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Abstract

Let 0 < a < b < ∞ be fixed scalars. Assign independently to each edge in the lattice Z2

the value a with probability p or the value b with probability 1−p. For all u, v ∈ Z2 let T (u, v)

denote the first passage time between u and v. We show that there are points x ∈ R2 such

that the ‘time constant’ in the direction of x, namely limn→∞ n−1Ep[T (0, nx)], is not a three

times differentiable function of p.

1 Introduction, main results

Consider the following simple model of first passage percolation. E : = E(Z2) denotes the edges

in the integer lattice Z2, 0 < a < b < ∞ are fixed scalars, and Ω := {a, b}E . For all e ∈ E and

ωe ∈ Ω, P [ωe = a] = p and P [ωe = b] = 1 − p where 0 < p < 1. In other words, we assign either

a or b to each edge with probability p or 1 − p independently from the other edges. Denote the

product measure on Ω by Pp and the expectation with respect to Pp by Ep.

For all u, v ∈ Z2 let T (u, v) denote the first passage time between u and v. Formally, T (u, v) is

the infimum of Σe∈γwe, where γ ranges over all finite paths in Z2 from u to v. If x and y are in R2,

we define T (x, y) = T (x′, y′), where x′ (respectively, y′) is the point in Z2 closest to x (respectively,

y). Any possible ambiguity can be avoided by ordering Z2 and taking the point in Z2 smallest for

this order.
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Let 0 denote the origin of R2 and for all x ∈ R2, let T (x) := T (0, x) be the first passage time

between 0 and x. It is well known by Kingman’s subadditive ergodic theorem ((1.13) of Kesten

[9]) that for all x ∈ R2 there is a constant µp(x),

lim
n→∞

T (nx)
n

= µp(x) a.s. and in L1. (1.1)

When x = (1, 0) the limit µ∗p := µp((1, 0)) is called the time constant of Hammersley and Welsh

[8]. Without loss generality, for any x ∈ R2, we also call µp(x) the time constant in the direction

of x.

In general, physicists believe that most percolation constants should be real analytic as functions

of p, excepting the singularities at the critical case. In particular, when ωe only takes value 1 or 0,

the behavior of the time constant is similar to that of the correlation length (see [1]). Furthermore,

the analyticity of the correlation length, as expected, is proved for all p except for the critical case

when d = 2 [2]. Few rigorous results are known for the time constant. Cox and Kesten (Theorem

3 of [4]) show that µ∗p is continuous with respect to the weak convergence of the distribution of the

passage times, from which it follows that µ∗p is continuous in p.

With these observations, one might believe that both the correlation length and the time

constant are analytic except for the critical case when ωe takes the values 1 or 0. Furthermore,

one might also expect that the behavior of the time constant in the critical case is similar to

the behavior in the case when ωe takes the values a or b with 0 < a < b. We find here that

the analyticity of the latter is not always true. The main goal of this paper is to show there

is a direction for which the directional asymptotic speed is not three times differentiable in the

parameter p.

Recall that the classical grid L for oriented percolation is given by L := {(m,n) ∈ Z2 :

m + n has even parity, n ≥ 0}. Thus L is Z2 rotated by π/4 and correctly dilated. Let E(L) be

the edges from (m,n) ∈ L to (m+1, n+1) and to (m−1, n+1). To each edge e ∈ E(L) we assign

a passage time a > 0 with probability p and a time b > a with probability 1 − p. Henceforth let

Ω := {a, b}E(L).

Let
→
pc denote the critical probability for oriented Bernoulli percolation on L. For all p ∈ (

→
pc, 1]

consider all paths starting from {(x, y) ⊂ Z2 : x ≤ 0, y = 0} in the oriented graph using n type

a oriented edges in L and let (rn(p), n) denote the right-most point (‘right-hand edge’) of all such

paths. We will often simply refer to the scalar rn(p) as the right-hand edge. In the super-critical
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regime p ∈ (
→
pc, 1] the right-most point (rn(p), n) satisfies

lim
n→∞

rn(p)
n

= α(p) a.s. and in L1, (1.2)

as well as a central limit theorem [10]. Here α(p) ∈ (0, 1] is called the asymptotic speed of super-

critical oriented percolation on the edges of L. It describes the drift of the right-most point at

level n.

If p >
→
pc then the asymptotic shape (the unit radius ball for the norm induced by the map

x → µp(x)) exhibits a flat edge ( Durrett and Liggett [6]), which is related directly to the possibility

of percolating with edges having passage time a. The flat edges of the asymptotic shaper are in

the coordinate directions and are described analytically by Marchand [12] (see especially Theorem

1.3).

Let p0 ∈ (
→
pc, 1) be fixed. For all p ∈ (

→
pc, 1) define a time constant in the direction of the critical

vector with components α(p0) and 1, i.e., set

fp0(p) := lim
n→∞

Ep[T
(
(α(p0)n, n)

)
]

n
.

