) and are disjoint and are
moreover disjoint from a box centered at x1 with radius 2ρ � 2−j1n. We take
the associated outer boxes B2(xi), i = 2, 3, each with a radius 2ν � u2−j2n, for
u ranging up to order 2j2−j1 . Both outer boxes of these horseshoes are disjoint
from B(x1, 2ρ) by (b1). Further we construct a third horseshoe by taking an
inner box B1 of radius C2ν that contains both the outer boxes B2(xi), i = 2, 3,
and that admits an outer box B2 of radius 2ρ1 � 2−j1n that is still disjoint
from the box B(x1, 2ρ). Finally we construct a fourth horseshoe pair (B̃1, B̃2)
such that B̃1 contains all the previous outer boxes as well as the box B(x1, 2ρ).
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We take the inner and outer radii of this last pair to be respectively C2ρ1 and
2ν1 � 2−j∗1 n. Therefore we obtain

pn,3(x1,x2,x3) ≤ Cε2(ρ+ρ2+ρ3)(−5/4+ε)+(ρ2+ρ3−ν−ν1)(2−ε)

≤ Cεn
−15/4+3εu−2+ε22j∗1+(5j1+2j2)/4 (6.22)

Now by (a2) and (6.17) we have that |b′u ∩Aj3 | ≤ C2−2j2n2. Also x2 is confined
to a region of size C2−j1−j2n2. Therefore by independence and Lemmas 2 and
5, we obtain by (6.23) the estimate

III1b1a2ii ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1 =0

∞∑
j2=j1

∞∑
u=1

u−2+ε2j∗1+(−3j1−10j2)/4 (6.23)

We now consider the joint case (a1)-(b2). Since j3 is sufficiently larger than
j2 and the roots are isolated we can construct a horseshoe at x3 with inner
radius 2ρ3 � 2−j3n and outer radius 2ν � 2−j2n � 2−j1n and choose the radius
2ρ � 2−j1n so that the outer box of this horseshoe will be disjoint from both the
boxes B(x1, 2ρ) and B(x2, 2ρ) that lie in B(n) and are themselves constructed
to be disjoint. Again we construct a large horseshoe pair (B̃1, B̃2) with inner
and outer radii 2ρ1 and 2ν1 , respectively, as in the previous cases such that B̃1

contains the smaller horseshoe as well as the boxes B(x1, 2ρ) and B(x2, 2ρ).
Therefore we obtain by independence and Lemmas 2 and 5, and by using (a1),
that

pn,3(x1,x2,x3) ≤ Cε2(2ρ+ρ3)(−5/4+ε)+(ρ1+ρ3−ν−ν1)(2−ε)

≤ Cεn
−15/4+3ε2j∗1+(10j1−3j3)/4 (6.24)

By h = 1 and (a1) we have that x2 is confined by the factor 2−2j1n2 while by
h = 1 alone x3 is confined by the factor 2−j1−j3n2. Therefore since by (a1) we
eliminate the sum over j2 we obtain by (6.24) that

III1a1b2 ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1 =0

∞∑
j3=j1

2j∗1+(−6j1−7j3)/4 (6.25)

Consider finally the joint case (b1)-(b2). Again we apply the dichotomy
(6.19). We partition the sum III1b1b2 = III1b1b2i + III1b1b2ii accordingly.
In subcase (i) under (b1)-(b2) we take a horseshoe at x3 with inner radius
2ρ3 � 2−j3n and outer radius 2ν3 � 2−j2n, where the outer box is disjoint from
the boxes centered at x2 and x1 of radii 2σ � 2−j2n and 2ρ � 2−j1n respectively.
These last two boxes are chosen to be small enough that even doubling their
radii they would not meet ∂B(n). We next take a horseshoe (B1, B2) such that
B1 has a radius 2ρ2 � 2−j2n and contains both the box centered at x2 and the
horseshoe at x3. We take B2 to have a radius 2ν2 � 2−j1n that is disjoint from
the box centered at x1. Again we construct a large horseshoe pair (B̃1, B̃2) with
inner and outer radii 2ρ1 and 2ν1 , respectively, as in the previous cases such that
B̃1 contains both the smaller nested horseshoes as well as the box B(x1, 2ρ).
Therefore we obtain by independence and Lemmas 2 and 5 that

pn,3(x1,x2,x3) ≤ Cε2(ρ+σ+ρ3)(−5/4+ε)+(ρ1+ρ2+ρ3−ν1−ν2−ν3)(2−ε)

≤ Cεn
−15/4+3ε2j∗1+(5j1+5j2−3j3)/4 (6.26)
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By h = 1 we have that x2 is confined by the factor 2−j1−j2n2, while in addition
by (i) x3 is confined by the factor 2−j2−j3n2. Therefore we obtain by (6.26)
that

III1b1b2i ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
j2=j1

∞∑
j3=j1

2j∗1+(−3j1−3j2−7j3)/4 (6.27)

Finally, in subcase (ii) under (b1)-(b2) we take inner boxes B1(xi) centered
at xi, i = 2, 3, with radii 2ρi � 2−jin, i = 2, 3 such that these inner boxes
meet the boundary of B(n) and are disjoint and are moreover disjoint from
a box centered at x1 with radius 2ρ � 2−j1n. We take the associated outer
boxes B2(xi), i = 1, 2, each with a radius 2ν � u2−j2n, for u ranging up to
order 2j2−j1 . Both outer boxes of these horseshoes are disjoint from B(x1, 2ρ)
by (b1). This almost looks like subcase (ii) under (b1)-(a2) except notice that
here the box B1(x3), while still having a radius distinct from the box B1(x2),
has now an asymptotically smaller radius since we are in case (b2). All the
remaining arrangements of boxes and horseshoes are exactly as in subcase (ii)
of (b1)-(a2), with the same formulae for asymptotic radii. Thus we have a total
of four horseshoes. Therefore we obtain

pn,3(x1,x2,x3) ≤ Cε2(ρ+ρ2+ρ3)(−5/4+ε)+(ρ2+ρ3−ν−ν1)(2−ε)

≤ Cεn
−15/4+3εu−2+ε22j∗1+(5j1+5j2−3j3)/4 (6.28)

Now by (6.17) we have that |b′u ∩ Aj3 | ≤ C2−j2−j3n2. Also x2 is confined to a
region of size C2−j1−j2n2 by h = 1. Therefore by independence and Lemmas 2
and 5, we obtain by (6.23) the estimate

III1b1b2ii ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
j2=j1

∞∑
j3=j2

∞∑
u=1

u−2+ε2j∗1+(−3j1−3j2−7j3)/4

(6.29)
This concludes our analysis of the case h = 1.

