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Abstract

Consider the first passage percolation model on Zd for d ≥ 2. In this model we
assign independently to each edge the value zero with probability p and the value one
with probability 1− p. We denote by T (0, v) the passage time from the origin to v for
v ∈ Rd and

B(t) = {v ∈ Rd : T (0, v) ≤ t} and G(t) = {v ∈ Rd : ET (0, v) ≤ t}.

It is well known that if p < pc, there exists a compact shape Bd ⊂ Rd such that for all
ε > 0

tBd(1− ε) ⊂ B(t) ⊂ tBd(1 + ε) and G(t)(1− ε) ⊂ B(t) ⊂ G(t)(1 + ε) eventually w.p.1.

We denote the fluctuations of B(t) from tBd and G(t) by

F (B(t), tBd)=inf
{

l : tBd

(
1 − l

t

)
⊂B(t)⊂ tBd

(
1 +

l

t

)}
,

F (B(t), G(t))=inf
{

l : G(t)
(

1 − l

t

)
⊂ B(t)⊂G(t)

(
1 +

l

t

)}
.

In this paper, we show that for all d ≥ 2 with a high probability, the fluctuations
F (B(t), G(t)) and F (B(t), tBd) diverge with a rate of at least C log t for some constant
C. The proof of this argument depends on the linearity between the number of pivotal
edges of all minimizing paths and the paths themselves. This linearity is also indepen-
dently interesting.
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1 Introduction of the model and results.

We consider the Zd lattice for d ≥ 2, as a graph with edges connecting each pair of vertices
x = (x1, · · · , xd) and y = (y1, · · · , yd) with d(x, y) = 1, where d(x, y) is the distance between
x and y. For any two vertex sets A, B ⊂ Zd, the distance between A and B is also defined
by

d(A, B) = min{d(u, v) : u ∈ A and v ∈ B}. (1.0)

We assign independently to each edge the value t(e) = 0 with a probability p or t(e) = 1
with probability 1 − p. More formally, we consider the following probability space. As the
sample space, we take Ω =

∏
e∈Zd{0, 1}, points of which are represented as configurations.

Let P = Pp be the corresponding product measure on Ω. The expectation and variance with
respect to P are denoted by E(·) = Ep(·) and σ2(·) = σ2

p(·). For any two vertices u and v, a
path γ from u to v is an alternating sequence (v0, e1, v1, ..., en, vn) of vertices vi and edges ei

in Zd with v0 = u and vn = v. Given a path γ, we define the passage time of γ as

T (γ) =
n∑

i=1

t(ei). (1.1)

For any two sets A and B, we define the passage time from A to B as

T (A, B) = inf{T (γ) : γ is a path from some vertex of A to some vertex in B},

where the infimum takes over all possible finite paths. A path γ from A to B with t(γ) =
T (A, B) is called the route of T (A, B). If we focus on a special configuration ω, we may
write T (A, B)(ω) instead of T (A, B). When A = {u} and B = {v} are single vertex sets,
T (u, v) is the passage time from u to v. We may extend the passage time over Rd. If x
and y are in Rd, we define T (x, y) = T (x′, y′), where x′ (resp., y′) is the nearest neighbor of
x (resp., y) in Zd. Possible indetermination can be eliminated by choosing an order on the
vertices of Zd and taking the smallest nearest neighbor for this order.

In particular, the point-point passage time was first introduced by Hammersley and Welsh
(1965) as follows:

am,n = inf{t(γ) : γ is a path from (m, · · · , 0) to (n, · · · 0) }.

By Kingman’s subadditive argument, we have

lim
n→∞

1

n
a0n = µp a.s. and in L1, (1.2)

and (see Theorem 6.1 in Kesten (1986))

µp = 0 iff p ≥ pc, (1.3)
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where pc = pc(d) is the critical probability for Bernoulli (bond) percolation on Zd and the
non-random constant µp is called the time constant.

Given a unit vector x ∈ Rd, by the same arguments in (1.2) and (1.3),

lim
n→∞

1

n
T (0, nx) = lim inf

n

1

n
ET (0, nx) = µp(x) a.s. and in L1, (1.4)

and
µp(x) = 0 iff p ≥ pc.

The map x → µp(x) induces a norm on Rd. The unit radius ball for this norm is denoted
by Bd := Bd(p) and is called the asymptotic shape. The boundary of Bd is

∂Bd := {x ∈ Rd : µp(x) = 1}.

If p < pc, Bd is a compact convex deterministic set and ∂Bd is a continuous convex closed
curve (Kesten (1986)). Define for all t > 0

B(t) := {v ∈ Rd, T (0, v) ≤ t}.

The shape theorem (see Theorem 1.7 of Kesten (1986)) is the well-known result stating that
for any ε > 0,

tBd(1 − ε) ⊂ B(t) ⊂ tBd(1 + ε) eventually w.p. 1. (1.5)

In addition to tBd, we can consider the mean of B(t) to be

G(t) = {v ∈ Rd : ET (0, v) ≤ t}.

By (1.4), we have
tBd ⊂ G(t) (1.6)

and
G(t)(1 − ε) ⊂ B(t) ⊂ G(t)(1 + ε) eventually w.p. 1. (1.7)

The natural, or perhaps the most challenging question in this field (see Kesten (1986)
and Smythe and Wierman (1978)), is to ask how “fast” or how “rough” the boundary or
interface is of the set B(t) from the deterministic boundaries tBd and G(t). It is widely
conjectured (see (1.8) in Kesten (1993)) that if p < pc for a lower d there exists l = l(t) such
that the following probabilities

P

(
tBd

(
1 − xl

t

)
⊂ B(t) ⊂ tBd

(
1 +

xl

t

))
(1.8)

are close to one for large x > 0, in particular, when d = 2, l ≈ t1/3.
This problem has also received a great amount of attention from statistical physicists

because of its equivalence with one version of the Eden growth model. They believe that
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there is a scaling relation for the shape fluctuations in growth models. For each unit vector
x, one may denote by ht(x) height of the interface (see page 490 in Krug and Spohn (1992)).
The initial condition is h0(x) = 0. Being interested in fluctuation, one considers the height
fluctuation function

h̄t(x) = ht(x) − Eht(x).