It is easy to see (cf. Lemma 3.3 below for details) that if p ≥ p0 then on the average there is an

oriented path between 0 and (α(p0)n, n) consisting of edges having passage time a, i.e. fp0(p) = a

for all p ∈ [p0, 1]. Thus if p 7−→ fp0(p) is three times differentiable at p = p0, then the third

derivative must be zero. However, in what follows we show that there is a constant C > 0 such

that for all p ∈ (
→
pc, p0) we have

fp0(p) ≥ a + C(p0 − p)2/(− log(p0 − p)). (1.3)

This is enough to show that p 7−→ fp0(p) is not three times differentiable at p0. This is our main

result, formally stated as follows:

Theorem 1.1 For all p0 ∈ (
→
pc, 1) the function p 7−→ fp0(p) is not three times differentiable at

p = p0.

Remarks. 1. Hammersley and Welsh conjecture (Corollary 6.5.5 of [8]) that µ∗p is concave in p

and thus differentiable for almost all p. One might also expect that p 7−→ fp0(p) is concave and

differentiable, but we are unable to show it.

2. Theorem 1.1 can be generalized to include passage times having a common distribution

pδa +(1−p)U(b) where 0 < a < b, p ∈ [0, 1], and U(b) is an independent random variable bounded
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below by b. It is unclear (at least to us) whether Theorem 1.1 remains true for (i) more general

passage times, or (ii) directions other than (α(p0)n, n). It is also unclear whether the lower bound

(1.3) can be improved to fp0(p) ≥ a + C(p0 − p)/(− log(p0 − p)).

3. A natural problem involves studying the properties of the asymptotic shape at the end of

its flat edge for a fixed p. Our methods do not yield any information here.

2 Probability bounds for the right-hand edge of super-critical

percolation

The following proposition is of independent interest and provides exponential tail bounds for the

right-hand edge rn(p), p ∈ (
→
pc, 1]. We will make critical use of this estimate in the sequel, but

for now we note that Proposition 2.1 should be compared with the general tail bounds of Kuczek

and Crank [11] (Theorem 1, part 1), who show for all p ∈ (
→
pc, 1] and all 0 < ε < 1 that there are

constants K1 := K1(p, ε) and K2 := K2(p, ε) such that for all n = 1, 2, ...

Pp[rn(p) ≥ (α(p) + ε)n] ≤ K1n
−1/2 exp(−K2n).

Proposition 2.1 For all q ∈ (
→
pc, 1] there exists C1 := C1(q) > 0 such that for all 0 < ε < 1, all

p ∈ [q, 1], and all n = 1, 2, ...

Pp[rn(p) ≥ (α(p) + ε)n] ≤ C1n exp(−ε2n/C1).

The proof of Proposition 2.1 involves consideration of the renewal process arising by breaking

the behavior of the rightmost point rn(p) into independent pieces, an approach developed by

Kuczek [10]. Our methods require an exponential decay result on the size of a finite cluster in

super-critical oriented percolation [5].

Before proving Proposition 2.1 we require some terminology (Kuczek [10]) and a lemma. Given

vertices u and v in L we say u → v if there is a sequence v0 = u, v1, · · · , vm = v of points of L

with vi := (xi, yi) and vi+1 := (xi+1, yi + 1) for 0 ≤ i ≤ m− 1 such that vi and vi+1 are connected

by an edge with weight a. Thus u → v if there is a sequence of oriented edges each with weight a

joining u to v. For A ⊂ Z, let

ξA
n := {x : (x, n) ∈ L and ∃ x′ ∈ A such that (x′, 0) → (x, n) for n > 0}.

As in Kuczek [10], denote the event that there exists an infinite oriented path of a edges starting

from (x, y) by Ω(x,y)
∞ . We let ξ′0 := ξ

(0,0)
0 := {0} and set
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ξ′1 :=

 ξ
(0,0)
1 if ξ

(0,0)
1 6= ∅

{1} otherwise,

and define inductively, for all n = 1, 2, ...

ξ′n+1 :=

 {x : (x, n + 1) ∈ L and (y, n) → (x, n + 1) for some y ∈ ξ′n} if this set is non empty

{n + 1} otherwise.

We have suppressed the dependence of ξ′n on p for notational convenience. Note that ξ′n is a subset

of the integers between −n and n. Let

r′n(p) := sup ξ′n.

On {ξ(0,0)
n 6= ∅}, we have equivalence between r′n(p) and the right-hand edge rn(p). A vertex

(x, n) ∈ L is said to be a percolation point if and only if the event Ω(x,n)
∞ occurs. Let

T1 := inf{n ≥ 1 : (r′n, n) is a percolation point}

T2 := inf{n ≥ T1 + 1 : (r′n, n) is a percolation point}

· · ·

Tm := inf{n ≥ Tm−1 + 1 : (r′n, n) is a percolation point}

where we make the convention that inf ∅ = ∞. Define

τ1 := T1, τ2 := T2 − T1, · · · , τm := Tm − Tm−1,

where τi := 0 if Ti and Ti−1 are infinite. (Note that Ti and Ti−1 are finite with probability one.)