6.1.5 τ = 3, r = 3, h = 2.

We consider next that h=2. We assume first that U1 = {x2} so that we have
root horseshoe vertices x1 and x3. Again because r = 3 all the roots are isolated
and moreover the root x3 is an isolated root horseshoe vertex. We write III2

for the part of the sum Σ0 corresponding to this arrangement. Recall that we
locate the vertices in the dual partition in general by the dual indices j∗i such
that xi ∈ A∗

j∗i
, i = 1, 2, . . . .

Perhaps by now part of the outline is clear. Initially we consider two possi-
bilities:

either (a) j2 ≤ j1 + 2c + 8, or (b) j2 > j1 + 2c + 8

However while we will construct a horseshoe at x3 in either case, we must
delineate its size. Its outer radius may be as small as Cv2−j2n when x3 ∈
bv(x2, j2, j3, j

∗
1 ), and it may be as large as C2−j∗1 when x3 ∈ A∗

j∗3
for |j∗3−j∗1 | ≥ 2.
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So in general we need to know the manner in which the root horseshoe vertices
xfa are separated in the dual partition. We have already seen such an analysis
in case r = 2 and h = 2. We generalize the approach shown there. For any
dual indices k∗ and j∗ of root horseshoe vertices (we call such indices also as
dual horseshoe indices) write that k∗J∗j∗ if |k∗ − j∗| ≤ 1. We say that a dual
index j∗f ′ of a root horseshoe vertex xf ′ is chained to the dual index j∗f of
another root horseshoe vertex xf if there exists a sequence of J∗ relations from
j∗f ′ to j∗f . By the method of Section 4 we define root dual horseshoe indices
j∗f∗

1
< j∗f∗

2
< · · · < j∗ft

, with f∗
1 = f1 and some t ≤ h, where xf1 = x1 is the first

root horseshoe vertex.
In the current case we have either t = 1 or t = 2, where t = 1 means that

|j∗3 − j∗1 | ≤ 1 and t = 2 means that the opposite inequality holds. We write
IIIh,t for the part of the sum Σ0 corresponding r = 3 and the given values of
h and t. Since here h = 2 and t = 1 or 2, we have III2 = III2,1 + III2,2. We
further partition III2,1 = III2,1a + III2,1b and III2,2 = III2,2a + III2,2b for
the arrangements of vertices corresponding respectively to cases (a) and (b).

We consider first an estimate of III2,1a so that in particular t = 1. Put
bv := bv(x2, j2, j3, j

∗
1 ). Since h = 2 and t = 1 we have x3 ∈ bv for some v ≥ 2

(cf. the case h = 2 of Subsection 6.1.2). Here v ranges up to vmax � 2j2−j∗1 ≤
C2j1−j∗1 by (a). We choose a radius 2ρ3 � 2−j3n, so that the right boundary of
the box B1(x3) := B(x3, 2ρ3) meets ∂B(n). This is the inner box of a horseshoe
at x3. We construct boxes B(xi, 2ρ), i = 1, 2, lying inside B(n) with a common
radius 2ρ � 2−j1n that are themselves disjoint and also disjoint from B1(x3).
This is possible since r = 3 and h = 2 and with the given radius for i = 2 by
(a). Yet by (a) again, the vertex x2, although in a horseshoe relationship to
x1, may stray as far away as v02−j2n from x1 for some constant integer v0 ≥ 2
since we are here measuring the distance in terms of the exponent j2. This
can easily be dealt with by breaking up the analysis into the subcases v ≤ 4v0

and v > 4v0. For v ≤ 4v0 we take the outer box B2(x3) of a horseshoe at x3

to have radius 2ν3 � 2−j2n �� 2−j1n. For v ≤ 4v0 we do not yet construct
a second horseshoe of outer radius 2ν3 . For v > 4v0 we do construct another
such horseshoe as follows. We construct an inner horseshoe box B1 that contains
B(xi, 2ρ) for each i = 1, 2 that has radius C2ρ and is disjoint also from B1(x3) by
our choice of large enough v. Accordingly we adjust the radius B2(x3) upwards
to 2ν3 � v2−j2n � v2−j1n and also define an outer box B2 paired with B1 in
a horseshoe formation, by taking the radius of B2 as also 2ν3 � v2−j1n. We
choose this radius such that B2(x3) and B2 are disjoint. Hence if v > 4v0 then
we have two horseshoes of equal outer radii. The outer boxes remain in B(n) by
(5.28) for v ≤ vmax. Moreover these outer boxes are nested inside another box
B̃1 of radius C2ν3 whose right edge also lies in ∂B(n). Since we are in case t = 1
we may again pair B̃1 with an outer horseshoe box B̃2 of radius 2ν1 � 2−j∗n.
By (a) we have that the confinement factor for x2 is C2−2j1n2. The confinement
factor for x3 at level v is by (a) and (5.30) |bv| ≤ C2−j1−j3n2, independent of v.
Therefore by independence and Lemmas 2 and 5, and by using (a) to eliminate
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the sum on j2, we obtain the following estimation