Statistical physicists believe that h̄t(x) should be satisfied (see (3.1) in Krug and Spohn
(1992)) the statistical properties of the rescaled process

h̄t(x) = bζ h̄bzt(bx)

with the scaling exponents ζ and z for an arbitrary rescaling factor b. With this rescaling
equation, it should have (see (7.9) in Krug and Spohn (1992)), for a lower d and for all vector
x,

h̄t(x) ≈ tζ/z pointwisely or σ(ht(x)) ≈ tζ/z. (1.9)

In particular, (1.9) should hold for ζ = 1/2 and z = 2/3 when d = 2. There have been
varying discussions about the nature of the fluctuations of h̄t(x) for a large d including the
possible independence of χ(d) = ζ/z on d (Kardar and Zhang (1987)), the picture of χ(d)
decreasing with d but always remaining strictly positive (see Wolf and Kertesz (1987) and
Kim and Kosterlitz (1989)), the possibility that for d above some dc, χ(d) = 0, and the idea
that the fluctuations do not even diverge (see Nattermann and Renz (1988), Halpin-Healy
(1989) and Cook and Derrida (1990)). Simulations for a large d seem to be difficult to
pursue as mentioned by Kim and Kosterlitz (1989), because the computation time would be
prohibitive.

Mathematicians have also made significant efforts in this direction. Before introducing
mathematical estimates, we would like to give a precise definition of the fluctuations of B(t)
from tBd or G(t) by using (1.8) and (1.9). In fact, if one asks how fast or how rough the
boundary of an interface from tBd or G(t), two versions should be considered:
(a) (directional fluctuation) for a fixed unit vector x, consider the mean of the distance
between the boundaries of B(t) and G(t) or of B(t) and tBd along the direction x, or
(b) (maximum fluctuation) the mean of the maximum distance between the boundaries of
B(t) and G(t) or of B(t) and tBd among all vectors.
Note that large directional fluctuations imply large maximum fluctuations. In this paper, we
will primarily focus on maximum fluctuations by using the following definition, more general
than the definition in (b). For a connected set Γ of Rd containing the origin, let

Γ+
l = {v ∈ Rd : d(v, Γ) ≤ l} and Γ−

l = {v ∈ Γ : d(v, ∂Γ) ≥ l}.

In words, we enlarge or shrink Γ with l units to have Γ+
l or to have Γ−

l . Note that Γ−
l ⊂ Γ

and Γ ⊂ Γ+
l . Note also that Γ−

l might be empty even though Γ is non-empty. For a fixed Γ,
we define the following random variable as

F (B(t), Γ) = F (B(t)(ω), Γ) = inf{l : Γ−
l ⊂ B(t)(ω) ⊂ Γ+

l }. (1.10)

4



If we set Γ = tBd, we may view F (B(t), Γ) as the maximum fluctuation of B(t) from Γ.
The definition of (1.10) was used by Newman and Piza (1995). With this definition, the
conjecture in (1.8) is equivalent the question

F (B(t), tB2) = O(t1/3) with a high probability.

When p ≥ pc, Bd is unbounded, so is B(t). Furthermore, when p = 0, there are no
fluctuations, so we require in this paper that

0 < P (t(e) = 0) = p < pc. (1.11)

The mathematical estimates for the upper bound of the fluctuation F (B(t), Γ), when
Γ = tBd and Γ = G(t), are quite promising. Kesten (1993) and Alexander (1993, 1996)
showed that for p < pc(d) and all d ≥ 2, there is a constant C1 such that

F (B(t), tBd) ≤ C1

√
t log t eventually w.p.1 (1.12)

and
tBd ⊂ G(t) ⊂ (t + C2

√
t log t)Bd,

where log denotes the natural logarithm. In this paper C and Ci are always positive constants
that may depend on p or d, but not t, and their values are not significant and change from
appearance to appearance. Benjamini, Kalai and Schramm (2003) also showed that when
t(e) only takes two values 0 < a < b with a half probability for each one,

F (B(t), tBd) ≤ C
√

t/ log t eventually w.p.1. (1.13)

On the other hand, the estimates for the lower bound of the fluctuations are quite un-
satisfactory. Under (1.11) it seems that the only result for all d ≥ 2 (see Kesten (1993))
is

F (B(t), tBd) ≥ a non-zero constant eventually w.p.1. (1.14)

For d = 2, Newman and Piza (1995) showed that

F (B(t), tBd) ≥ t1/8 and F (B(t), G(t)) ≥ t1/8 eventually w.p.1. (1.15)

If we focus on the directional fluctuation, it has been proved (see Newman and Piza
(1995) and Pemantle and Peres (1994)) that for d = 2,

σ2(T (0, xt)) ≥ C log t.

Clearly, one of most intriguing questions in this field is to ask if the fluctuations of B(t)
diverge as some statistical physicists believed to be true while others did not. More precisely,
we may ask whether there is a vector x such that for all d > 2,

σ2(T (0, xt)) → ∞ as t → ∞ (1.16)
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or at least whether the maximum fluctuation

EF (B(t), tBd) → ∞ and EF (B(t), G(t)) → ∞ as t → ∞.

In this paper we answer the second conjecture affirmatively to show that the maximum fluc-
tuations of B(t) always diverge for all d ≥ 2. We can even tell that the divergence rate is at
least C log t.

Theorem 1. For 0 < p < pc, d ≥ 3, t > 0 and any deterministic set Γ, there exists a
positive constant δ = δ(p, d) such that

P (F (B(t), Γ) ≥ δ log t) ≥ 1 − C1t
−d+2−2δ log p.

Remark 1. If we set Γ = tBd or Γ = G(t), together with (1.14), the fluctuations
F (B(t), tBd) and F (B(t), G(t)) are at least δ log t with a large probability. Also, it follows
from this probability estimate that

E(F (B(t), Γ)) ≥ C log t (1.17)

for a constant C = C(p, d) > 0.

Remark 2. We are unable to estimate whether F (tBd, G(t)) diverges even though we
believe it does.

Remark 3. Theorem 1 only shows that the maximum fluctuations diverge but we do
not know whether the directional fluctuations diverge.