Also define

X1 := r′T1
, X2 := r′T2

− r′T1
, · · · , Xm := r′Tm

− r′Tm−1
,

where Xi := 0 if Ti = ∞ and Ti−1 = ∞. The points {(r′Ti
, Ti)} are called break points [10] since

they break the behavior of the right-hand edge into i.i.d. pieces when the origin is a percolation

point. Kuczek (Theorem on p. 1324, [10]) proved that conditional on Ω(0,0)
∞ , {(Xi, τi)} are i.i.d.

with all moments. Moreover, for all q ∈ (
→
pc, 1] there exists a constant C2 := C2(q) such that for

all p ∈ [q, 1] and all t ≥ 1

Pp[τ1 ≥ t] ≤ Pp[ξ
(1,1)
t−1 6= ∅, (1, 1) 6→ ∞] ≤ C2 exp(−t/C2), (2.1)
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where the last inequality is as in Durrett ([5], sect. 12).

If we set

Nn := sup

{
m :

m∑
i=1

τi ≤ n

}
,

then rNn+1 is the location of the right-hand edge at the first ‘regeneration point’ after time n. By

considering |rNn+1 − rNn
| and |rn − rNn

| it easily follows that

|rNn+1 − rn| ≤ 2τNn+1 (2.2)

(see p. 1331, [10] for details).

To prove Proposition 2.1 we make use of the following probability measure on Ω

P̄p[ · ] := Pp[ · | Ω(0,0)
∞ ].

Let Ēp denote the expected value with respect to P̄p. If the event {rn(p) ≥ (α(p) + ε)n} occurs

for a particular configuration ω ∈ Ω of edges then it also occurs for any configuration ω′ whose

a edges are a superset of the a edges in ω. Thus the event {rn(p) ≥ (α(p) + ε)n} is increasing.

Similarly Ω(0,0)
∞ is an increasing event so that by the FKG inequality

Pp[Ω(0,0)
∞ ]Pp[rn(p) ≥ (α(p) + ε)n] ≤ Pp[rn(p) ≥ (α(p) + ε)n, Ω(0,0)

∞ ],

that is to say,

Pp[rn(p) ≥ (α(p) + ε)n] ≤ P̄p[rn(p) ≥ (α(p) + ε)n].

Lemma 2.1 Let q ∈ (
→
pc, 1]. There exists C3 := C3(q) such that for all 0 < ε < 1, all p ∈ [q, 1],

and all n = 1, 2, ...

P̄p[τNn+1 ≥ εn] ≤ C3n exp(−εn/C3). (2.3)

We defer the proof of Lemma 2.1 and instead show how it implies Proposition 2.1. For conve-

nience, we put α := α(p) and rn := rn(p).

Proof of Proposition 2.1. By the definition of Nn and (2.2) we have for all 0 < ε < 1 and all

n = 1, 2, ...

Pp[rn ≥ (α + ε)n] ≤ P̄p[rn ≥ (α + ε)n]

≤ P̄p[rNn+1 + 2τNn+1 ≥ (α + ε)n]

≤ P̄p[rNn+1 ≥ (α + ε/2)n] + P̄p[τNn+1 ≥ εn/4].

6



By Lemma 2.1 and since α ≤ 1, the above is bounded by

≤ P̄p[X1 + · · ·+ XNn+1 ≥ α(1 + ε/2)n] + C3n exp(−εn/4C3). (2.4)

Put κ := κ(p) := Ēp[τ1] and note that κ ≥ 1 by definition of τ1. For n ≥ κ let m := bn
κ (1 + ε/4)c,

where for all x ∈ R, bxc denotes the greatest integer less than or equal to x. It follows that the

above is

≤
m∑

i=1

P̄p [X1 + · · ·+ Xi ≥ α(1 + ε/2)n] + P̄p [Nn + 1 ≥ m + 1] + C3n exp(−εn/4C3).

Denote the first two terms in the above inequality by I and II. For simplicity we put Yj := κ−τj .

Thus by definition of κ

II := P̄p [Nn + 1 ≥ m + 1] = P̄p

 m∑
j=1

τj ≤ n

 = P̄p

 m∑
j=1

(κ− Yj) ≤ n



≤ P̄p

 m∑
j=1

Yj ≥ κ(n/κ + εn/4κ− 1)− n

 = P̄p

 m∑
j=1

Yj + κ ≥ εn/4

 .

By Markov’s inequality, for all r > 0,

II ≤ exp(rκ) exp(−rεn/4)Ēp exp

r
m∑

j=1

Yj

 . (2.5)

Since Ēp[Y1] = 0 and since all moments of Y1 exist, it follows that for all p ∈ [q, 1] there exists

C4 := C4(q) such that log Ēp[exp(rY1)] ≤ C4r
2 if r < r0 := r0(q). Thus for r < r0(q) we obtain

II ≤ exp(rκ− rεn/4 + C4mr2).