III2,1a ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
j3=j1

∑
v≥1

v−2+ε2j∗1+(−6j1−7j3)/4 (6.30)

Consider next an estimation of III2,1b. We have two subcases as follows.
Subcase (i): x3 belongs to the band b1,v1 := bv1(x2, j1, j2, j

∗
1 ) for some v1 ≥ 2,

where v1 ranges up to v1,max with v1,max � 2j1−j∗1 . But since we may have
x3 ∈ ∪1

v1=0b1,v1 , we have also subcase (ii): x3 belongs to the band b2,v2 :=
bv2(x2, j2, j3, j

∗
1 ) for some v2 ≥ 2, where now v2 only ranges up to v2,max with

v2,max � 2j2−j1 . These subcases comprise a dichotomy since x3 is not in a horse-
shoe relation to either x2 or x1. Partition the sum III2,1b = III2,1bi+ III2,1bii
accordingly. We study first subcase (ii) under (b). Since j2 is sufficiently larger
than j1 we will now be able to construct horseshoes at both x2 and x3 with
outer radii of each given as 2ν3 � v22−j2n. We also construct a horseshoe
with inner box of radius Cv22−j2n containing both the horseshoes at x2 and
x3, and with outer radius 2ρ � 2−j1n. We choose 2ρ small enough subject to
this asymptotic relation so that the box B(x1, 2ρ) is outside this last horseshoe.
We also construct a large horseshoe pair (B̃1, B̃2) with inner and outer radii
2ρ1 � 2−j1n and 2ν1 � 2−j∗1 n, respectively, as in the previous cases such that
B̃1 contains both the smaller nested horseshoes as well as the box B(x1, 2ρ).
The confinement factor for x2 is C2−j1−j2n2 while that for x3 under subcase
(ii) is C2−j2−j3n2 Therefore we obtain

III2,1bii ≤ Cεn
9/4+3ε

∞∑

j1=0

j1∑

j∗1 =0

∞∑

j2=j1

∞∑

j3=j2

∑

v2≥1

v−2+ε
2 2j∗1+(−3j1−3j2−7j3)/4 (6.31)

We turn to subcase (i) under (b). Now ‖x3 − xi‖ ≥ C2−j1n, i = 1, 2, for
all v1 ≥ 2. Similar as in case (a) we delay the construction of a horseshoe near
x1 until v1 > 4 since we may have ‖x2 − x1‖ ≥ v12−j1+5 for some v1 ≤ 2. But
since this will not affect the estimate, we assume v1 > 4. We still construct an
inner horseshoe at x2 with inner horseshoe box B1(x2) of radius 2σ � 2−j2n,
and outer horseshoe box B2(x2) of radius 2ν2 � 2−j1n. We take B2(x2) to be
disjoint from a box B(x1, 2ρ) of radius 2ρ1 � 2−j1n. We construct an inner
horseshoe box B1(x3) of radius 2ρ3 � 2−j3n and an associated outer horseshoe
box B2(x3) of radius 2ν3 � v12−j1n. We also construct a box B1 whose right
edge meets the boundary of B(n) that also contains the outer horseshoe box
B2(x2) and the box B(x1, 2ρ) that were already constructed to be disjoint. We
pair B1 with an outer horseshoe box B2 of radius 2ν3 so that B2(x3) and B2 are
disjoint. We finally construct a large horseshoe pair (B̃1, B̃2) but now with a
new inner radius C2ν3 , while the outer radius remains 2ν1 � 2−j∗1 n. So we have
four horseshoes in all. The confinement factor for xi is C2−j1−jin2, i = 2, 3.
Therefore we obtain

III2,1bi ≤ Cεn
9/4+3ε

∞∑

j1=0

j1∑

j∗1=0

∞∑

j2=j1

∞∑

j3=j2

∑

v1≥1

v−2+ε
1 2j∗1 +(j1−7j2−7j3)/4 (6.32)
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We comment on the situation that instead U1 = {x3} and xf2 = x2 with
U2 = ∅ when h = 2 and t = 1. In this case we do not have to consider the
possibility that x3Kx2 since by our definition of the sets Ua, if this relation
did hold then we would instead have the case U1 = ∅ and U2 = {x3} that is
analogous to the one we have just considered. We consider now the cases (a)
j3 ≤ j2 + 2c + 8, and (b) j3 > j2 + 2c + 8. In case (a) we have an analogous
situation as in the previous case (a) except now we have x3 ∈ bv(x2, j2, j3, j

∗
1 ),

so in the generic case that v is sufficiently large, we construct horseshoes at
each of x2 and x3 of asymptotically equal inner radii by condition (a) of order
2−j2n and equal outer radii of order v2−j2n. We obtain an estimate for the
corresponding sum III ′2,1a as

III ′2,1a ≤ Cεn
9/4+3ε

∞∑

j1=0

j1∑

j∗1=0

∞∑

j2=j1

2j∗1+(−3j1−10j2)/4

In case (b) we break up the analysis by the dichotomy (i) x3 ∈ bv2(x2, j2, j3, j
∗
1 )

for some v2 ≥ 2, or (ii) x2 ∈ bv1(x1, j1, j2, j
∗
1 ) for some v1 ≥ 2. With this minor

change in notation, we obtain estimates for the sum corresponding to these
cases with the same forms of estimation as shown for III2,1bi and III2,1bii.
This concludes our discussion of the case t = 1 under h = 2.