The proof of Theorem 1 is constructive. In fact, if F (B(t), Γ) ≤ δ log t, then we can
construct td−1+2δ log p zero-paths from ∂B(t) to Γ+

δ log t. For each such path, we can use the
geometric property introduced in Section 2 to show that the path contains a pivotal edge
defined in Section 3. Therefore, we can construct about td−1+2δ log p pivotal edges. However,
in Section 3, we can also show the number of pivotal edges is of order t. Therefore, for a
suitable δ we cannot have as many pivotal edges as we constructed. The contradiction tells
us that F (B(t), Γ) ≥ δ log t.

With these estimates for pivotal edges in section 3, we can also estimate the number of
the total vertices in all routes. This estimate is independently interesting. For a connected
set Γ ⊂ Rd with α1tBd ⊂ Γ ⊂ α2tBd for some constants 0 < α1 < 1 < α2, let

RΓ =
⋃

γt, where γt is a route for T (0, ∂Γ).

Theorem 2. If 0 < p < pc(d), for all d ≥ 2 and t > 0, there exists C(p, d, α1, α2) such
that

E(|RΓ|) ≤ Ct,
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where |A| denotes the cardinality of A for some set A.

Remark 4. Kesten (1986) showed that there exists a route for T (0, Γ) with length Ct
for some positive constant C. Theorem 2 gives a stronger result with the number of ver-
tices in all routes for T (0, ∂Γ) also in order t. For quite some time, the author believed
that the routes of T (0, ∂Γ) resembled a spiderweb centered at the origin so the number of
the vertices in the routes should be of order td. However, Theorem 2 negates this assumption.

Remark 5. Clearly, there might be many routes for the passage time T (0, ∂Γ). As a
consequence of Theorem 2, each route contains at most Ct vertices. Specifically, let

Mt,Γ = sup{k : there exists a route of TΓ(0, ∂Γ) containing k edges}.

If 0 < p < pc, for all d ≥ 2 and t > 0, there exists a positive constant C = C(p, d) such that

E(Mt,Γ) ≤ Ct. (1.18)

Remark 6. We may also consider Theorem 2 for a point-point passage time. Let

Rx,t =
⋃

γt, where γt is a route for T (0, xt)

for a unit vector x. We may use the same argument of Theorem 2 to show if 0 < p < pc, for
all d ≥ 2 and t > 0, there exists a positive constant C = C(p, d) such that

E(|Rx,t|) ≤ Ct. (1.19)

Remark 7. The condition p > 0 in Theorem 2 is crucial. As p ↓ 0, the constant C
in Theorem 2, (1.18) and (1.19) may go to infinity. When p = 0, all edges have to take
value one. If we take Γ as a diamond shape with a diagonal length 2t both in vertical and
horizontal directions, it is easy to say that all edges inside the diamond belong to RΓ so

|RΓ| = the number of edges in Γ = O(td). (1.20)

This tells us that Theorem 2 will not work when p = 0.

2 Geometric properties of B(t).

In this section we would like to introduce a few geometric properties for B(t). Given a set
Γ ⊂ Rd, we let Γ′ be all vertices contained in Γ ∩ Zd. It is easy to see that

Γ′ ⊂ Γ ⊂ {v + (−1, 1)d : v ∈ Γ′}. (2.0)
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As we mentioned in the last section, both B(t) and G(t) are finite as well as B′(t) and G′(t).
We now show that B′(t) and G′(t) are also connected. Here a set A is said to be connected
in Zd if any two vertices of A are connected by a path in A.

Proposition 1. B′(t) and G′(t) are connected.

Proof. Since T (0, 0) = 0 ≤ t, 0 ∈ B′(t). We pick a vertex v ∈ B′(t), so T (0, v) ≤ t.
This tells us that there exists a path γ such that

T (γ) ≤ t.

Therefore, for any u ∈ γ,
T (0, u) ≤ t so u ∈ B′(t). (2.1)

This implies that γ ⊂ B′(t), so we know B′(t) is connected. The same argument shows that
G′(t) is connected. 2

Given a finite set Γ of Zd, we define its vertex boundary as follows. For each v ∈ Γ, v ∈ Γ
is said to be a boundary vertex of Γ if there exists u 6∈ Γ but u is adjacent to v. We denote
by ∂Γ all boundary vertices of Γ. We also let ∂oΓ be all vertices not in Γ, but adjacent to
∂Γ. With these definitions, we have the following Proposition.

Proposition 2. For all v ∈ ∂B′(t), T (0, v) = t, and for all u ∈ ∂oB
′(t), T (0, u) = t + 1.

Proof. We pick v ∈ ∂B′(t). By the definition of the boundary, v ∈ ∂B′(t) so T (0, v) ≤ t.
Now we show T (0, v) ≥ t for all v ∈ ∂B′(t). If we suppose that T (0, v) < t for some
v ∈ ∂B′(t), then T (0, v) ≤ t − 1, since T (0, v) is an integer. Note that t(e) only takes zero
or one, so there exists u ∈ ∂oB(t) and u is adjacent to v such that T (0, u) ≤ t. This tells us
that u ∈ B′(t). But we know as we defined that

∂oB
′(t) ∩ B(t) = ∅. (2.2)

This contradiction tells us that T (0, v) ≥ t for all v ∈ ∂B′(t).
Now we will prove the second part of Proposition 2. We pick a vertex u ∈ ∂oB

′(t). Since
u is adjacent to v ∈ B′(t),

T (0, u) ≤ 1 + T (0, v) ≤ 1 + t. (2.3)

On the other hand, any path from 0 to u must pass through a vertex of ∂B′(t) before reaching
∂oB

′(t). We denote the vertex by v. As we proved, T (0, v) = t. The passage time of the rest
of the path from v to u has to be greater or equal to one, otherwise, u ∈ B′(t). Therefore,
any path from 0 to u has a passage time greater or equal to t + 1, that is

T (0, u) ≥ t + 1.
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Therefore, T (0, ∂oB
′(t)) = t + 1. 2

Given a fixed connected set κ = κt containing the origin, define the event as

{B′(t) = κ} = {ω : B′(t)(ω) = κ}.

Proposition 3. The event of {B′(t) = κ} only depends on the zeros and ones of the
edges on κ ∪ ∂oκ.