If we let r := εκ/10C and increase C if necessary, then it follows that there exists C5 := C5(q)

such for all 0 < ε < 1 and all n ≥ κ and p ∈ [q, 1]

II ≤ C5 exp(−ε2n/C5). (2.6)

Increasing the value of C5 if necessary, we see that (2.6) holds for n ∈ [1, κ] as well.

Now we bound term I. By Lemma 1 of [13], we know α = ĒpX1/κ and thus by definition of

m we have for all 1 ≤ i ≤ m

Ēp[X1 + · · ·+ Xi] = iĒpX1 ≤ n
ĒpX1

κ
(1 + ε/4) = αn(1 + ε/4).
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Thus

I ≤
m∑

i=1

P̄p

 i∑
j=1

(Xj − ĒpXj) ≥ αn(1 + ε/2)− αn(1 + ε/4)


=

m∑
i=1

P̄p

 i∑
j=1

(Xj − ĒpXj) ≥ αεn/4

 .

Since |Xj | ≤ |τj | for all j ≤ i where i ≤ m ≤ 2n, we may follow the approach used for the bound

(2.6) to conclude that there exists C6 := C6(q) such that for all 0 < ε < 1, p ∈ [q, 1], and all

n = 1, 2, ...

I ≤ C6n exp(−ε2n/C6). (2.7)

Recalling that

Pp[rn ≥ (α + ε)n] ≤ I + II + C3n exp(−εn/4C3)

and applying the bounds (2.6) and (2.7), we obtain Proposition 2.1 as desired.

Now it remains to show Lemma 2.1.

Proof of Lemma 2.1. By definition of Nn we have for all 0 < ε < 1, all p ∈ (
→
pc, 1], and all

n = 1, 2, ...

P̄p[τNn+1 ≥ εn] =
∞∑

i=1

P̄p [τi+1 ≥ εn, Nn = i]

=
∞∑

i=1

P̄p

[
τi+1 ≥ εn,

i∑
k=1

τk ≤ n,

i+1∑
k=1

τk > n

]

=
∑
j≥εn

∞∑
i=1

P̄p

[
τi+1 = j,

i∑
k=1

τk ≤ n,
i∑

k=1

τk > n− j

]
.

Under the measure P̄p, the {τi} are independent and thus the above equals

=
∑
j≥εn

P̄p[τi+1 = j]
∞∑

i=1

P̄p

[
i∑

k=1

τk ≤ n,
i∑

k=1

τk > n− j

]

≤
∑
j≥εn

P̄p[τi+1 = j]
∑

i≤ 2n
κ

P̄p

[
i∑

k=1

τk ≤ n,
i∑

k=1

τk > n− j

]
+
∑

i> 2n
κ

P̄p

[
i∑

k=1

τk ≤ n,
i∑

k=1

τk > n− j

]
:= I + II.
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Let us bound II. Notice that if i > 2n/κ, then iκ− n > iκ/2 so we have

P̄p

[
i∑

k=1

τk ≤ n

]
= P̄p

[
i∑

k=1

(κ− τk) ≥ iκ− n

]
≤ P̄p

[
i∑

k=1

(κ− τk) ≥ iκ

2

]
.

By the methods used to obtain (2.6), there exists C7 := C7(q) and C8 := C8(q) such that for all

p ∈ [q, 1] and all n = 1, 2, ...

II ≤
∑

i≥n
κ +n

C7 exp(−i/C7) ≤ C8 exp(−n/C8). (2.8)

Let us bound term I. The second factor in I is bounded by the number of summands showing that

I ≤
(

2n

κ

) ∑
j≥εn

P̄p[τ1 = j] ≤ 2nP̄p[τ1 ≥ εn],

since κ ≥ 1. Combining this with (2.1) shows that there exists C9 := C9(q) such that for all

0 < ε < 1, all p ∈ [q, 1], and all n = 1, 2, ...

I ≤ C9n exp(−εn/C9).

Lemma 2.1 now follows from (2.8) and the above inequality.

3 Auxiliary lemmas

The proof of Theorem 1.1 rests on the upper bound for the right-hand edge of supercritical per-

colation (Proposition 2.1) as well as a lower bound for first passage times, given in the upcoming

Proposition 4.1. Before proving the latter we require six straightforward lemmas. Our first lemma

gives a way to prove the asserted non-differentiability of fp0 , where we recall that p0 ∈ (
→
pc, 1) is

fixed once and for all. Let log denote the natural logarithm. For the remainder of the paper we

fix q ∈ (
→
pc, p0).