We next discuss the case t = 2. We assume as in the original discussion
of h = 2 and t = 1 that U1 = {x2}. Now however the second root horseshoe
index is far from both x2 and x1 by assumption, that is the length scale of
this distance is max{2−j∗3 n, 2−j∗1 n} as compared to 2−j1n for the length scale
between x2 and x1. In the generic case that j2 is sufficiently larger than j1 we
construct a horseshoe at x2 of inner box of radius 2ρ2 � 2−j2n and outer box
of radius 2ν2 � 2−j1n that remains disjoint from a box B(x1, 2ρ) with radius
2ρ � 2−j1n. This horseshoe is nested in a large horseshoe (B̃1(x1), B̃2(x1) with
inner radius 2ρ1 � 2−j1n and outer radius 2ν1 � 2−j∗1 n. We also construct a
horseshoe (B̃1(x3), B̃2(x3) with inner box of radius 2ρ3 � 2−j3n and outer box
of radius 2ν3 � 2−j∗3 n such that the outer boxes B̃2(x1) and B̃2(x3) are disjoint.
Thus in this generic case (b) we obtain an estimate

III2,2b ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗1=0

∞∑
j3=j1

j3∑
j∗3=0

2j∗1+j∗3 +(−3j1−7j2−7j3)/4 (6.33)

This concludes our discussion of the case h = 2.

6.1.6 τ = 3, r = 3, h = 3.

We finally consider the case h = 3. Write III3 to denote the sub-sum of Σ0 that
corresponds to h = 3. We partition III3 = III3,1 + III3,2 + III3,3 according
to the cases t = 1, 2, 3, respectively. Consider first that h = 3 and t = 1. We
take x3 ∈ bv(x1, j1, j3, j

∗
1 ) with some v ≥ 2. We take x2 ∈ bu(x1, j1, j2, j

∗
1 ) with

some u ≥ 2. We have three cases for v ≥ u:

(a) 2u ≥ v ≥ u + 2, (b) v > 2u, and (c) 0 ≤ v − u ≤ 1
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Partition III3,1 = III3,1a + III3,1b + III3,1c accordingly.
We study first case (a). We define inner horseshoe boxes B1(xi) of radii

2ρi � 2−jin, i = 1, 2, 3, for the three respective vertices. We define the radii
of the associated outer horseshoe boxes B2(xi) for i = 2, 3 to both equal 2ν2 �
(v−u)2−j1n. We define the radius of the associated outer horseshoe box B2(x1)
to be 2ν1 � u2−j1n. These asymptotic relations are chosen such that all three
of B2(xi), i = 1, 2, 3, are disjoint. We also construct a horseshoe (B1, B2) with
inner box B1 of radius C2ν2 containing both outer boxes B2(xi), i = 2, 3, and
with outer box B2 of radius 2ν1 and disjoint from B2(x1). We finally construct
a large horseshoe pair (B̃1, B̃2) with an inner radius Cu2−j1n and outer radius
C2−j∗1 n such that B̃1 contains all the previous outer horseshoe boxes. We have
three inner horseshoes, two of which are nested in a fourth horseshoe, and all
four of these are nested in a fifth horseshoe. See Figure 4. The confinemnt
factors for xi are 2−j1−ji , i = 2, 3. Therefore, after the substitution ∆ := v−u,
we obtain an estimate

III3,1a ≤ Cεn
9/4+3ε

×
∞∑

j1=0

j1∑
j∗1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u,∆≥2

(u∆)−2+ε2j∗1+(j1−7j2−7j3)/4 (6.34)

In case (b) we change the three inner horseshoe pairs B1(xi), B2(xi), i =
1, 2, 3, as follows. We use the same asymptotic formulae 2ρi � 2−jin as in case
(a) for the inner radii, and we still write 2ν1 � u2−j1n and 2ν2 � (v − u)2−j1n
but now define the outer horseshoe radd by changing the vertex at which the
larger outer box sits from x1 to x3. Indeed, we now take the outer boxes B2(xi),
i = 1, 2, to have radii 2ν1 , and the outer box B2(x3) to have radius 2ν2 such
that all three of these outer boxes are disjoint. Therefore, much as in case (a),
by the substituion ∆ := v − u, we obtain

III3,1b ≤ Cεn
9/4+3ε

×
∞∑

j1=0

j1∑
j∗1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u≥2,∆≥u

(u∆)−2+ε2j∗1+(j1−7j2−7j3)/4 (6.35)

Finally in case (c) we still take x2 ∈ bu(x1, j1, j2, j
∗
1 ) with some u ≥ 2 but

now consider x3 ∈ bw(x2, j2, j3, j
∗
1 ) with some w ≥ 2, where w ranges up to

order 2j2−j1 . We again construct three inner horseshoe pairs B1(xi), B2(xi),
i = 1, 2, 3. We agian take the corresponding inner radii to be 2ρi � 2−jin. We
take the radii of the outer boxes B2(xi), i = 2, 3, to be 2ν3 � w2−j2n, so that by
the range of w this is asymptotically no larger than 2−j1n. We take the radius
of the outer box B2(x1) to be 2ν1 � u2−j1n. We choose the boxes subject
to these asymptotic formulae such that all three outer boxes are disjoint. We
also construct a fourth horseshoe (B1, B2) with inner box B1 of radius C2ν3

containing both outer boxes B2(xi), i = 2, 3, and with outer box B2 of radius
2ν1 that is disjoint from B2(x1). We finally construct a large horseshoe pair
(B̃1, B̃2) with an inner radius Cu2−j1n and outer radius C2−j∗1 n such that B̃1
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•x1

•x2

•x3

B̃1

Figure 4: Horseshoe construction for the estimate of III3,1a
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contains all the previous outer horseshoe boxes. Therefore since the confinement
factor for x3 is now instead 2−j2−j3

III3,1c ≤ Cεn
9/4+3ε

×
∞∑

j1=0

j1∑
j∗1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u≥2,w≥2

(uw)−2+ε2j∗1+(−3j1−3j2−7j3)/4 (6.36)

If instead we consider v < u in the original setting, we apply the same method
but withthe roles of u and v switched. This completes our discussion of the case
t = 1.