Proposition 3 for d = 2 has been proven by Kesten and Zhang (1998). In fact, they gave
a precise structure of B′(t). We may adapt their idea to prove Proposition 3 for d ≥ 3 by
using the plaquette surface (see the definition in section 12.4 Grimmett (1999)). To avoid
the complicated definition of the plaquette surface, we would rather give the following direct
proof.

Proof of Proposition 3. Let κC denote the vertices of Zd \ κ and

{ω(κ)} =
∏

edge in κ

{0, 1} and {ω(κC)} =
∏

edge in κC

{0, 1},

where edges in κ are the edges whose two vertices belong to κ∪ ∂oκ and the edges in κC are
the other edges. For each ω ∈ Ω, we may rewrite ω as

ω = (ω(κ), ω(κC)).

Suppose that Proposition 3 is not true, so the zeros and ones in ω(κC) can affect the event
{B′(t) = κ}. In other words, there exist two different ω1, ω2 ∈ Ω with

ω1 = (ω(κ), ω1(κ
C)) and ω2 = (ω(κ), ω2(κ

C))

such that
B′(t)(ω1) = κ but B′(t)(ω2) 6= κ. (2.4)

From (2.4) there are two cases:
(a) there exists u such that u ∈ B′(t)(ω2), but u 6∈ κ.
(b) there exists u such that u ∈ κ, but u 6∈ B′(t)(ω2).
If (a) holds,

T (0, u)(ω2) ≤ t. (2.5)

There exists a path γ from 0 to u such that

T (γ)(ω2) ≤ t. (2.6)
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Since u 6∈ κ, any path from 0 to u has to pass through ∂oκ = ∂oB
′(t)(ω1). Let γ′ be the

subpath of γ from 0 to ∂oκ = ∂oB
′(t)(ω1). Then by Proposition 2,

T (γ′)(ω1) ≥ t + 1.

Note that the zeros and ones on the edges of κ for both ω2 = (ω(κ), ω2(κ
C)) and ω1 =

(ω(κ), ω1(κ
C)) are the same so

t + 1 ≤ T (γ′)(ω1) = T (γ′)(ω2) ≤ T (γ)(ω2). (2.7)

By (2.6) and (2.7) (a) cannot hold.
Now we assume that (b) holds. Since any path from 0 to u has to pass through

∂oB
′(t)(ω2), by Proposition 2,

T (0, u)(ω2) ≥ t + 1. (2.8)

But since u ∈ κ and B′(t)(ω1) = κ, there exists a path γ inside B′(t)(ω1) from 0 to u such
that

T (γ)(ω1) ≤ t.

Therefore,
T (0, u)(ω2) ≤ T (γ)(ω2) ≤ t, (2.9)

since γ ⊂ κ and the zeros and ones on the edges of κ for both ω2 = (ω(κ), ω2(κ
C)) and

ω1 = (ω(κ), ω1(κ
C)) are the same. The contradiction of (2.8) and (2.9) tells us that (b)

cannot hold. Proposition 3 follows since (2.4) cannot hold. 2

3 The linearity of a number of pivotal edges

In this section we will discuss a fixed value 0 < p < pc and a fixed open interval Ip ⊂ (0, pc)
centered at p. First we show that the length of a route from the origin to ∂B′(t) is of order
t.

Lemma 1. For a small interval Ip ⊂ (0, pc) centered at p, there exist positive constants
α = α(Ip, d), C1 = C1(Ip, d) and C2 = C2(Ip, d) such that for all t and all p′ ∈ Ip,

P (∃ a route γ from the origin to ∂B′(t) with |γ| ≥ αt) ≤ C1 exp(−C2t).

Proof. By Theorem 5.2 and 5.8 in Kesten (1986) for all p′ ∈ Ip and for all t, there exist
C3 = C3(Ip, d) and C4 = C4(Ip, d) such that

P
(

2t

3
Bd 6⊂ B(t)

)
≤ C3 exp(−C4t) and P

(
B(t) 6⊂ 3t

2
Bd

)
≤ C3 exp(−C4t). (3.0)
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If we put these two inequalities from (3.0) together, we have for all p′ ∈ Ip and all t,

P
(

t

2
Bd ⊂ B′(t) ⊂ 2tBd for all large t

)
≥ 1 − C3 exp(−C4t). (3.1)

On the event of

{∃ a route γ from the origin to ∂B(t) with |γ| ≥ αt} ∩
{

t

2
Bd ⊂ B(t) ⊂ 2tBd

}
,

we can assume that there exists a route γ from the origin to some vertex u ∈ ∂B′(t) with

t

2
≤ d(0, u) ≤ 2t and |γ| ≥ αt

such that
t = T (0, ∂B′(t)) = T (γ) = T (0, u).

Therefore, by (3.1),

P (∃ a route γ from the origin to ∂B′(t) with T (γ) ≤ t, |γ| ≥ αt)

≤
∑

t/2≤d(0,u)≤2t

P (∃ a route γ from the origin to u with T (γ) ≤ t, |γ| ≥ αt) + C3 exp(−C4t).

Proposition 5.8 in Kesten (1986) tells us that there exist positive constants β(Ip, d), C5 =
C5(Ip, d) and C6 = C6(Ip, d) such that for all p′ ∈ Ip and t

P (∃ a self-avoiding path γ from (0, 0) to y which contains n edges, but with T (γ) ≤ βn)

≤ C5 exp(−C6n), (3.2)

where n is the largest integer less than t. If we take a suitable α = α(Ip, d) together with
these two observations, we have for all p′ ∈ Ip,

P (∃ a route γ from the origin to ∂B′(t) with |γ| ≥ αt) ≤ (2t)dC5 exp(−C6t).

Lemma 1 follows . 2

To show Theorems, we may concentrate on a “regular” set satisfying (3.1). Here we give
the following precise definition. Given a deterministic connected finite set Γ = Γt ⊂ Rd, Γ
is said to be regular if there exists t such that

t

2
Bd ⊂ Γ ⊂ 2tBd. (3.3)

For a regular set Γ we denote by

TΓ(0, ∂Γ) = inf{T (γ) : γ ⊂ Γ′ is a path from the origin to some vertex of ∂Γ′}.
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Now we try to compute the derivative of ETΓ(0, ∂Γ) in p for a regular set Γ. As a result, we
have

ETΓ(0, ∂Γ) =
∑

i≥1

P (TΓ((0, 0), ∂Γ) ≥ i).