Lemma 3.1 Suppose h : [0, 1] → R+ satisfies h(p) = 0 for all p ≥ p0. If there exists δ := δ(q) > 0

such that for all p ∈ [q, p0)

h(p) ≥ δ(p0 − p)2

log( 1
p0−p )

, (3.1)

then h′′′(p0) does not exist.
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Proof. We use elementary calculus. If h′′′(p0) did exist then necessarily h′′′(p0) = h′′(p0) =

h′(p0) = 0. It follows that |h′′(p)| = |h′′(p)− h′′(p0)| ≤ |p0 − p| if |p− p0| is small enough. For

such p we have |h′(p)| = |
∫ p

p0
h′′(u)du| ≤

∫ p0

p
|h′′(u)|du ≤ (p0 − p)2 i.e., h′(p) grows at most like a

quadratic in p0 − p. Similarly, h(p) grows at most like a cubic in p0 − p for |p− p0| small enough.

This is a contradiction.

To show that the function fp0 of Theorem 1.1 satisfies the conditions of Lemma 3.1, we will

need several more lemmas and a proposition.

Lemma 3.2 For all p ∈ (
→
pc, p0] we have α(p0)− α(p) ≥ 2(p0 − p).

Proof. See Durrett [5] p. 1006, display (12).

Lemma 3.3 fp0(p) = a for all p ∈ [p0, 1].

Proof. By the central limit theorem of Kuczek (Corollary 1 of [10]), with probability 1 − o(1)

there exists an oriented path γ of n type a edges, starting at 0 and terminating at a point (x, n)

where α(p0)n < x. Similarly, reversing the orientation of the edges, with probability 1− o(1) there

exists a path γ′ of n type a oriented edges starting at (α(p0)n, n) and terminating at a point (s, 0),

where s ≥ α(p0)n. The paths γ and γ′ intersect at some point Q ∈ Z2. Let γ1 be the restriction of

γ between 0 and Q; let γ′1 be the restriction of γ′ between Q and (α(p0)n, n). Let γu be the union

of γ1 and γ′1. Then γu is an oriented path 0 → Q → (α(p0)n, n) consisting exclusively of n type a

edges showing that

T ((α(p0)n, n)) = an (3.2)

on a set with probability 1−o(1). Since n−1T ((α(p0)n, n)) is bounded by b, the conclusion follows.

We will adhere to the following terminology throughout. Given a path γ in the lattice L, T (γ)

denotes its weight
∑

e∈γ ωe, where P [ωe = a] = p, P [ωe = b] = 1− p. We let P(α(p0)n) denote all

paths (oriented or not) γ : 0 7→ (α(p0)n, n) in the lattice L whose weight equals the first passage

time T ((α(p0)n, n)). (If x ∈ R, then we adopt the convention that the path γ : 0 7−→ (x, n) denotes

the path between 0 and (bxc, n).) If p ∈ (
→
pc, p0] then T (γ), γ ∈ P(α(p0)n), will tend to exceed an,

since typically under Pp the edges in γ required to link 0 with points to the right of (α(p)n, n),

e.g., (α(p0)n, n), will not all have weight a.
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Consider δ := δ(q) ∈ (0, 1/2) with a value to be specified later. For all p ∈ [q, p0], let Pn :=

Pn(p0, p, δ) ⊂ P(α(p0)n) be the (possibly empty) subset of P(α(p0)n) consisting of paths γ whose

weight satisfies

T (γ) ≤ an

(
1 +

δ(p0 − p)2

log( 1
p0−p )

)
.

Thus Pn 6= ∅ is the event that the first passage time T ((α(p0)n, n)) is bounded above by

an

(
1 + δ(p0−p)2

log( 1
p0−p )

)
. We will show in Proposition 4.1 below that the probability of Pn 6= ∅ is

exponentially small, but first we require a few more lemmas. Recalling that
→
pc < q < p0 < 1 and

p ∈ [q, p0], we will henceforth assume without loss of generality that q is close enough to p0 to

guarantee that
aν

log( 1
p0−p )

≤ 1 and log
(

1
p0 − p

)
> 1. (3.3)

Lemma 3.4 If γ ∈ Pn then γ ⊂ [−2n, 2n]× [−n, 2n].

Proof. It suffices to show that if γ ∈ Pn then γ has at most 2n edges. Since δ < 1/2 and
(p0−p)2

log( 1
p0−p )

< 1, it follows that if γ ∈ Pn then T (γ) < 2an. Since every edge in γ has weight at least

a, it follows that γ has at most 2n edges.

Given γ ∈ P(α(p0)n), an edge e :=
(
(x1, y1), (x2, y2)

)
belonging to γ is termed ‘repeated’ if the

horizontal strip R× [y1, y2] contains at least one other edge in γ and to the left of e. Edges e ∈ γ

are called ‘sub-optimal’ if either e has weight b or if e is repeated. Roughly speaking, paths γ ∈ Pn

cannot use many sub-optimal edges. Edges e := (u, v) are considered to be closed line segments in

R2 in the sense that e contains its endpoints {u} and {v}.