Consider next that t = 2. Say that j∗3 is the second root dual horseshoe index.
We let x2 ∈ bu(x1, j1, j2, j

∗
1 ) for some u ≥ 2. We construct three horseshoe pairs

B1(xi), B2(xi), i = 1, 2, 3, with inner radii 2ρi � 2−jin. We take the radii of
B2(xi), i = 1, 2, to be 2ν1 � u2−j1n, but because x3 is now far from both x1

and x2, we construct the radius of the outer box B2(x3) to be 2ν3 � 2−j∗3 n. As
before we construct these three outer boxes to be disjoint. Finally we construct
a fourth horseshoe pair (B1, B2) with inner box B1 of radius C2ν1 containing
both outer boxes B2(xi), i = 1, 2, and with outer box B2 of radius 2−j∗1 n that is
disjoint from B2(x3). This is possible due to the separation of the dual indices,
where u ranges up to order 2j∗1−j1 . Therefore since |bu| ≤ 2−j1−j2 , we have by
(5.15)that

III3,2 ≤ Cεn
9/4+3ε

×
∞∑

j1=0

j1∑
j∗1=0

∞∑
j2=j1

∞∑
j3=j2

j3∑
j∗3 =0

∑
u≥2

(u)−2+ε2j∗1+j∗3+(−3j1−7j2−7j3)/4 (6.37)

We consider finally the case t = 3. This is the easiest case. it refers to widely
separated vertices. We construct three horseshoes B1(xi), B2(xi), i = 1, 2, 3,
with inner radii 2ρi � 2−jin and outer radii 2νi � 2−j∗i n, i = 1, 2, 3, respectively.
Therefore by (5.15) we obtain

III3,3 ≤ Cεn
9/4+3ε

×
∞∑

j1=0

j1∑
j∗1=0

∞∑
j2=j1

j2∑
j∗2=0

∞∑
j3=j2

j3∑
j∗3=0

2j∗1+j∗2 +j∗3+(−7j1−7j2−7j3)/4 (6.38)

This completes our discussion of the case h = 3 when r = 3.

7 The General Case

We show in this section a two-fold argument for establshing the general τ -th
moment for the number of pivotal sites. The first part of the argument is to
isolate discussion of the (non-root) vertices that are chained to a given root. This
is accomplished by utilizing Lemma 7 and its generalization in Lemma 8 below
together with Proposition 1. Lemma 8 is required to handle the case τ ≥ 5.
This part of the analysis does not require any horseshoe estimates. The second
part of the argument is to explain the general strategy for the construction of
horseshoes at root vertices as well as the construction of nested horseshoes.
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7.1 Non-root vertices

We begin with an example to understand how to generalize the argument of Sub-
section 6.1.1. Let τ = 5 and r = 1. Assume G1 = {x1,w1,w1,1,w1,2,w1,2,1}.
Consider the following dichotomy:

either (i) m1,2 ≥ m1 + s1 + 2 or (ii) m1,2 < m1 + s1 + 2

Define boxes R1 := B(w1, l1), for l1 := 2−m1−s1n and R1,2 := B(w1,2, l2),
for l1,2 := 2−m1,2−s1n, and more generally, Ri1,...,ik

:= B(wi1,...,ik
, li1,...,ik

), for
li1,...,ik

:= 2−mi1,...,ik
−s1n, where s1 is the constant s1 := s + s0 for s = 2c + 4

(see Section 4) and some s0 > 0 to be determined below.
We study first the generic case (i). Since w1,2 ∈ am1,2(w1) we have that

R1,2 ⊂ B(w1,2, 2−m1,2−2n) ⊂ R1 while also w1 /∈ B(w1,2, 2−m1,2−2n), so in
particular w1 /∈ R1,2. Consider now the following subcases:

(a1) m1,1 ≥ m1 + s1 + 2, or (b1) m1,1 < m1 + s1 + 2

and
(a2) m1,2,1 ≥ m1,2 + s1 + 2, or (b2) m1,2,1 < m1,2 + s1 + 2

Consider first the generic joint subcase (a1)-(a2) under case (i). By the very
same reasoning as given for (i), by (a1) we have that B(w1,1, 2−m1,1−2n) ⊂ R1

while also w1 /∈ B(w1,1, 2−m1,1−2n), so in particular w1 /∈ R1,1. By the same
reasoning again under (a2), R1,2,1 ⊂ B(w1,2,1, 2−m1,2,1−2n) ⊂ R1,2 while also
w1,2 /∈ B(w1,2,1, 2−m1,2,1−2n), so in particular w1,2 /∈ R1,2,1. Furthermore, by
Proposition 1, we have that R1,1 and R1,2 are disjoint. Hence we have in all
the following picture: R1,2,1 ⊂ R1,2 ⊂ R1 and R1,1 ⊂ R1 with R1,1 ∩ R1,2 = ∅.
See Figure 5. We note that the context of Lemma 7 may be generalized to the
present circumstance as follows.

Lemma 8 Assume that the boxes B(yi, 2λi) of the statement of Lemma 7 are
arranged such that each is contained entirely within another one or is disjoint
from another one, and that all boxes are contained in R. Assume that whenever
a box is nested within another, the smaller box does not contain the center of
the larger box. Then the conclusion of Lemma 7 continues to hold.