An event A is said to be increasing if

1 − IA(ω) ≤ 1 − IA(ω′) whenever ω ≤ ω′,

where IA is the indicator of A. Note that Γ is a finite set, so dETΓ(0,∂Γ)
dp

exists. We have

dETΓ(0, ∂Γ)

dp
=
∑

i≥1

dP (TΓ(0, ∂Γ) ≥ i)

dp
. (3.5)

Note that
{TΓ(0, ∂Γ) ≥ i}

is decreasing, so by Russo’s formula

dEpTΓ(0, ∂Γ)

dp
= −

∑

i≥1

∑

e∈Γ

P ({TΓ(0, ∂Γ) ≥ i}(e)), (3.6)

where {TΓ(0, ∂Γ) ≥ i}(e) is the event that e is a pivotal for {TΓ(0, ∂Γ) ≥ i}. In fact, given
a configuration ω, e is said to be a pivotal edge for {TΓ(0, ∂Γ)(ω) ≥ i} if t(e)(ω) = 1 and

TΓ(0, ∂Γ)(ω′) = i − 1

where ω′ is the configuration that t(b)(ω) = t(b)(ω′) for all edges b ∈ Γ except e and
t(e)(ω′) = 0. The event {TΓ(0, ∂Γ) ≥ i}(e) is equivalent to the event that there exists a
route of TΓ(0, ∂Γ) with passage time i passing through e and t(e) = 1. With this observation,

dETΓ(0, ∂Γ)

dp

= −
∑

i≥1

∑

e∈Γ

P (∃ a route of TΓ(0, ∂Γ) passing through e with TΓ(0, ∂Γ) = i and t(e) = 1)

= −
∑

e∈Γ

P (∃ a route of TΓ(0, ∂Γ) passing through e and t(e) = 1).

Let KΓ be the number of edges {e} ⊂ Γ′ such that a route from the origin to ∂Γ′ passes
through e and t(e) = 1. We have

−dETΓ(0, ∂Γ)

dp
= E(KΓ). (3.7)
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Now we give an upper bound for E(KΓ) by giving an upper bound for −dETΓ(0,∂Γ)
dp

. Before

doing that, we shall define the route length for TΓ(0, ∂Γ) by

NΓ(ω) = min{k : there exists a route of TΓ(0, ∂Γ)(ω) containing k edges}.

We show that the size of NΓ cannot be more than Ct for some constant C.

Lemma 2. For a regular set Γ and the interval Ip, there exist positive constants Ci =
Ci(Ip, d) (i = 1, 2, 3) such that for all p′ ∈ Ip and t,

P (NΓ ≥ C1t) ≤ C2 exp(−C3t).

Proof. We follow the proof of Theorem 8.2 in Smythe and Wierman (1979) to control
NΓ by TΓ(0, ∂Γ). Let ω + r denote the time state of the lattice obtained by adding the r to
t(e) for each edge e. It follows from the definitions of the passage time and NΓ

TΓ(0, ∂Γ)(ω + r) ≤ TΓ(0, ∂Γ)(ω) + rNΓ(ω). (3.8)

If we take a negative r in (3.8), we have

NΓ(ω) ≤ TΓ(0, ∂Γ)(ω + r) − TΓ(0, ∂Γ)

r
. (3.9)

Note that Γ is regular, so Γ ⊂ 2tBd. If we denote by L the segment from the origin to ∂(2tBd)
along the X-axis, then L has to go through ∂Γ somewhere since Γ ⊂ 2tBd. Therefore,

−TΓ(0, Γ)

r
≤ −T (L)

r
≤ − 2t

µr
. (3.10)

If we can show that for some r < 0, there exist constants C4 = C4(Ip, d) and C5 = C5(Ip, d)
such that for all p′ ∈ Ip and all t,

P (TΓ(0, ∂Γ)(ω + r) ≤ 0) ≤ C4 exp(−C5t), (3.11)

then by (3.9) and (3.10), Lemma 2 holds. Therefore, to show Lemma 2, it remains to show
(3.11). Note that Γ is a finite connected set, so for each ω, there exists x = x(ω) ∈ ∂Γ such
that

TΓ(0, ∂Γ)(ω + r) = TΓ(0, x)(ω + r) ≥ T (0, x)(ω + r).

Since x ∈ ∂Γ and Γ is regular, then

t/2 ≤ d(0, x) ≤ 2t.

We have

P (TΓ(0, ∂Γ)(ω + r) ≤ 0) ≤ P (T (0, x(ω))(ω + r) ≤ 0) ≤
∑

t/2≤d(0,y)≤2t

P (T (0, y)(ω + r) ≤ 0).

(3.12)
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Therefore, by (3.2) and (3.12) we take β in (3.2) and |r| small with r < 0 and β > |r| > 0
to obtain for all p′ ∈ Ip,

∑

t/2≤d(0,y)≤2t

P (T (0, y)(ω + r) ≤ 0)

≤
∑

t/2≤d(0,y)≤2t

P (∃ a self avoiding path γ from 0 to y which contains n edges,

but with T (γ)(ω) ≤ 2βn)

≤ C6t
d exp(−C7t), (3.13)

where n is the largest integer less than t. Therefore, (3.11) follows from (3.13). 2

With Lemma 2, we are ready to give an upper bound for −dETΓ(0,∂Γ)
dp

.

Lemma 3. For a regular set Γ, there exists a constant C(Ip, d) such that for all p′ ∈ Ip

and t

−dETΓ(0, ∂Γ)

dp
≤ Ct.

Proof. We assign s(e) ≥ t(e) either zero or one independently from edge to edge with
probabilities p−h or 1− (p−h) for a small number h > 0, respectively. With this definition,

P (s(e) = 1, t(e) = 0) = P (s(e) = 1) − P (s(e) = 1, t(e) = 1)

= P (s(e) = 1) − P (t(e) = 1) = 1 − (p − h) − (1 − p) = h. (3.14)

Let γt be a route for T t
Γ(0, ∂Γ) with time state t(e) and let γs be a route for T s

Γ(0, ∂Γ) with
time state s(e). Here we pick γt such that

|γt| = NΓ.