Lemma 3.5 Let ν :=
(
min(b− a, a)

)−1. If γ ∈ Pn then there are at most

k := k(p, p0, n) :=

⌊
aνδ(p0 − p)2n

log( 1
p0−p )

⌋
(3.4)

sub-optimal edges in γ.

Proof. Each sub-optimal edge in γ contributes an extra cost of at least min(b− a, a).

Recalling that
→
pc < q < p0 < 1 and p ∈ [q, p0], we will henceforth assume without loss of

generality that q is close enough to p0 to guarantee that (3.3) holds and that k ∈ [0, n
10 ]. Given

γ ∈ Pn, project all sub-optimal edges in γ onto the x-axis. The projection forms a possibly empty

11



collection of closed intervals on the x-axis which may overlap. However, when the projection is

non-empty, the union forms a collection of disjoint closed intervals I1(γ), I2(γ), . . . , Ij(γ) called the

x-trace τx(γ) of γ ∈ Pn. The intervals in τx(γ) have integral endpoints and belong to [−2n, 2n] by

Lemma 3.4. Here j ∈ N cannot exceed the number k of sub-optimal edges; if k = 0 then there is

no x-trace. Note that distinct paths γ ∈ Pn may have identical x-traces.

Definition 3.1 For all 1 ≤ j ≤ k, let T x
j denote the collection of all x-traces consisting of j

disjoint subintervals.

Next, given γ ∈ Pn, remove all edges in γ whose projection onto the x-axis is a proper subset of

τx(γ) (some such edges may be oriented and have weight a). What remains are called the optimal

edges in γ; such edges are necessarily oriented up edges with weight a. By definition these edges

collectively form a sequence of disjoint paths γ1, γ2, . . . , each consisting of oriented edges having

weight a. We call γ1, γ2, . . . , ‘optimal paths’. Note that optimal paths lie in [−2n, 2n]× [0, n].

Observe that the γi, i ≥ 1, are contained in the horizontal strips R × [yi, y
′
i], where yi and y′i

denote the y coordinates of the initial and terminal points of γi, respectively.

We project all optimal edges in γ onto the (vertical) y-axis. The projection yields a collection

of intervals I ′1(γ), I ′2(γ), ... which we call the y-trace τy(γ) of γ. Each interval in τy(γ) is a subset

of [0, n].

Definition 3.2 For all 1 ≤ j ≤ k, let T y
j denote the collection of all y-traces consisting of j

subintervals.

Given γ ∈ Pn we call the set of intervals τxy := {Ii(γ)}j1
i=1 ∪ {I ′i(γ)}j2

i=1 the xy-trace of γ. The

collection of xy-traces will provide a convenient combinatorial way to upper bound the probability

that Pn 6= ∅. Since the number of optimal paths differs from the number of disjoint intervals in the

x-trace by at most one, it follows that |j1 − j2| ≤ 1. We say that τxy is an xy-trace of cardinality

j if j1 ∨ j2 = j. Considering the three cases j1 = j2, j1 = j2 − 1, and j2 = j1 − 1, we see that the

collection of all xy-traces of cardinality j has the representation

Tj := {(Ii, I
′
i)

j
i=1 : Ii ∈ T x

j , I ′i ∈ T
y

j } ∪ {(Ii, I
′
i)

j
i=1 : Ii ∈ T x

j−1, Ij = ∅, I ′i ∈ T
y

j }

∪ {(Ii, I
′
i)

j
i=1 : Ii ∈ T x

j , I ′i ∈ T
y

j−1, I
′
j = ∅}.

Since elements of T x
j and T y

j have integral endpoints, Lemma 3.4 implies that card T x
j ≤

(
4n
2j

)
.

Notice that the elements of T y
j have integral endpoints which may coincide (they coincide if there is

12



an integer i such that y′i = yi+1). The elements of T y
j can be coded by their endpoints {(yi, y

′
i)}

j
i=1,

so that e.g. the sequence 1, 2, 2, 5, 7, 8 denotes the following three intervals on the y-axis: I ′1 :=

((0, 1), (0, 2)), I ′2 := ((0, 2), (0, 5)), I ′3 := ((0, 7), (0, 8)). Clearly T y
j ≤

(
2n
2j

)
. Since clearly

(
2n
2j

)
≤
(
4n
2j

)
for 1 ≤ j ≤ k, we deduce the crude bound:

Lemma 3.6 For all 1 ≤ j ≤ k, we have card Tj ≤ 3
(
4n
2j

)2
.

4 Lower bounds for first passage times

Recall that q and p0 are fixed scalars satisfying
→
pc< q < p0. By Lemma 3.3, we have fp0(p)−a = 0

for all p ∈ [p0, 1]. It remains to show that fp0 − a satisfies inequality (3.1). We do this by showing

that the first passage time T ((α(p0)n, n)) is bounded below by

an

(
1 +

δ(p0 − p)2

log( 1
p0−p )

)

with overwhelming probability for p ∈ [q, p0]. Recalling the definition of C1 in Proposition 2.1 we

have:

Proposition 4.1 For all p ∈ [q, p0] and all n = 1, 2, ...