To obtain the idea of the proof of Lemma 8 we work on the current example.
We begin with the assumption that we are in the joint subcase (a1)-(a2) of (i)
so that the hypothesis of Lemma 8 is satisfied. So we have v = v1 = 3, R = R1,
x = w1, and the yi, i = 1, 2, 3, are the vertices wi1,...,ik

of G1 for k ≥ 2, and
the boxes Bi := B(yi, 2λi) have the corresponding radii 2λi = li1,...,ik

. The
induction hypothesis is the conclusion of Lemma 8 for some number of boxes
Bi, i = 1, . . . , v. The proof of the induction hypothesis for v = 1 in Lemma 8
is the same as the proof for v = 1 in the original statement of Lemma 7. We
establish the inductive step of Lemma 8 for the current example. We assume
that s0 is so large in the definition of the radii of all the boxes Ri1,...,ik

through
the parameter s = s+s0, that we do not need to shrink these boxes to establish
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R1

R1,2

R1,2,1

R1,1

w1

•

w1,2

• w1,1

•

Figure 5: Configuration of boxes Ri1,...,ik
in the generic case when r = 1
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the condition of the proof of Lemma 7 that the sum of the diameters of the boxes
is at most 1

64Dv1 . This is possible since we do not change the positions of the
vertices of G1 (we do not change s = 2c + 4) but only adjust the increment s0

so that the radii of the boxes centered at these vertices change. Indeed we have
that the sum of all the diameters of the boxes is at most 2τ2−m1,2−s−s0n while
Dv1 ≥ 2−m1,2−2n, so we find s0 such that 8τ2−s−s0 < 1. We fix the value of s1

in the definitions of the radii li1,...,ik
and in the conditions (i), (ii), (a1), (a2),

(b1), and (b2). We construct a rectangle R̃1 as in the proof of Lemma 7 that
has a center x̃′

1 such that ‖x̃′
1−w1‖ ≤ 1

20Dv1 ≤ l̃1/2 for 1
5Dv1 ≤ l̃1 ≤ 1

10Dv1 and
Dv1 ≤ l1. By the proof of Lemma 7, all the boxes Bi are either inside or outside
R̃1. If some box Bi does lie inside R̃1, then because at least one other does lie
outside R̃1 we can apply the induction hypothesis applied to the rectangle R̃1

in place of R. But in fact an empty subset of the boxes {Bi : i = 1, 2, 3} may
lie inside R̃1. Then either the boxes Bi, i = 1, 2, 3, are all disjoint or there is
at least one nested relation. In the present example in fact the boxes Bi are
not all disjoint since R1,2,1 ⊂ R1,2. So let us assume that there are no boxes Bi

inside R̃1 and let us assign indices by B1 = R1,1, B2 = R1,2 and B3 = R1,2,1,
so that B3 does not contain the center of B2 and B3 ⊂ B2. In this case we
proceed to construct a second rectangle R̃2 inside B2 as in the proof of Lemma
7 (applied with R = R1,2 = B2 and v2 = 1 only for this example) with center x̃′

2

such that ‖x̃′
2 − w1,2‖ ≤ 1

20Dv2 ≤ l̃2/2 for 1
5Dv2 ≤ l̃2 ≤ 1

10Dv2 and Dv2 ≤ l1,2.
Then in fact because now v2 = 1 in our example the box B3 is disjoint from
R̃2. We apply the induction hypothesis only to the rectangle R̃2 inside the box
B2 = R1,2. Hence for our present example we have that

P (U4(w1; R) ∩ (∩3
i=1U4(yi; R))) ≤ P (U4(x; R̃1)P (U4(w1,1; R1,1)

×P (U4(0, 2λ3))P (U4(w1,2; R̃2))P (U4(0, 12l̃2; l1,2/2))
(7.1)

where 2λ3 = 2m1,2,1−s1n and where if 12l̃ > l1,2/8 we omit the last factor in this
inequality. If 12l̃ ≤ l1,2/8 the product of the last two factors in this inequality
is bounded by CP (T4(0; l1,2/d)) as in the proof of the case v = 1 of the Lemma
7. Therefore we obtain the desired conclusion of Lemma 8 for the particular
example.

Consider next subcase (a1)-(b2) under (i). We still have the boxes Bi, i =
1, 2, 3, as defined above, but now they may not satisfy the nested or disjoint
condition of Lemma 8. But, by (b2) we have that m1,2 + s1 + s+2 > m1,2,1 + s.
Therefore the boxes B(w1,2, 2−m1,2−s1−s−2n) and B(w1,2,1, 2−m1,2,1−s1n) are
disjoint by Proposition 1. Therefore in fact we may shrink the box B2 by the
constant factor 2−s to obtain a box B′

2 such that now the boxes B1, B′
2, B3

are now mutually disjoint. Also, due to the geometric series estimate ‖w1,2,1 −
w1‖ ≤ 2−m1,2 − 1n, we have by (i) that B3 ⊂ R1. Hence in fact we may
apply Lemma 7 with the B′

2 in place of the B2 and with B2 and B3 as before
and still with R = R1 to again reach the desired conclusion. This trick must
be modified in general. In subcase (b1)-(a2) under (i) we have that the boxes
B(w1, 2−m1−s1−s−2n) and B(w1,1, 2−m1,2,1−s1n) are disjoint by Proposition 1.
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Instead of merely shrinking the boxes Bi we apply the method of Proposition
2. Since the sum of the diameters of the boxes Bi is still small compared with
Dv1 depending on the parameter s0, we may adjust this parameter upward to
construct a rectangle R′

1 with center x′ that satisfies ‖x′ − w1‖ ≤ l′1/2, where
R′

1 has half sides l′1 and L′
1 with 1 ≤ L′

1/l′1 ≤ 2 such that both B2 and B3

lie either nested together inside R′
1 or nested together outside R′

1. Here in
the method of proof of Lemma 7 we take l′1 ≤ 2−s0−2Dv1 ≤ 2−s0−2l1 so that
R′

1 ⊂ B(w1, 4l′) ⊂ B(w1, 2−s0 l1). Thus we obtain that B1 is outside R′
1. Hence

by isolating one joint case at a time we only adjust one box into a box or
a rectangle that is at most twice as long as it is wide and still contains the
appropriate vertex such that the hypothesis of Lemma 8 is satisfied with the
single change of box. Here we may apply Lemma 8 again with this change since
the boxes of this Lemma 8 can be generalized to rectangles that are at most twice
as long as they are wide. Thus in any case there will exist a specific arrangement
of boxes and rectangles of the asymptotic radii 2−mi1,...,ik n associated to the
centers wi1,...,ik