For each edge e ∈ γt, if t(e) = 1, then s(e) = 1. If t(e) = 0 but s(e) = 1, we just add one for
this edge. Therefore,

T s
Γ(0, ∂Γ) ≤ T (γt) +

∑

e∈γt

I(t(e)=0,s(e)=1). (3.15)

Clearly, γt may not be unique, so we select a route from these γt in a unique way. We still
write γt for the unique route without loss of generality. By (3.15) and this selection,

ET s
Γ(0, ∂Γ) ≤ ET (γt) +

∑

β

∑

e∈β

P (t(e) = 0, s(e) = 1, γt = β), (3.16)

where the first sum in (3.16) takes over all possible paths β from 0 to ∂Γ′. Let us estimate

∑

β

∑

e∈β

P (t(e) = 0, s(e) = 1, γt = β).
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Since Γ is regular, the longest path from (0, 0) to ∂Γ′ is less than (2t)d. By Lemma 2, there
exist C1 = C1(Ip, d), C2(Ip, d) and C3(Ip, d) such that

∑

β

∑

e∈β

P (t(e) = 0, s(e) = 1, γt = β)

≤
∑

|β|≤C1t

∑

e∈β

P (t(e) = 0, s(e) = 1, γt = β) + C2t
d exp(−C3t). (3.17)

Note that the value of s(e) may depend on the value of t(e), but not the other values of t(b)
for b 6= e, so by (3.14),

P (t(e) = 0, s(e) = 1, γt = β) = P (s(e) = 1 | t(e) = 0, γt = β)P (t(e) = 0, γt = β)

≤ P (s(e) = 1 | t(e) = 0)P (γt = β) = hp−1P (γt = β). (3.18)

By (3.18), we have

∑

|β|≤C1

∑

e∈β

P (t(e) = 0, s(e) = 1, γt = β) ≤
∑

|β|≤C1t

∑

e∈β

hp−1P (γt = β) ≤ C1htp−1. (3.19)

By (3.17) and (3.19), there exists C4 = C4(Ip, d) such that

E(T s
Γ(0, ∂Γ)) ≤ E(T t

Γ(0, ∂Γ) + C4th. (3.20)

If we set
f(p) = E(TΓ(0, ∂Γ)) for time state t(e) with P (t(e) = 0) = p,

then by (3.20),

−df(p)

dp
= lim

h→0
−f(p − h) − f(p)

−h
≤ C4t. (3.21)

Therefore, we have

−dETΓ(0, ∂Γ)

dp
= −df(p)

dp
≤ C4t, (3.22)

so Lemma 3 follows from (3.22). 2

Together with (3.7) and Lemma 3, we have the following proposition.

Proposition 4. If 0 < p < pc, then for a regular set Γ there exists a constant C = C(p)
such that

EKΓ ≤ Ct.
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4 Proof of Theorem 1.

In this section, we only show Theorem 1 for d = 3. The same proof for d > 3 can be adapted
directly. Given a fixed set Γ ⊂ R3 defined in section 2, Γ′ ⊂ Z3 is the set of all vertices
contained in Γ, where

Γ′ ⊂ Γ ⊂ {v + (−1, 1)3 : v ∈ Γ′}. (4.0)

Suppose that there exists a deterministic set Γ such that

F (B(t), Γ) ≤ δ log t. (4.1)

(4.1) means that
Γ−

δ log t ⊂ B(t) ⊂ Γ+
δ log t,

where
Γ+

l = {v ∈ R3 : d(v, Γ) ≤ l} and Γ−
l = {v ∈ Γ : d(v, ∂Γ) ≥ l}.

We first show that if Γ+
δ log t does not satisfy the regularity condition in (3.3), then the

probability of the event in (4.1) is exponentially small. We assume that

Γ+
δ log t 6⊂ 2tBd. (4.2)

If

F (B(t), Γ) ≤ δ log t with δ log t <
t

3
, (4.3)

then we claim that

B(t) 6⊂ 3t

2
Bd. (4.4)

To see (4.4), note that

B(t) ⊂ 3t

2
Bd implies that Γ+

δ log t ⊂ 2tBd. (4.5)

Therefore, (4.4) follows from (4.2). Under (4.2), by (3.0) there exist C1(p, d) and C2(p, d)
such that

P (F (B(t), Γ) ≤ δ log t) ≤ C1 exp(−C2t). (4.6)

Similarly, if we assume that (t/2)Bd 6⊂ Γ+
δ log t for a set Γ, we have

P (F (B(t), Γ) ≤ δ log t) ≤ C1 exp(−C2t). (4.7)

With (4.6) and (4.7), and Γ+
δ log t not satisfying the regularity condition in (3.3), we have

P ((F (B(t), Γ) ≤ δ log t) ≤ C1 exp(−C2t). (4.8)
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Figure 1: The graphs: Smt, ∂B′(t), Γ+
δ log t, the cylinder Tsi

with the center at Lsi
, pivotal

edge evi
, zigzag path γvi

from vi to ∂(Γ+
δ log t)

′.

Now we focus on Γ+
δ log t satisfying (3.3). We need to show that under (4.1) there are of

order t2 disjoint zero paths from ∂B(t) to Γ+
δ log t. To accomplish this, let Smt denote a sphere

with the center at the origin and a radius tm for small but positive number m. Then by
(3.1), for a suitable m > 0,

P (Smt ⊂ B(t) ⊂ 2tBd) ≥ 1 − C1 exp(−C2t). (4.9)

Here we select the sphere Smt without a special purpose since the sphere is easy to describe.
For each s ∈ ∂Smt, let Ls be the normal line passing though s, that is the line orthogonal to
the tangent plane of Smt at s. We denote the cylinder with the center at Ls by (see Fig.1)

Ts(M) = {(x, y, z) ∈ R3 : d((x, y, z), Ls) ≤ M} for some constant M > 0.