Pp[Pn(p0, p, δ) 6= ∅] ≤ C1n
2 exp

(
−(p0 − p)2n/4C1

)
.

Before proving Proposition 4.1, we first show how it implies that fp0 −a satisfies the conditions

of Lemma 3.1. We have for all p ∈ [q, p0]

fp0(p) := lim
n→∞

Ep[T
(
(α(p0)n, n)

)
]

n

≥ lim inf
n→∞

Ep[T
(
(α(p0)n, n)

)
1Pn=∅]

n
≥ a +

aδ(p0 − p)2

log( 1
p0−p )

by Proposition 4.1 and since T ((α(p0)n, n)) ≤ bn. Since δ > 0 then together with Lemma 3.3, this

shows that fp0 − a satisfies the conditions of Lemma 3.1, concluding the proof of Theorem 1.1.

Roughly speaking, Proposition 4.1 holds for the following reasons. If T
(
(α(p0)n, n)

)
is small

(i.e., bounded above by an

(
1 + δ(p0−p)2

log( 1
p0−p )

)
, then the shortest travel time path cannot have too

many sub-optimal edges. The path to (α(p0)n, n) is thus nearly an oriented path with only a edges.

However, with such edges an oriented path will typically only reach (α(p)n, n) where α(p) < α(p0).

13



The estimate of the probability of the complement of such an event is handled by Proposition 2.1

and some combinatorial estimates.

We note here that if T
(
(α(p0)n, n)

)
could be bounded above by an

(
1 + δ(p0−p)

log( 1
p0−p )

)
with high

probability then our proof would show that p 7→ fp0(p) is not two times differentiable at p = p0.

We are unfortunately unable to show such a bound.

To prove Proposition 4.1, we introduce some terminology. Given l = 1, 2, ..., say that a path

γ has rightward displacement of l if the difference between the x-components of the terminal and

initial points of γ equals l. For all integral m ∈ [n−k, n], ε > 0, and p ∈ [q, 1], let D(n, m, p, ε) ⊂ Ω

denote the event that there exists an optimal path beginning at 0 containing m edges, and with

rightward displacement at least (α(p) + ε)n. Proposition 2.1 implies for all p ∈ [q, 1] and all

n = 1, 2, ...

Pp[D(n, m, p, ε)] ≤ Pp [rm ≥ (α(p) + ε)n]

≤ C1m exp(−ε2m/C1) ≤ C1n exp(−ε2n/2C1) (4.1)

since 9n
10 ≤ m ≤ n. We are now ready to provide the

Proof of Proposition 4.1. Let p ∈ [q, p0] and suppose Pn 6= ∅. For any γ ∈ Pn, let dopt(γ) be

the total rightward displacement by the optimal edges in γ. In other words dopt(γ) is the combined

length of the projection of the optimal edges in γ onto the x-axis. Equivalently, dopt(γ) is the

difference between the rightward displacement of γ and the sum of the lengths of the intervals in

the x-trace τx(γ). For any γ ∈ Pn, we clearly have dopt(γ) ≥ α(p0)n− k, i.e.,

dopt(γ) ≥ α(p0)n−

⌊
aνδ(p0 − p)2n

log( 1
p0−p )

⌋

≥ α(p)n +
(α(p0)− α(p)

2

)
n +

{(α(p0)− α(p)
2

)
n− aνδ(p0 − p)2n

log( 1
p0−p )

}
.

By Lemma 3.2 the term inside the braces exceeds n(p0 − p)
(
1− aνδ(p0−p)

log( 1
p0−p )

)
, which by (3.3) is

non-negative. Therefore for all γ ∈ Pn

dopt(γ) ≥ α(p)n +
(α(p0)− α(p)

2

)
n ≥ α(p)n + (p0 − p)n.

Let P ′n denote all (not necessarily oriented) paths in the lattice L beginning at 0 and ending

at a point (m,n), m ∈ N, with an xy-trace having cardinality at most k. We thus have

Pp[Pn 6= ∅] ≤ Pp [∃ γ ∈ P ′n : dopt(γ) ≥ α(p)n + (p0 − p)n]
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= Pp [∃ γ ∈ P ′n : dopt(γ) ≥ α(p)n + (p0 − p)n, τxy(γ) = ∅] +

k∑
j=1

Pp [∃ γ ∈ P ′n : dopt(γ) ≥ α(p)n + (p0 − p)n, τxy(γ) ∈ Tj ] ,

since P ′n is the disjoint union (over T in Tj and j ∈ {1, 2, ..., k}) of paths in L beginning at 0 and

having an xy-trace T for some T ∈ Tj and some 1 ≤ j ≤ k. By additivity, the above equals

= Pp [∃ γ ∈ P ′n : dopt(γ) ≥ α(p)n + (p0 − p)n, τxy(γ) = ∅] +

k∑
j=1

∑
T∈Tj

Pp [∃ γ ∈ P ′n : dopt(γ) ≥ α(p)n + (p0 − p)n, τxy(γ) = T ] . (4.2)

Consider a fixed xy-trace T ∈ Tj . Every such trace T is uniquely defined by a set of deterministic

points {(Pi, P
′
i )}

2j
i=1, where (Pi, P

′
i ) ∈ L, 1 ≤ i ≤ 2j, are the endpoints of j optimal paths.