∈ V1 such that Lemma 8 will apply to the whole arrangement
or to disjoint pieces of the arrangement. Hence in any case we obtain the same
conclusion, namely, by Lemma 2, that

pn,3(x1, . . . ,w1,2,1) ≤ Cεn
−25/4+5ε25(2m1+m1,1+m1,2+m1,2,1)/4 (7.2)

Finally use that B(x1, 2−m1−sn) is disjoint from all the boxes constructed above
by Proposition 1 applied to various trimmed graphs. Hence by using the con-
finement factors (3.12) and by (7.2), and by constructing one horseshoe at x1,
we have that any sub-sum of Σ0 corresponding to τ = 5 and r = 1 under the
eight different joint case and subcase combinations is bounded by

Cεn
15/4+5ε

∞∑
j1=0

· · ·
∞∑

m1,2,1=m1,2

2j∗1+(−12j1+2m1−3m1,2−3m1,1−3m1,2,1)/4 (7.3)

where the intervening summations are indexed by the conditions 0 ≤ j∗1 ≤ j1,
m1 ≥ j1, m1,2 ≥ m1, and m1,1 ≥ m1,2. To handle more general graphs G1

we utilize the fact, for example, that by Proposition 1 the box B(w1, 2−m1−sn)
is disjoint from the box B(w2, 2−m2−sn) whether or not either of the vertices
wi, i = 1, 2, has a child. Hence we can still verify the nested or disjoint only
condition of Lemma 8 for more general graphs by utilizing the joint cases ap-
proach as in the beginning of this Section. Since the confinement factor for each
vertex wi1,...,ik

∈ V1 is of the form 2−mi1,...,ik n2, by Lemma 8 we are able to
establish a convergent sum analogous to (7.3) for any graph G1 since we have
shown that we can take 2λi � 2−mi1,...,ik n corresponding to the vertex wi1,...,ik

in this Lemma. Therefore we only associate horseshoes to root vertices.

7.2 Horseshoes

The remainder of the general argument is based on a pattern of non-overlapping
horseshoes and the corresponding probability estimates that provide for conver-
gence factors in the pivotal case. We have shown in Section 6 a parameterization
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of spacing between the root vertices provided by the definitions of the root ver-
tices, the root horseshoe vertices, certain bands dividing space between nearby
roots, and the separation of dual horseshoe indices. These levels of organization
determine confinement factors associated to each root vertex in terms of the
dyadic indices ji and dual indices j∗i . In fact there exists a sufficiently large
constant C0 in this parameterization such that as long as a root vertex xk is not
confined to belong to a set of vertices of size at most C02−2jkn2 then a horse-
shoe is constructed at this vertex. We have in particular that a horseshoe is
constructed at each root vertex xk such that its dyadic index jk doesn’t satisfy
ji ≤ jk ≤ ji + c0 for some root vertex xi with i < k and dyadic index ji, where
c0 is a constant positive integer. If indeed the condition ji ≤ jk ≤ ji + c0 does
hold and if in addition the vertex xk is in a horseshoe relation to xi, then the
vertex xk is confined to belong to a set of vertices of size at most C2−2jin2. In
this case a convergence factor for this vertex is accounted for by its confinement
factor alone. This follows because the probability that a four-arm path issues
from the center of a box of radius 2ρ � 2−jkn and then exits this box is at most
Cε25jk/4n−5/4+ε. Thus by multiplying the confinement factor by the probabil-
ity and by substitution of ji for jk due to the condition on these indices, we
obtain the convergence factor 2−3ji/4. This situation is an exception wherein a
horseshoe is not constructed for lack of space. It represents an analogue of the
confinement that is associated to each non-root vertex. Note on the other hand
that additional horseshoes besides those at roots may need to be constructed
in general to fill in spaces between the dyadic annuli in B(n). Such is the case
because horseshoes are not allowed to overlap. Therefore if one vertex belongs
to a band associated with another then the horseshoes associated to each can
only grow so large (with equal outer radii). Then a larger horseshoe containing
both the horseshoes that have grown together must be constructed as though
the two vertices had become one (cf. Figure 4). We can summarize this strategy
by observing that a maximal number of horseshoes is introduced for a given pa-
rameterization of spacing of root vertices. Due to the nesting of two horseshoes
with equal outer radii inside a single larger horseshoe, the algebraic factors (eg.
v−2+ε) associated to the confinement of vertices in bands remain always with
exponents (−2+ ε), so contribute only convergent terms in our method. Due to
this allowance for nesting of horseshoes, the additional dyadic convergence fac-
tors that arise from Lemma 5 compensate in exactly the same way a confinement
factor would if there were to be no room for a horseshoe.

In conclusion each vertex in our estimation method for the pivotal sites, be
it a root or non-root, contributes a convergence factor with the same exponent
−3/4. Thus each arrangement of the vertices that defines a sub-sum J of Σ0

in (4.1)-(4.2) by the above division of cases yields J ≤ Cεn
3τ/4+τε

∞∑
j1=0

2−3τj1/4.

By contrast, when we apply our method to the case of Items 1 or 2 in Theorem
1, we omit the construction of horseshoes altogether. We also omit the need for
Lemma 7 and 8. Then by Proposition 1 and Lemma 2 alone the root vertices
and non-root vertices contribute convergence factors with exponents −1/3 and
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−4/3 respectively in the case of the lowest crossing and exponents −3/4 and
−7/4 respectively in the case of pioneering sites.