Now we work on the regular polyhedron with ct2 faces embedded on Smt, where ct2 is an
integer and c = c(m, M) is a small number such that the radius of each face of the regular
polyhedron is larger than M . We denote the center of each face in the regular polyhedron
by {si}ct2

i=1. By this construction, we have at least ct2 disjoint cylinders {Ts(M)}. We denote
them by {Tsi

(M)}ct2

i=1.
For each si, we may take M large such that there exists a path γsi

⊂ Zd ∩ Tsi
(M) from

some vertex of Z3 in Smt to ∞. To see the existence of such a path, if Lsi
is the ray going

along the coordinate axis, we simply use Lsi
as the path. If it is not, we can construct a

zigzag path in Zd next to Lsi
from si to ∞ (see Figure 1). In fact, we may take M = 2 to

keep our zigzag path inside Tsi
(M). For simplicity, we use Tsi

to denote Tsi
(2). There might
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be many such zigzag paths, so we just select one in a unique manner. We denote by ui ∈ Zd,
with d(ui, si) ≤ 2, the initial vertex in γsi

. Since γsi
is next to Lsi

, for any point x on the
ray Lsi

, there is v in γsi
with d(v, x) ≤ 2. Furthermore, by a simple induction we conclude

that
the number of vertices from ui to v along γsi

is less than 2d(si, x). (4.10)

(4.10) tells us that the length of γsi
is linear to the length of Lsi

. Since γsi
is from Smt to

∂(Γ+
δ log t)

′, it must reach outside of B′(t) from its inside. Let vi be the last vertex from these
intersections of ∂oB

′(t)∩γsi
and γvi

be the piece of γsi
outside B′(t) from vi to ∂(Γ+

δ log t)
′(see

Figure 1). On F (B(t), Γ) ≤ δ log t for a regular Γ, we know that

B′(t) ⊂ (Γ+
δ log t)

′.

Therefore, by our construction (see Figure 1)

γvi
⊂ (Γ+

δ log t)
′. (4.11)

Also, by our special construction in (4.10), we have

|γvi
| ≤ 2δ log t. (4.12)

When B′(t) = κ for a fixed vertex set κ, then γvi
is a fixed path from ∂oκ to ∂(Γ+

δ log t)
′

with a length less than 2δ log t. Therefore, on B′(t) = κ

P (γvi
is a zero path) ≥ p2δ log t. (4.13)

We say Tsi
is good if there exists such a zero path γvi

. On B′(t) = κ, let M(Γ, κ) be the
number of such good cylinders Tsi

. By (4.13), we have

EM(Γ, κ) ≥ (ct2)p2δ log t = ct2+2δ log p. (4.14)

On B′(t) = κ, note that the event that Tsi
is good depends on zeros and ones of the edges

inside Tsi
, but outside of ∂oκ, and Tsi

and Tsj
are disjoint for i 6= j. Note also that the

number of edges in Tsi
between ∂oκ and ∂(Γ+

δ log t)
′ is at most 2δM log t. Therefore, by a

standard Hoeffding inequality, there exist Ci = Ci(p, d) for i = 1, 2, 3, 4 such that

P (M(Γ, κ) ≤ ct(2+2δ log p)/2) ≤ C1 exp

(
−C2

c2t4+4δ log p

ct2δ2M2 log2 t

)
≤ C3 exp

(
−C4t

(1+4δ log p)
)
.

(4.15)
We denote by

D(Γ, κ) = {M(Γ, κ) ≥ ct(2+2δ log p)/2}.

Note that
D(Γ, κ) only depends on the zeros and ones outside ∂oκ. (4.16)
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By Proposition 3 and (4.16),

{B′(t) = κ} and D(Γ, κ) are independent. (4.17)

By Proposition 2, any route from (0, 0, 0) to vi in B′(t) ∪ ∂oB
′(t) has a passage time t + 1.

We just pick one from these routes and denote it by γ(0, vi). On F (B(t), Γ) ≤ δ log t if Tsi
is

good, there exists a zero path γvi
from vi to ∂(Γ+

δ log t)
′. This implies that there exists a path

γ(0, ∂Γ+
δ log t) = γ(0, vi) ∪ γvi

from (0, 0, 0) to ∂(Γ+
δ log t)

′ with a passage time t + 1 and the path passes through the edge
adjacent vi between ∂B(t) and ∂oB(t). On the other hand, note that any path from the
origin to ∂(Γ+

δ log t)
′ has to pass through ∂oB

′(t) first, so by Proposition 2 it has to spend at
least passage time t + 1. Therefore, if we denote by evi

the edge adjacent vi from ∂B(t) to
∂oB(t), then the path γ(0, ∂Γ+

δ log t) with passage time T ((0, 0, 0), ∂Γ+
δ log t) passes through evi

and t(evi
) = 1. By (4.11) and

B′(t) ⊂ (Γ+
δ log t)

′,

the path γ(0, ∂Γ+
δ log t) has to stay inside (Γ+

δ log t)
′. These observations tell us that evi

is a
pivotal edge for TΓ+

δ log t
((0, 0), Γ+

δ log t). Therefore, on F (B(t), Γ) ≤ δ log t if Tsi
is good,

Tsi
contains at least one pivotal edge for TΓ+

δ log t
((0, 0), Γ+

δ log t). (4.18)

With these preparations we now show Theorem 1.

Proof of Theorem 1. If Γ+
δ log t is not regular,

1/2tBd 6⊂ Γ+
δ log t or Γ+

δ log t 6⊂ 2tBd,

by (4.8) there are C1 = C(p, d) and C2(p, d) such that

Pp(F (B(t), Γ) ≤ δ log t) ≤ C1 exp(−C2t). (4.19)

Now we only need to focus on a regular Γ+
δ log t.

Pp(F (B(t), Γ) ≤ δ log t) =
∑

κ

P (F (B(t), Γ) ≤ δ log t, B′(t) = κ), (4.20)

where the sum takes over all possible sets κ. For each fixed κ, by (4.17) and (4.15), there
exist C3 = C3(p, d) and C4 = C4(p, d) such that

∑

κ

P (F (B(t), Γ) ≤ δ log t, B′(t) = κ)

≤
∑

κ

P (F (B(t), Γ) ≤ δ log t, B′(t) = κ,D(Γ, κ)) + C3 exp
(
−C4t

1+4δ log p
)
.
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By (4.18),

∑

κ

P (F (B(t), Γ) ≤ δ log t, B′(t) = κ,D(Γ, κ)) ≤
∑

κ

P

(
KΓ+

δ log t
≥ ct2+2δ log p

2
, B′(t) = κ

)
.