By independence and invariance by translation, the probability that there exists an optimal

path between (P1, P
′
1) and (P2, P

′
2) and a second optimal path between (P3, P

′
3) and (P4, P

′
4) equals

the probability that there exists an optimal path joining 0, the point (P2 − P1, P
′
2 − P ′

1), and the

point

((P2 − P1) + (P4 − P3), (P ′
2 − P ′

1) + (P ′
4 − P ′

3)) .

More generally, the probability that there exist optimal paths joining (Pi, P
′
i ) and (Pi+1, P

′
i+1)

for all 1 ≤ i ≤ 2j−1, is bounded by the probability that there exists an optimal path between 0 and(∑2j−1
i=1 (Pi+1 − Pi),

∑2j−1
i=1 (P ′

i+1 − P ′
i )
)
. Any such path has a total of N :=

∑2j−1
i=1 (P ′

i+1 − P ′
i )

edges where N ∈ [n − k, n − 1]. Thus, for each 1 ≤ j ≤ k, and each T ∈ Tj each summand in

(4.2) is bounded by the probability that there is an optimal path with N edges with rightward

displacement at least α(p)n + (p0− p)n, i.e., by the probability of D(n, N, p, p0− p). Similarly the

first probability in (4.2) is bounded by the probability of D(n, n, p, p0 − p). It follows by Lemma

3.6 and (4.1) that (4.2) becomes

Pp[Pn 6= ∅] ≤ C1n exp
(
− (p0 − p)2n

2C1

)
+ 3C1n

k∑
j=1

(
4n

2j

)2

exp
(
− (p0 − p)2n

2C1

)
. (4.3)

To conclude the proof of Proposition 4.1 it suffices to show that for all 1 ≤ j ≤ k(
4n

2j

)2

≤ exp
(

(p0 − p)2n
4C1

)
. (4.4)

To do this we will make use of ([7], Corollary 2.6.2)
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(
u

v

)
≤ exp

(
uH

( v

u

))
, u, v ∈ N,

where for all x ∈ (0, 1)

H(x) := −x log x− (1− x) log(1− x).

Thus for all j = 1, 2, . . . , k := baνδ(p0 − p)2n/ log( 1
p0−p )c we have

(
4n

2j

)
≤
(

4n

2k

)
≤ exp

(
4nH

(
k

2n

))
, (4.5)

where the first inequality holds since k ≤ n/10.

There is x0 ∈ (0, 1) such that if x ∈ (0, x0), then −(1− x) log(1− x) ≤ − log(1− x) ≤ −x log x

showing that for all x ∈ (0, x0) we have

H(x) ≤ 2x log
1
x

.

By choosing δ := δ(q) so small that aνδ < x0, we guarantee that k/2n < x0. Since x log 1
x is

increasing on (0, 1) we obtain

H

(
k

2n

)
≤ aνδ(p0 − p)2

log( 1
p0−p )

log
( 2n

baνδ(p0 − p)2n/ log( 1
p0−p )c

)

≤ aνδ(p0 − p)2

log( 1
p0−p )

log
( 4 log( 1

p0−p )

aνδ(p0 − p)2
)
,

since x
byc ≤

2x
y for x, y ≥ 1. Simple algebra shows that the above equals

=
aνδ(p0 − p)2

log( 1
p0−p )

[
log log

(
1

p0 − p

)
+ log

(
4

aνδ

)
+ 2 log

(
1

p0 − p

)]

< 3aνδ(p0 − p)2 + aνδ(p0 − p)2 log
(

4
aνδ

)
using −∞ < log log t ≤ log t for t > 1 and log

(
1

p0−p

)
> 1. Choosing δ := δ(q) ∈ (0, 1/2) so small

that aνδ log
(

4
aνδ

)
≤ (aνδ)1/2 we get

H

(
k

2n

)
≤ 4(aνδ)1/2(p0 − p)2. (4.6)

Substituting (4.6) into (4.5) and squaring we obtain for all 1 ≤ j ≤ k(
4n

2j

)2

≤ exp
(
32(aνδ)1/2(p0 − p)2n

)
.
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Recalling that C1 depends only on q, we may choose δ := δ(q) > 0 even smaller if necessary to

ensure that 32(aνδ)1/2 < 1/4C1, thus showing (4.4). Proposition 4.1 follows.
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