8 Appendix

Proof of Lemma 7. We proceed by induction on the number of boxes v. We
establish first the statement of the lemma for v = 1. Define r := ‖x − y1‖/4.
We have that

B(x, r) is disjoint from B(y1, 2λ1−1) (8.1)

Indeed, 2λ1−1 < ‖x−y‖/2 = 2r. Note that L ≥ ‖x−y‖ = 4r, so l ≥ L/2 ≥ 2r.
Therefore

B(x, r) ⊂ B(x, l/2) ⊂ R (8.2)

where the last inclusion follows because ‖x − x′‖ ≤ l/2 and B(x′, l) ⊂ R. Now
we use (8.1), (8.2), the assumption B(y1, 2λ1) ⊂ R, and independence to obtain
by (2.5) and (5.20) that

P (U4(x; R) ∩ U4(y1; R)) ≤ P (U4(0, r))P (U4(0, 2λ1−1)) (8.3)

We consider now two cases, l ≤ 24r and l > 24r. If l ≤ 24r then by Lemma 4
with κ = 4 we have

P (U4(0, r)) ≤ P (U4(0, l/24)) ≤ C4P (T4(0, l/24))

so we are done by (8.3) in this case. If instead l > 24r then, since ‖x−y1‖ = 4r
implies that

B(x, r), B(y, r) ⊂ B(x, 5r)

and since also by (8.2) the annulus x + A(0, 5r; l/2) ⊂ R, we have that

P (U4(x; R) ∩ U4(y1; R)) ≤ P (U4(0, r))P (U4(0, 2λ1−1))P (U4(0, 5r; l/2)) (8.4)

We now apply Lemmas 4 and 6 and construct connections across the annulus
x + A(0, r; 5r) to show first that

P (U4(0, r))P (U4(0, 5r; l/2)) ≤ C4P (T4(0, r))P (U4(0, 5r; l/2)) ≤ CP (U4(0, l/2))

Then we apply Lemma 4 again to establish that this last probability is at most

C ′P (T4(0, l/2))

Therefore by (8.4) and these last two observations we have established the
Lemma for v = 1 in the case l > 24r. Thus, by comparing the two cases,
we can take d = 24 and c1 = 1 in the statement of the Lemma when v = 1.

We now proceed to show the inductive step. Assume the statement of the
Lemma is true with a positive integer u in place of v for some u < v and with
v ≥ 2. Define

Dv := max
i=1,...,v

‖yi − x‖
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Note that l ≥ L/2 ≥ Dv/2, so that B(x, 1
4Dv) ⊂ B(x, l/2) ⊂ R. Consider now

the shrunken boxes B′
i := B(yi, 2λi−3v), i = 1, . . . , v. Since Dv > 2λi for all i,

we have that the sum of the diameters of these boxes satisfies

2
v∑

i=1

2λi−3v ≤ 2vDv2−3v ≤ 1
16

Dv

for all v ≥ 2. Therefore, even if all the shrunken boxes were packed inside the
subset B(x, 1

4Dv) of the rectangle R, there would be a gap in the z1 coordinates
of the vertices z ∈ B(x, 1

4Dv) somewhere in the interval [x1 + 1
10Dv, x1 + 1

5Dv]
and also in the interval [x1 − 1

5Dv, x1 − 1
10Dv] where we denote x = (x1, x2).

Indeed, each of these intervals has width 1
10Dv which is strictly greater than the

sum of the diameters of the boxes B′
i. Similarly there must be gaps in the z2

coordinates of the vertices z ∈ B(x, 1
4Dv) somewhere in corresponding intervals

for the second coordinate. Therefore by constructing a rectangle with sides
along some vertical and horizontal lines through the gaps in these intervals, we
have that there exists a rectangle R̃ := R̃(x̃′) ⊂ B(x, 1

5Dv) ⊂ R with shortest
and longest half-sides l̃ and L̃ respectively satisfying L̃/l̃ ≤ 2 such that its
center satisfies ‖x̃′ − x‖ ≤ 1

20Dv ≤ l̃/2 and such that a certain proper subset
{B′

i1
, . . . , B′

iu
} of the set of shrunken boxes lies entirely inside R̃ and the others

lie entirely outside R̃. To see that the subset will be proper so that the number
u < v, note that if the index i0 yields the maximum in the definition of Dv then
2λi0−3v < 1

64Dv so that

B(yi0 , 2
λi0−3v) ∩ B(x,

1
4
Dv) = ∅

We now apply the inductive hypothesis with u < v. First we note that for all
i, B′

i ⊂ B(x, 12l̃) since 12l̃ ≥ 12
10Dv. We consider again two cases. If 12l̃ ≤ l/8

then by this construction we have that

P (U4(x; R) ∩ (∩v
i=1U4(yi; R))) ≤ P (U4(x; R̃) ∩ (∩u

a=1U4(yia ; R̃)))
×P (U4(0, 12l̃; l/2))

∏
i6=ia

P (U4(0, 2λi−3v))
(8.5)

If instead 12l̃ > l/8 we omit the factor P (U4(0, 12l̃; l/2)) in this inequality. By
the induction hypothesis we have that

P (U4(x; R̃)∩ (∩u
a=1U4(yia ; R̃))) ≤ C(u)P (T4(0; l̃/d(u)))

u∏

a=1

P (U4(0, 2λia−c1(u)))

We take now the constants d(u) := 96u and c1(u) := 3u. Thus if 12l̃ > l/8 we
are done by this last inequality and (8.5). If on the other hand 12l̃ ≤ l/8 then
we estimate by Lemmas 4 and 6 that

P (T4(0; l̃/d(u)))P (U4(0, 12l̃; l/2)) ≤ CP (U4(0, l/2)) ≤ C ′P (T4(0, l/d(v)))

This completes the proof of the inductive step and therefore of the Lemma. 2
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