(4.21)
We combine (4.20)-(4.21) together to have

P (F (B(t), Γ) ≤ δ log t) ≤ P

(
KΓ+

δ log t
≥ ct2+2δ log p

2

)
+ C5 exp

(
−C6t

1+4δ log p
)

(4.22)

for C5 = C5(p, d) and C6 = C6(p, d). By Markov’s inequality and Proposition 4, if we select
a suitable δ > 0, for a regular Γ there exists C7 = C7(p, d) such that

P (F (B(t), Γ) ≤ δ log t) ≤ C7t
−1−2δ log p. (4.23)

Theorem 1 follows from (4.19) and (4.23).

5 Proof of Theorem 2.

Since Γ is regular, by Proposition 4,

EKΓ ≤ Ct. (5.1)

By (5.1) for a large positive number M ,

E|RΓ| ≤ E(|RΓ|; |RΓ| ≥ MKΓ) + MCt. (5.2)

Now we estimate E(|RΓ|; |RΓ| ≥ MKΓ) by using the method of renormalization in Kesten
and Zhang (1990). We define, for integer k ≥ 1 and u ∈ Zd, the cube

Bk(u) =
d∏

i=1

[kui, kui + k)

with lower left hand corner at ku and fattened RΓ by

R̂Γ(k) = {u ∈ Zd : Bk(u) ∩ RΓ 6= ∅}.

By our definition,

|R̂Γ(k)| ≥ |RΓ|
kd

. (5.3)

For each cube Bk(u), it has at most 4d neighbor cubes, where we count its diagonal
neighbor cubes. We say that these neighbors are connected to Bk(u) and denote by B̄k(u)
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the vertex set of Bk(u) and all of its neighbor cubes. Note that, by the definition, RΓ is
a connected set that contains the origin, so R̂Γ(k) is also connected in the sense of the
connection of two of its diagonal vertices. If Γ is regular, then |RΓ| ≥ t/2. By (5.3), we have

P (|RΓ| ≥ MKΓ) =
∑

m≥Mt/(2kd)

P (|RΓ| ≥ MKΓ, |R̂Γ(k)| = m). (5.4)

We say a cube Bk(u) for u ∈ R̂Γ(k) is bad, if there does not exist an edge e ∈ B̄k(u) ∩ RΓ

such that t(e) = 1. Otherwise, we say the cube is good. Let Bk(u) be the event that Bk(u)
is bad and let DΓ be the number of bad cubes Bk(u) for u ∈ R̂Γ.

If Bk(u) occurs, there is a zero path γk ⊂ RΓ from ∂Bk(u) to ∂B̄k(u). Note that p < pc

by Theorem 5.4 in Grimmett (1999), there exist C1 = C1(p, d) and C2 = C2(p, d) such that
for fixed Bk(u)

P (Bk(u)) ≤ C1 exp(−C2k). (5.5)

On {|R̂Γ(k)| = m, |RΓ| ≥ MKΓ}, if 2(4k)d < M , we claim

DΓ ≥ m

2
. (5.6)

To see this, suppose that there are m/2 good cubes. For each good cube Bk(u), B̄k(u)
contains an edge e ∈ RΓ with t(e) = 1, so e is a pivotal edge. Note that each Bk(u) has at
most 4d neighbor cubes adjacent to Bk(u), so there are at least m

4d2
pivotal edges. Therefore,

KΓ > m
4d2

. By (5.3) on {|RΓ| ≥ MKΓ, |R̂Γ(k)| = m},

|RΓ| ≥ MKΓ ≥ Mm

4d2
≥ M |R̂Γ(k)|

4d2
> |R̂Γ(k)|kd. (5.7)

The contradiction of (5.3) and (5.7) tells us that (5.6) holds.
By this observation and (5.4), we take 2(4k)d < M to obtain

P (|RΓ| ≥ MKΓ) =
∑

m≥Mt/(2kd)

P (|RΓ| ≥ Mt, |R̂Γ(k)| = m, DΓ ≥ m/2). (5.8)

Now we fix R̂Γ to have

P (|RΓ| ≥ MKΓ) =
∑

m≥Mt/(2kd)

∑

κm

P (|RΓ| ≥ MKΓ, R̂Γ(k) = κm, DΓ ≥ m/2), (5.9)

where κm is a fixed connected vertex set with m vertices, and the second sum in (5.9) takes

over all possible such κm. For each fixed R̂Γ(k) = κm, there are at most
(

m
i

)
choices for these

i, i = m/2, ..., m, bad cubes, so by (5.5)

P (|RΓ| ≥ MKΓ, R̂Γ(k) = κm, DΓ ≥ m/2) ≤ C1m

(
m

m/2

)
exp(−C2km/2). (5.10)
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Substitute the upper bound of (5.10) for each term of the sums in (5.9) to obtain

P (|RΓ| ≥ MKΓ) ≤
∑

m≥Mt/(2kd)

∑

κm

C1m

(
m

m/2

)
exp(−C2km/2). (5.11)

As we mentioned, R̂Γ is connected, so there are at most (4)dm choices for all possible κm.
With this observation and (5.11) we have

P (|RΓ| ≥ MKΓ) =
∑

m≥Mt/(2kd)

(4)dmm

(
m

m/2

)
exp(−C2km/2) ≤ C1

∑

m≥Mt/kd

m[4d2 exp(−C2k/2)]m.

(5.12)
We choose k large to make

4d2 exp(−C2k/2) < 1/2.

By (5.12), there are C3 = C3(p, d) and C4 = C4(p, d) such that

P (|RΓ| ≥ MKΓ) ≤ C3 exp(−C4t). (5.13)

Therefore, by (5.2) note that there are at most t2d vertices on Γ, so there exists C5 = C5(p, d)
such that

E|RΓ| = C3t
2d exp(−C4t) + MCt ≤ C5t. (5.14)

Theorem 2 follows from (5.14).
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